C. A. Piantadosi, Biological Chemistry of Carbon Monoxide, Antioxidants & Redox Signaling, vol.4, issue.2, pp.259-270, 2002.
DOI : 10.1089/152308602753666316

R. Foresti, M. G. Bani-hani, and R. Motterlini, Use of carbon monoxide as a??therapeutic agent: promises and challenges, Intensive Care Medicine, vol.38, issue.4, pp.649-658, 2008.
DOI : 10.1007/s00134-008-1011-1

C. A. Piantadosi, Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radic, Biol. Med, vol.45, pp.562-569, 2008.
DOI : 10.1016/j.freeradbiomed.2008.05.013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570053

J. Boczkowski, J. J. Poderoso, and R. Motterlini, CO???metal interaction: vital signaling from a lethal gas, Trends in Biochemical Sciences, vol.31, issue.11, pp.614-621, 2006.
DOI : 10.1016/j.tibs.2006.09.001

S. W. Ryter, J. Alam, and A. M. Choi, Heme Oxygenase-1/Carbon Monoxide: From Basic Science to Therapeutic Applications, Physiological Reviews, vol.86, issue.2, pp.583-650, 2006.
DOI : 10.1152/physrev.00011.2005

J. E. Clark, R. Foresti, C. J. Green, and R. Motterlini, Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress, Biochemical Journal, vol.348, issue.3, pp.615-619, 2000.
DOI : 10.1042/bj3480615

R. Foresti, H. Goatly, C. J. Green, and R. Motterlini, Role of heme oxygenase-1 in hypoxiareoxygenation: requirement of substrate heme to promote cardioprotection, Am. J. Physiol Heart Circ. Physiol, vol.281, pp.1976-1984, 2001.

R. Motterlini and L. Otterbein, The therapeutic potential of carbon monoxide, Nature Reviews Drug Discovery, vol.51, issue.9, pp.728-743, 2010.
DOI : 10.1038/nrd3228

R. Motterlini, J. E. Clark, R. Foresti, P. Sarathchandra, B. E. Mann et al., Carbon Monoxide-Releasing Molecules: Characterization of Biochemical and Vascular Activities, Circulation Research, vol.90, issue.2, pp.17-24, 2002.
DOI : 10.1161/hh0202.104530

J. E. Clark, P. Naughton, S. Shurey, C. J. Green, T. R. Johnson et al., Cardioprotective Actions by a Water-Soluble Carbon Monoxide-Releasing Molecule, Circulation Research, vol.93, issue.2, pp.2-8, 2003.
DOI : 10.1161/01.RES.0000084381.86567.08

P. Sawle, R. Foresti, B. E. Mann, T. R. Johnson, C. J. Green et al., Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages, British Journal of Pharmacology, vol.103, issue.6, pp.800-810, 2005.
DOI : 10.1038/sj.bjp.0706241

M. J. Alcaraz, M. I. Guillen, M. L. Ferrandiz, J. Megias, and R. Motterlini, Carbon Monoxide-Releasing Molecules: A Pharmacological Expedient to Counteract Inflammation, Current Pharmaceutical Design, vol.14, issue.5, pp.465-472, 2008.
DOI : 10.2174/138161208783597362

H. B. Suliman, M. S. Carraway, A. S. Ali, C. M. Reynolds, K. E. Welty-wolf et al., The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy, Journal of Clinical Investigation, vol.117, pp.3730-3741, 2007.
DOI : 10.1172/JCI32967

S. Lancel, S. M. Hassoun, R. Favory, B. Decoster, R. Motterlini et al., Carbon Monoxide Rescues Mice from Lethal Sepsis by Supporting Mitochondrial Energetic Metabolism and Activating Mitochondrial Biogenesis, Journal of Pharmacology and Experimental Therapeutics, vol.329, issue.2, pp.641-648, 2009.
DOI : 10.1124/jpet.108.148049

D. C. Wallace, W. Fan, and V. Procaccio, Mitochondrial Energetics and Therapeutics, Annual Review of Pathology: Mechanisms of Disease, vol.5, issue.1, pp.297-348, 2010.
DOI : 10.1146/annurev.pathol.4.110807.092314

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245719

S. Raha and B. H. Robinson, Mitochondria, oxygen free radicals, disease and ageing, Trends in Biochemical Sciences, vol.25, issue.10, pp.502-508, 2000.
DOI : 10.1016/S0968-0004(00)01674-1

A. J. Lambert and M. D. Brand, Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane, Biochemical Journal, vol.382, issue.2, pp.511-517, 2004.
DOI : 10.1042/BJ20040485

M. D. Brand, C. Affourtit, T. C. Esteves, K. Green, A. J. Lambert et al., Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins, Free Radical Biology and Medicine, vol.37, issue.6, pp.755-767, 2004.
DOI : 10.1016/j.freeradbiomed.2004.05.034

M. D. Brand, Uncoupling to survive? The role of mitochondrial inefficiency in ageing, Experimental Gerontology, vol.35, issue.6-7, pp.811-820, 2000.
DOI : 10.1016/S0531-5565(00)00135-2

S. Krauss, C. Y. Zhang, and B. B. Lowell, The mitochondrial uncoupling-protein homologues, Nature Reviews Molecular Cell Biology, vol.12, issue.3, pp.248-261, 2005.
DOI : 10.1038/nrm1592

M. D. Brand, J. L. Pakay, A. Ocloo, J. Kokoszka, D. C. Wallace et al., The basal proton conductance of mitochondria depends on adenine nucleotide translocase content, Biochemical Journal, vol.392, issue.2, pp.353-362, 2005.
DOI : 10.1042/BJ20050890

G. Mattiasson and P. G. Sullivan, The Emerging Functions of UCP2 in Health, Disease, and Therapeutics, Antioxidants & Redox Signaling, vol.8, issue.1-2, pp.1-38, 2006.
DOI : 10.1089/ars.2006.8.1

J. D. Sharer, The adenine nucleotide translocase type 1 (ANT1): A new factor in mitochondrial disease, IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), vol.426, issue.9, pp.607-614, 2005.
DOI : 10.1080/15216540500217735

Y. Emre, C. Hurtaud, M. Karaca, T. Nubel, F. Zavala et al., Role of uncoupling protein UCP2 in cell-mediated immunity: How macrophage-mediated insulitis is accelerated in a model of autoimmune diabetes, Proceedings of the National Academy of Sciences, vol.104, issue.48, pp.19085-19090, 2007.
DOI : 10.1073/pnas.0709557104

URL : https://hal.archives-ouvertes.fr/hal-00193660

R. Motterlini, P. Sawle, S. Bains, J. Hammad, R. Alberto et al., CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule, The FASEB Journal, vol.19, pp.284-286, 2005.
DOI : 10.1096/fj.04-2169fje

O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem, vol.193, pp.265-275, 1951.

R. K. Emaus, R. Grunwald, and J. J. Lemasters, Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.850, issue.3, pp.436-448, 1986.
DOI : 10.1016/0005-2728(86)90112-X

A. Barrientos, In vivo and in organello assessment of OXPHOS activities, Methods, vol.26, issue.4, pp.307-316, 2002.
DOI : 10.1016/S1046-2023(02)00036-1

R. Foresti, J. Hammad, J. E. Clark, R. A. Johnson, B. E. Mann et al., Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule, British Journal of Pharmacology, vol.93, issue.3, pp.453-460, 2004.
DOI : 10.1038/sj.bjp.0705825

P. A. Townsend, S. M. Davidson, S. J. Clarke, I. Khaliulin, C. J. Carroll et al., Urocortin prevents mitochondrial permeability transition in response to reperfusion injury indirectly by reducing oxidative stress, AJP: Heart and Circulatory Physiology, vol.293, issue.2, pp.928-938, 2007.
DOI : 10.1152/ajpheart.01135.2006

B. S. Zuckerbraun, B. Y. Chin, M. Bilban, D. J. De-costa, J. Rao et al., Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species, The FASEB Journal, vol.21, issue.4, pp.1099-1106, 2007.
DOI : 10.1096/fj.06-6644com

S. S. Korshunov, V. P. Skulachev, and A. A. Starkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Letters, vol.94, issue.1, pp.15-18, 1997.
DOI : 10.1016/S0014-5793(97)01159-9

A. J. Lambert and M. D. Brand, Inhibitors of the Quinone-binding Site Allow Rapid Superoxide Production from Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I), Journal of Biological Chemistry, vol.279, issue.38, pp.39414-39420, 2004.
DOI : 10.1074/jbc.M406576200

A. Sandouka, E. Balogun, R. Foresti, B. E. Mann, T. R. Johnson et al., Motterlini, R. Carbon monoxide-releasing molecules (CO-RMs) modulate respiration in isolated mitochondria, Cell. Mol. Biol, vol.51, pp.425-432, 2005.

M. Desmard, J. Boczkowski, J. Poderoso, and R. Motterlini, Mitochondrial and Cellular Heme-Dependent Proteins as Targets for the Bioactive Function of the Heme Oxygenase/Carbon Monoxide System, Antioxidants & Redox Signaling, vol.9, issue.12, pp.2139-2155, 2007.
DOI : 10.1089/ars.2007.1803

J. A. Harper, K. Dickinson, and M. D. Brand, Mitochondrial uncoupling as a target for drug development for the treatment of obesity, Obesity Reviews, vol.265, issue.4, pp.255-265, 2001.
DOI : 10.1042/0264-6021:3510307

V. P. Skulachev, Uncoupling: new approaches to an old problem of bioenergetics, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1363, issue.2, pp.100-124, 1998.
DOI : 10.1016/S0005-2728(97)00091-1

A. A. Starkov, V. I. Dedukhova, and V. P. Skulachev, 6-Ketocholestanol abolishes the effect of the most potent uncouplers of oxidative phosphorylation in mitochondria, FEBS Letters, vol.24, issue.3, pp.305-308, 1994.
DOI : 10.1016/0014-5793(94)01211-3

K. S. Echtay, Mitochondrial uncoupling proteins--what is their physiological role? Free Radic, Biol. Med, vol.43, pp.1351-1371, 2007.

A. Y. Andreyev, T. O. Bondareva, V. I. Dedukhova, E. N. Mokhova, V. P. Skulachev et al., The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria, European Journal of Biochemistry, vol.46, issue.3, pp.585-592, 1989.
DOI : 10.1016/0006-3002(62)90770-9

C. S. Queiroga, A. S. Almeida, C. Martel, C. Brenner, P. M. Alves et al., Glutathionylation of Adenine Nucleotide Translocase Induced by Carbon Monoxide Prevents Mitochondrial Membrane Permeabilization and Apoptosis, Journal of Biological Chemistry, vol.285, issue.22, pp.17077-17088, 2010.
DOI : 10.1074/jbc.M109.065052

D. Noia, M. A. Van-driesche, S. Palmieri, F. Yang, L. M. Quan et al., Heme Oxygenase-1 Enhances Renal Mitochondrial Transport Carriers and Cytochrome c Oxidase Activity in Experimental Diabetes, Journal of Biological Chemistry, vol.281, issue.23, pp.15687-15693, 2006.
DOI : 10.1074/jbc.M510595200

P. Rustin, A. Munnich, and A. Rotig, Succinate dehydrogenase and human diseases: new insights into a well-known enzyme, European Journal of Human Genetics, vol.10, issue.5, pp.289-291, 2002.
DOI : 10.1038/sj.ejhg.5200793

O. Miro, J. R. Alonso, D. Jarreta, J. Casademont, A. Urbano-marquez et al., Smoking disturbs mitochondrial respiratory chain function and enhances lipid peroxidation on human circulating lymphocytes, Carcinogenesis, vol.20, issue.7, pp.1331-1336, 1999.
DOI : 10.1093/carcin/20.7.1331

L. Susheela, K. Venkatesan, and T. Ramasarma, Structural and kinetic studies on the activators of succinate dehydrogenase, Biochimica et Biophysica Acta (BBA) - Enzymology, vol.480, issue.1, pp.47-55, 1977.
DOI : 10.1016/0005-2744(77)90319-9

S. S. Korshunov, O. V. Korkina, E. K. Ruuge, V. P. Skulachev, and A. A. Starkov, by mitochondria in the resting state, FEBS Letters, vol.1364, issue.2-3, pp.215-218, 1998.
DOI : 10.1016/S0014-5793(98)01073-4

Q. Chen, S. Moghaddas, C. L. Hoppel, and E. J. Lesnefsky, Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria, AJP: Cell Physiology, vol.294, issue.2, pp.460-466, 2008.
DOI : 10.1152/ajpcell.00211.2007

Y. R. Chen, C. L. Chen, D. R. Pfeiffer, and J. L. Zweier, Mitochondrial Complex II in the Post-ischemic Heart: OXIDATIVE INJURY AND THE ROLE OF PROTEIN S-GLUTATHIONYLATION, Journal of Biological Chemistry, vol.282, issue.45, pp.32640-32654, 2007.
DOI : 10.1074/jbc.M702294200

C. Taille, J. El-benna, S. Lanone, J. Boczkowski, and R. Motterlini, Mitochondrial Respiratory Chain and NAD(P)H Oxidase Are Targets for the Antiproliferative Effect of Carbon Monoxide in Human Airway Smooth Muscle, Journal of Biological Chemistry, vol.280, issue.27, pp.25350-25360, 2005.
DOI : 10.1074/jbc.M503512200

J. L. Scragg, M. L. Dallas, J. A. Wilkinson, G. Varadi, and C. Peers, Carbon Monoxide Inhibits L-type Ca2+ Channels via Redox Modulation of Key Cysteine Residues by Mitochondrial Reactive Oxygen Species, Journal of Biological Chemistry, vol.283, issue.36, pp.24412-24419, 2008.
DOI : 10.1074/jbc.M803037200

G. Wang, T. Hamid, R. J. Keith, G. Zhou, C. R. Partridge et al., Cardioprotective and Antiapoptotic Effects of Heme Oxygenase-1 in the Failing Heart, Circulation, vol.121, issue.17, pp.1912-1925, 2010.
DOI : 10.1161/CIRCULATIONAHA.109.905471