U. Andersson and K. Filipsson, AMP-activated Protein Kinase Plays a Role in the Control of Food Intake, Journal of Biological Chemistry, vol.279, issue.13, pp.12005-12008, 2004.
DOI : 10.1074/jbc.C300557200

F. Andreelli and M. Foretz, Liver Adenosine Monophosphate-Activated Kinase-??2 Catalytic Subunit Is a Key Target for the Control of Hepatic Glucose Production by Adiponectin and Leptin But Not Insulin, Endocrinology, vol.147, issue.5, pp.2432-2441, 2006.
DOI : 10.1210/en.2005-0898

URL : https://hal.archives-ouvertes.fr/hal-00091816

M. Anthonsen and L. Ronnstrand, Identification of Novel Phosphorylation Sites in Hormone-sensitive Lipase That Are Phosphorylated in Response to Isoproterenol and Govern Activation Properties in Vitro, Journal of Biological Chemistry, vol.273, issue.1, pp.215-221, 1998.
DOI : 10.1074/jbc.273.1.215

M. Assifi and G. Suchankova, AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats, AJP: Endocrinology and Metabolism, vol.289, issue.5, pp.794-800, 2005.
DOI : 10.1152/ajpendo.00144.2005

R. Banerjee and S. Rangwala, Regulation of Fasted Blood Glucose by Resistin, Science, vol.303, issue.5661, pp.1195-1198, 2004.
DOI : 10.1126/science.1092341

A. Banks and N. Kon, SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice, Cell Metabolism, vol.8, issue.4, pp.333-341, 2008.
DOI : 10.1016/j.cmet.2008.08.014

B. Barnes and S. Marklund, The 5 -AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle ?, J, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01211883

J. Baur and K. Pearson, Resveratrol improves health and survival of mice on a high-calorie diet, Nature, vol.35, issue.7117, 2006.
DOI : 10.1038/nature05354

R. Bergeron and R. Russell, Effect of AMPK activation on muscle glucose metabolism in conscious rats, Am J Physiol, vol.276, pp.938-944, 1999.

R. Bergeron and S. Previs, Effect of 5-Aminoimidazole-4-Carboxamide-1-??-D-Ribofuranoside Infusion on In Vivo Glucose and Lipid Metabolism in Lean and Obese Zucker Rats, Diabetes, vol.50, issue.5, pp.1076-1082, 2001.
DOI : 10.2337/diabetes.50.5.1076

R. Bergeron and J. Ren, Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis, Am J Physiol Endocrinol Metab, vol.281, pp.1340-1346, 2001.

H. Boon and M. Bosselaar, Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients, Diabetologia, vol.39, issue.10, pp.1893-1900, 2008.
DOI : 10.1007/s00125-008-1108-7

L. Bordone and M. Motta, Sirt1 Regulates Insulin Secretion by Repressing UCP2 in Pancreatic ?? Cells, PLoS Biology, vol.146, issue.2, p.31, 2006.
DOI : 10.1371/journal.pbio.0040031.sg001

C. Bruce and V. Mertz, The Stimulatory Effect of Globular Adiponectin on Insulin-Stimulated Glucose Uptake and Fatty Acid Oxidation Is Impaired in Skeletal Muscle From Obese Subjects, Diabetes, vol.54, issue.11, pp.3154-3160, 2005.
DOI : 10.2337/diabetes.54.11.3154

E. Buhl and N. Jessen, Long-Term AICAR Administration Reduces Metabolic Disturbances and Lowers Blood Pressure in Rats Displaying Features of the Insulin Resistance Syndrome, Diabetes, vol.51, issue.7, pp.2199-2206, 2002.
DOI : 10.2337/diabetes.51.7.2199

A. Butler and J. Janson, ??-Cell Deficit and Increased ??-Cell Apoptosis in Humans With Type 2 Diabetes, Diabetes, vol.52, issue.1, pp.102-110, 2003.
DOI : 10.2337/diabetes.52.1.102

C. Canto and Z. Gerhart-hines, AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, vol.276, issue.7241, pp.1056-1060, 2009.
DOI : 10.1038/nature07813

URL : https://hal.archives-ouvertes.fr/inserm-00383329

C. Canto and L. Jiang, Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle, Cell Metabolism, vol.11, issue.3, pp.213-219, 2010.
DOI : 10.1016/j.cmet.2010.02.006

M. Carattino and R. Edinger, Epithelial Sodium Channel Inhibition by AMP-activated Protein Kinase in Oocytes and Polarized Renal Epithelial Cells, Journal of Biological Chemistry, vol.280, issue.18, pp.17608-17616, 2005.
DOI : 10.1074/jbc.M501770200

URL : https://hal.archives-ouvertes.fr/inserm-00390871

A. Carey and G. Steinberg, Interleukin-6 Increases Insulin-Stimulated Glucose Disposal in Humans and Glucose Uptake and Fatty Acid Oxidation In Vitro via AMP-Activated Protein Kinase, Diabetes, vol.55, issue.10, pp.2688-2697, 2006.
DOI : 10.2337/db05-1404

D. Carey and G. Cowin, Effect of Rosiglitazone on Insulin Sensitivity and Body Composition in Type 2 Diabetic Patients, Obesity Research, vol.25, issue.Suppl 3, pp.1008-1015, 2002.
DOI : 10.1038/oby.2002.137

Z. Chen and I. Peng, AMP-Activated Protein Kinase Functionally Phosphorylates Endothelial Nitric Oxide Synthase Ser633, Circulation Research, vol.104, issue.4, pp.496-505, 2009.
DOI : 10.1161/CIRCRESAHA.108.187567

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761102

Z. Chen and K. Mitchelhill, AMP-activated protein kinase phosphorylation of endothelial NO synthase, FEBS Letters, vol.100, issue.3, pp.285-289, 1999.
DOI : 10.1016/S0014-5793(98)01705-0

Z. Chen and G. Mcconell, AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation, Am J Physiol Endocrinol Metab, vol.279, pp.1202-1206, 2000.

P. Clarke and D. Hardie, Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver, Embo J, vol.9, pp.2439-2446, 1990.

Q. Collins and H. Liu, Epigallocatechin-3-gallate (EGCG), A Green Tea Polyphenol, Suppresses Hepatic Gluconeogenesis through 5'-AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.282, issue.41, pp.30143-30149, 2007.
DOI : 10.1074/jbc.M702390200

B. Cool and B. Zinker, Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome, Cell Metabolism, vol.3, issue.6, 2006.
DOI : 10.1016/j.cmet.2006.05.005

J. Corton and J. Gillespie, 5-Aminoimidazole-4-Carboxamide Ribonucleoside. A Specific Method for Activating AMP-Activated Protein Kinase in Intact Cells?, European Journal of Biochemistry, vol.223, issue.2, pp.558-565, 1995.
DOI : 10.1016/0014-5793(94)01006-4

G. Da-silva-xavier and I. Leclerc, Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression, Biochemical Journal, vol.371, issue.3, pp.761-774, 2003.
DOI : 10.1042/bj20021812

B. Dasgupta and J. Milbrandt, Resveratrol stimulates AMP kinase activity in neurons, Proceedings of the National Academy of Sciences, vol.104, issue.17, pp.7217-7222, 2007.
DOI : 10.1073/pnas.0610068104

M. Daval and F. Diot-dupuy, Anti-lipolytic Action of AMP-activated Protein Kinase in Rodent Adipocytes, Journal of Biological Chemistry, vol.280, issue.26, pp.25250-25257, 2005.
DOI : 10.1074/jbc.M414222200

B. Davis and Z. Xie, Activation of the AMP-Activated Kinase by Antidiabetes Drug Metformin Stimulates Nitric Oxide Synthesis In Vivo by Promoting the Association of Heat Shock Protein 90 and Endothelial Nitric Oxide Synthase, Diabetes, vol.55, issue.2, pp.496-505, 2006.
DOI : 10.2337/diabetes.55.02.06.db05-1064

R. Defronzo and D. Tripathy, Skeletal Muscle Insulin Resistance Is the Primary Defect in Type 2 Diabetes, Diabetes Care, vol.32, issue.suppl_2, pp.157-163, 2009.
DOI : 10.2337/dc09-S302

M. Donath and J. Ehses, Mechanisms of ??-Cell Death in Type 2 Diabetes, Diabetes, vol.54, issue.Supplement 2, pp.108-113, 2005.
DOI : 10.2337/diabetes.54.suppl_2.S108

H. Dreyer and M. Drummond, Resistance exercise increases human skeletal muscle AS160/TBC1D4 phosphorylation in association with enhanced leg glucose uptake during post-exercise recovery, J Appl Physiol, 2008.

J. Dyck and G. Lopaschuk, AMPK alterations in cardiac physiology and pathology: enemy or ally?, The Journal of Physiology, vol.97, issue.1, pp.95-112, 2006.
DOI : 10.1113/jphysiol.2006.109389

R. Eckel and S. Grundy, The metabolic syndrome, The Lancet, vol.365, issue.9468, pp.1415-1428, 2005.
DOI : 10.1016/S0140-6736(05)66378-7

W. El-assaad and J. Buteau, Saturated Fatty Acids Synergize with Elevated Glucose to Cause Pancreatic ??-Cell Death, Endocrinology, vol.144, issue.9, pp.4154-4163, 2003.
DOI : 10.1210/en.2003-0410

K. Eto and T. Yamashita, Genetic Manipulations of Fatty Acid Metabolism in ??-Cells Are Associated With Dysregulated Insulin Secretion, Diabetes, vol.51, issue.Supplement 3, pp.414-420, 2002.
DOI : 10.2337/diabetes.51.2007.S414

A. Evans and K. Mustard, Does AMP-activated Protein Kinase Couple Inhibition of Mitochondrial Oxidative Phosphorylation by Hypoxia to Calcium Signaling in O2-sensing Cells?, Journal of Biological Chemistry, vol.280, issue.50, pp.41504-41511, 2005.
DOI : 10.1074/jbc.M510040200

M. Febbraio and B. Pedersen, Contraction-Induced Myokine Production and Release: Is Skeletal Muscle an Endocrine Organ?, Exercise and Sport Sciences Reviews, vol.33, issue.3, pp.114-119, 2005.
DOI : 10.1097/00003677-200507000-00003

J. Fisher and J. Gao, Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin, Am J Physiol Endocrinol Metab, vol.282, pp.18-23, 2002.

V. Fonseca, Defining and Characterizing the Progression of Type 2 Diabetes, Diabetes Care, vol.32, issue.suppl_2, pp.151-156, 2009.
DOI : 10.2337/dc09-S301

M. Foretz and D. Carling, AMP-activated Protein Kinase Inhibits the Glucose-activated Expression of Fatty Acid Synthase Gene in Rat Hepatocytes, Journal of Biological Chemistry, vol.273, issue.24, pp.14767-14771, 1998.
DOI : 10.1074/jbc.273.24.14767

M. Foretz and N. Ancellin, Short-Term Overexpression of a Constitutively Active Form of AMP-Activated Protein Kinase in the Liver Leads to Mild Hypoglycemia and Fatty Liver, Diabetes, vol.54, issue.5, pp.1331-1339, 2005.
DOI : 10.2337/diabetes.54.5.1331

S. Fraser and P. Mount, Inhibition of the Na-K-2Cl cotransporter by novel interaction with the metabolic sensor AMP-activated protein kinase, J Am Soc Nephrol, vol.14, p.545, 2003.

L. Fryer and A. Parbu-patel, The Anti-diabetic Drugs Rosiglitazone and Metformin Stimulate AMP-activated Protein Kinase through Distinct Signaling Pathways, Journal of Biological Chemistry, vol.277, issue.28, pp.25226-25232, 2002.
DOI : 10.1074/jbc.M202489200

N. Fujii and R. Ho, Ablation of AMP-activated Protein Kinase alpha 2 Activity Exacerbates Insulin Resistance Induced by High-fat Feeding of Mice { } . Diabetes, pp.2958-2966, 2008.

A. Garton and D. Campbell, Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism, European Journal of Biochemistry, vol.180, issue.1, pp.249-254, 1989.
DOI : 10.1016/0014-5793(88)80445-9

A. Garton and S. Yeaman, Identification and role of the basal phosphorylation site on hormone-sensitive lipase, European Journal of Biochemistry, vol.168, issue.1, pp.245-250, 1990.
DOI : 10.1016/0167-4889(90)90067-N

J. Gledhill and M. Montgomery, Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols, Proceedings of the National Academy of Sciences, vol.104, issue.34, pp.13632-13637, 2007.
DOI : 10.1073/pnas.0706290104

S. Glund and A. Deshmukh, Interleukin-6 Directly Increases Glucose Metabolism in Resting Human Skeletal Muscle, Diabetes, vol.56, issue.6, pp.1630-1637, 2007.
DOI : 10.2337/db06-1733

S. Glund and J. Treebak, Role of Adenosine 5???-Monophosphate-Activated Protein Kinase in Interleukin-6 Release from Isolated Mouse Skeletal Muscle, Endocrinology, vol.150, issue.2, pp.600-606, 2009.
DOI : 10.1210/en.2008-1204

S. Hammer and M. Snel, Prolonged Caloric Restriction in Obese Patients With Type 2 Diabetes Mellitus Decreases Myocardial Triglyceride Content and Improves Myocardial Function, Journal of the American College of Cardiology, vol.52, issue.12, pp.1006-1012, 2008.
DOI : 10.1016/j.jacc.2008.04.068

T. Hayashi and M. Hirshman, Evidence for 5 AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport ?, Diabetes, vol.47, pp.1369-1373, 1998.

M. Higa and Y. Zhou, Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats, Proceedings of the National Academy of Sciences, vol.96, issue.20, pp.11513-11518, 1999.
DOI : 10.1073/pnas.96.20.11513

B. Holmes and E. Kurth-kraczek, Chronic activation of 5 -AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle ?, J Appl Physiol, vol.87, pp.1990-1995, 1999.

B. Holmes and D. Lang, AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle, AJP: Endocrinology and Metabolism, vol.287, issue.4, pp.739-743, 2004.
DOI : 10.1152/ajpendo.00080.2004

X. Hou and S. Xu, SIRT1 Regulates Hepatocyte Lipid Metabolism through Activating AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.283, issue.29, pp.20015-20026, 2008.
DOI : 10.1074/jbc.M802187200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2459285

K. Howitz and K. Bitterman, Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature, vol.425, issue.6954, pp.191-196, 2003.
DOI : 10.1038/nature01960

M. Iglesias and J. Ye, AICAR Administration Causes an Apparent Enhancement of Muscle and Liver Insulin Action in Insulin-Resistant High-Fat-Fed Rats, Diabetes, vol.51, issue.10, pp.2886-2894, 2002.
DOI : 10.2337/diabetes.51.10.2886

S. Jager and C. Handschin, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1??, Proceedings of the National Academy of Sciences, vol.104, issue.29, pp.12017-12022, 2007.
DOI : 10.1073/pnas.0705070104

I. Jazet and G. Schaart, Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated type 2 diabetic patients, Diabetologia, vol.54, issue.2, pp.309-319, 2008.
DOI : 10.1007/s00125-007-0862-2

S. Jorgensen and J. Wojtaszewski, Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle, Faseb J, vol.19, pp.1146-1148, 2005.

S. Kahn and R. Hull, Mechanisms linking obesity to insulin resistance and type 2 diabetes, Nature, vol.286, issue.7121, pp.840-846, 2006.
DOI : 10.1038/nature05482

N. Kaiser and G. Leibowitz, Glucotoxicity and beta-cell failure in type 2 diabetes mellitus, J Pediatr Endocrinol Metab, vol.16, pp.5-22, 2003.

S. Kamohara and R. Burcelin, Acute stimulation of glucose metabolism in mice by leptin treatment, Nature, vol.389, pp.374-377, 1997.

A. Katsuki and Y. Sumida, Increased visceral fat and serum levels of triglyceride are associated with insulin resistance in Japanese metabolically obese, normal weight subjects with normal glucose tolerance . Diabetes Care, pp.2341-2344, 2003.

B. Kefas and Y. Cai, AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase, Journal of Molecular Endocrinology, vol.30, issue.2, pp.151-161, 2003.
DOI : 10.1677/jme.0.0300151

B. Kefas and H. Heimberg, AICA-riboside induces apoptosis of pancreatic beta cells through stimulation of AMP-activated protein kinase, Diabetologia, vol.45, issue.2, pp.250-254, 2003.
DOI : 10.1007/s125-002-8245-8

M. Kelly and C. Keller, AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise, Biochemical and Biophysical Research Communications, vol.320, issue.2, pp.449-454, 2004.
DOI : 10.1016/j.bbrc.2004.05.188

M. Kim and J. Park, Anti-obesity effects of ??-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase, Nature Medicine, vol.46, issue.7, pp.727-733, 2004.
DOI : 10.1016/0896-6273(91)90274-4

W. Kim and J. Lee, AICAR potentiates ROS production induced by chronic high glucose: Roles of AMPK in pancreatic ??-cell apoptosis, Cellular Signalling, vol.19, issue.4, pp.791-805, 2007.
DOI : 10.1016/j.cellsig.2006.10.004

W. Knowler and E. Barrett-connor, Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin, N Engl J Med, vol.346, pp.393-403, 2002.

H. Koistinen and D. Galuska, 5-Amino-Imidazole Carboxamide Riboside Increases Glucose Transport and Cell-Surface GLUT4 Content in Skeletal Muscle From Subjects With Type 2 Diabetes, Diabetes, vol.52, issue.5, pp.1066-1072, 2003.
DOI : 10.2337/diabetes.52.5.1066

B. Kola and E. Hubina, Cannabinoids and Ghrelin Have Both Central and Peripheral Metabolic and Cardiac Effects via AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.280, issue.26, pp.25196-25201, 2005.
DOI : 10.1074/jbc.C500175200

S. Koo and L. Flechner, The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism, Nature, vol.50, issue.7062, pp.1109-1111, 2005.
DOI : 10.1111/j.1432-1033.2004.04372.x

N. Kubota and Y. Terauchi, Disruption of Adiponectin Causes Insulin Resistance and Neointimal Formation, Journal of Biological Chemistry, vol.277, issue.29, pp.25863-25866, 2002.
DOI : 10.1074/jbc.C200251200

URL : https://hal.archives-ouvertes.fr/hal-00174716

E. Kurth-kraczek and M. Hirshman, 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle, Diabetes, vol.48, issue.8, pp.1667-1671, 1999.
DOI : 10.2337/diabetes.48.8.1667

M. Lagouge and C. Argmann, Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1??, Cell, vol.127, issue.6, pp.1109-1122, 2006.
DOI : 10.1016/j.cell.2006.11.013

URL : https://hal.archives-ouvertes.fr/hal-00188005

F. Lan and J. Cacicedo, SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1: POSSIBLE ROLE IN AMP-ACTIVATED PROTEIN KINASE ACTIVATION, Journal of Biological Chemistry, vol.283, issue.41, 2008.
DOI : 10.1074/jbc.M805711200

D. Larson-meyer and L. Heilbronn, Effect of Calorie Restriction With or Without Exercise on Insulin Sensitivity, ??-Cell Function, Fat Cell Size, and Ectopic Lipid in Overweight Subjects, Diabetes Care, vol.29, issue.6, pp.1337-1344, 2006.
DOI : 10.2337/dc05-2565

K. Lau and R. Grange, nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle, Physiol Genomics, vol.2, pp.21-27, 2000.

I. Leclerc and A. Kahn, The 5 -AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, 1998.

I. Leclerc and C. Lenzner, Hepatocyte Nuclear Factor-4?? Involved in Type 1 Maturity-Onset Diabetes of the Young Is a Novel Target of AMP-Activated Protein Kinase, Diabetes, vol.50, issue.7, pp.1515-1521, 2001.
DOI : 10.2337/diabetes.50.7.1515

I. Leclerc and W. Woltersdorf, Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion, AJP: Endocrinology and Metabolism, vol.286, issue.6, pp.1023-1031, 2004.
DOI : 10.1152/ajpendo.00532.2003

W. Lee and I. Lee, ??-Lipoic Acid Prevents Endothelial Dysfunction in Obese Rats via Activation of AMP-Activated Protein Kinase, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.12, pp.2488-2494, 2005.
DOI : 10.1161/01.ATV.0000190667.33224.4c

W. Lee and K. Song, ??-Lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle, Biochemical and Biophysical Research Communications, vol.332, issue.3, pp.885-891, 2005.
DOI : 10.1016/j.bbrc.2005.05.035

R. Lee-young and S. Griffee, Skeletal Muscle AMP-activated Protein Kinase Is Essential for the Metabolic Response to Exercise in Vivo, Journal of Biological Chemistry, vol.284, issue.36, pp.23925-23934, 2009.
DOI : 10.1074/jbc.M109.021048

R. Lee-young and J. Ayala, Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo, AJP: Regulatory, Integrative and Comparative Physiology, vol.298, issue.5, 2010.
DOI : 10.1152/ajpregu.00004.2010

Y. Liao and S. Takashima, Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism, Cardiovascular Research, vol.67, issue.4, pp.705-713, 2005.
DOI : 10.1016/j.cardiores.2005.04.018

A. Lihn and N. Jessen, AICAR stimulates adiponectin and inhibits cytokines in adipose tissue, Biochemical and Biophysical Research Communications, vol.316, issue.3, pp.853-858, 2004.
DOI : 10.1016/j.bbrc.2004.02.139

H. Lin and S. Yang, Metformin reverses fatty liver disease in obese, leptin-deficient mice, Nat Med, vol.6, pp.998-1003, 2000.

V. Lira and Q. Soltow, Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle, AJP: Endocrinology and Metabolism, vol.293, issue.4, pp.1062-1068, 2007.
DOI : 10.1152/ajpendo.00045.2007

P. Lochhead and I. Salt, 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase, Diabetes, vol.49, issue.6, pp.896-903, 2000.
DOI : 10.2337/diabetes.49.6.896

Z. Luo and A. Saha, AMPK, the metabolic syndrome and cancer, Trends in Pharmacological Sciences, vol.26, issue.2, pp.69-76, 2005.
DOI : 10.1016/j.tips.2004.12.011

R. Lupi, D. Guerra, and S. , Lipotoxicity in Human Pancreatic Islets and the Protective Effect of Metformin, Diabetes, vol.51, issue.Supplement 1, pp.134-137, 2002.
DOI : 10.2337/diabetes.51.2007.S134

N. Maeda and M. Takahashi, PPAR?? Ligands Increase Expression and Plasma Concentrations of Adiponectin, an Adipose-Derived Protein, Diabetes, vol.50, issue.9, pp.2094-2099, 2001.
DOI : 10.2337/diabetes.50.9.2094

J. Majithiya and R. Balaraman, Metformin reduces blood pressure and restores endothelial function in aorta of streptozotocin-induced diabetic rats, Life Sciences, vol.78, issue.22, pp.2615-2624, 2006.
DOI : 10.1016/j.lfs.2005.10.020

T. Martin and T. Alquier, Diet-induced Obesity Alters AMP Kinase Activity in Hypothalamus and Skeletal Muscle, Journal of Biological Chemistry, vol.281, issue.28, pp.18933-18941, 2006.
DOI : 10.1074/jbc.M512831200

O. Matejkova and K. Mustard, Possible involvement of AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in white fat, FEBS Letters, vol.277, issue.1-3, pp.245-248, 2004.
DOI : 10.1016/j.febslet.2004.06.002

A. Maxwell and E. Schauble, Limb Blood Flow During Exercise Is Dependent on Nitric Oxide, Circulation, vol.98, issue.4, pp.369-374, 1998.
DOI : 10.1161/01.CIR.98.4.369

G. Merrill and E. Kurth, AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle, Am J Physiol, vol.273, pp.1107-1112, 1997.

L. Michael and Z. Wu, Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1, Proceedings of the National Academy of Sciences, vol.98, issue.7, pp.3820-3825, 2001.
DOI : 10.1073/pnas.061035098

J. Milne and P. Lambert, Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes, Nature, vol.104, issue.7170, pp.712-716, 2007.
DOI : 10.1038/nature06261

Y. Minokoshi and M. Haque, Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats, Diabetes, vol.48, issue.2, pp.287-291, 1999.
DOI : 10.2337/diabetes.48.2.287

Y. Minokoshi and Y. Kim, Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase, Nature, vol.415, issue.6869, pp.339-343, 2002.
DOI : 10.1038/415339a

Y. Minokoshi and T. Alquier, AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus, Nature, vol.428, issue.6982, pp.569-574, 2004.
DOI : 10.1038/nature02440

V. Mootha and C. Lindgren, PGC-1??-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nature Genetics, vol.34, issue.3, pp.267-273, 2003.
DOI : 10.1038/ng1180

S. Moule and R. Denton, The activation of p38 MAPK by the ??-adrenergic agonist isoproterenol in rat epididymal fat cells, FEBS Letters, vol.233, issue.3, pp.287-290, 1998.
DOI : 10.1016/S0014-5793(98)01392-1

K. Moynihan and A. Grimm, Increased dosage of mammalian Sir2 in pancreatic ?? cells enhances glucose-stimulated insulin secretion in mice, Cell Metabolism, vol.2, issue.2, pp.105-117, 2005.
DOI : 10.1016/j.cmet.2005.07.001

D. Muoio and K. Seefeld, AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target, Biochemical Journal, vol.338, issue.3, pp.783-791, 1999.
DOI : 10.1042/bj3380783

C. Murry and R. Jennings, Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium, Circulation, vol.74, issue.5, pp.1124-1136, 1986.
DOI : 10.1161/01.CIR.74.5.1124

N. Musi and N. Fujii, AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise, Diabetes, vol.50, issue.5, pp.921-927, 2001.
DOI : 10.2337/diabetes.50.5.921

V. Narkar and M. Downes, AMPK and PPAR?? Agonists Are Exercise Mimetics, Cell, vol.134, issue.3, pp.405-415, 2008.
DOI : 10.1016/j.cell.2008.06.051

URL : http://doi.org/10.1016/j.cell.2008.06.051

D. Nathan and J. Buse, Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes . Diabetes Care, pp.193-203, 2009.

A. Nawrocki and M. Rajala, Mice Lacking Adiponectin Show Decreased Hepatic Insulin Sensitivity and Reduced Responsiveness to Peroxisome Proliferator-activated Receptor ?? Agonists, Journal of Biological Chemistry, vol.281, issue.5, pp.2654-2660, 2006.
DOI : 10.1074/jbc.M505311200

B. Neuschwander-tetri and S. Caldwell, Nonalcoholic steatohepatitis: Summary of an AASLD Single Topic Conference, Hepatology, vol.114, issue.5, pp.1202-1219, 2003.
DOI : 10.1053/jhep.2003.50193

Y. Nishino and T. Miura, Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection, Cardiovascular Research, vol.61, issue.3, 2004.
DOI : 10.1016/j.cardiores.2003.10.022

H. Nyblom and E. Sargsyan, AMP-activated protein kinase agonist dose dependently improves function and reduces apoptosis in glucotoxic ??-cells without changing triglyceride levels, Journal of Molecular Endocrinology, vol.41, issue.3, pp.187-194, 2008.
DOI : 10.1677/JME-08-0006

L. Orci and W. Cook, Rapid transformation of white adipocytes into fat-oxidizing machines, Proceedings of the National Academy of Sciences, vol.101, issue.7, pp.2058-2063, 2004.
DOI : 10.1073/pnas.0308258100

N. Ouchi and S. Kihara, Adipocyte-Derived Plasma Protein, Adiponectin, Suppresses Lipid Accumulation and Class A Scavenger Receptor Expression in Human Monocyte-Derived Macrophages, Circulation, vol.103, issue.8, pp.1057-1063, 2001.
DOI : 10.1161/01.CIR.103.8.1057

M. Pacholec and J. Bleasdale, SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1, Journal of Biological Chemistry, vol.285, issue.11, pp.8340-8351, 2010.
DOI : 10.1074/jbc.M109.088682

R. Palanivel and G. Sweeney, Regulation of fatty acid uptake and metabolism in L6 skeletal muscle cells by resistin, FEBS Letters, vol.377, issue.22, pp.5049-5054, 2005.
DOI : 10.1016/j.febslet.2005.08.011

X. Pan and G. Li, Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study . Diabetes Care, pp.537-544, 1997.

H. Park and V. Kaushik, Coordinate Regulation of Malonyl-CoA Decarboxylase, sn-Glycerol-3-phosphate Acyltransferase, and Acetyl-CoA Carboxylase by AMP-activated Protein Kinase in Rat Tissues in Response to Exercise, Journal of Biological Chemistry, vol.277, issue.36, pp.32571-32577, 2002.
DOI : 10.1074/jbc.M201692200

S. Phillips and T. Ciaraldi, Modulation of Circulating and Adipose Tissue Adiponectin Levels by Antidiabetic Therapy, Diabetes, vol.52, issue.3, pp.667-674, 2003.
DOI : 10.2337/diabetes.52.3.667

F. Picard and M. Kurtev, Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-??, Nature, vol.261, issue.6993, pp.771-776, 2004.
DOI : 10.1074/jbc.272.52.33435

T. Pischon and C. Girman, Plasma Adiponectin Levels and Risk of Myocardial Infarction in Men, JAMA, vol.291, issue.14, pp.1730-1737, 2004.
DOI : 10.1001/jama.291.14.1730

R. Pold and L. Jensen, Long-Term AICAR Administration and Exercise Prevents Diabetes in ZDF Rats, Diabetes, vol.54, issue.4, pp.928-934, 2005.
DOI : 10.2337/diabetes.54.4.928

M. Prentki and E. Joly, Malonyl-CoA Signaling, Lipid Partitioning, and Glucolipotoxicity: Role in ??-Cell Adaptation and Failure in the Etiology of Diabetes, Diabetes, vol.51, issue.Supplement 3, 2002.
DOI : 10.2337/diabetes.51.2007.S405

C. Rhodes, Type 2 Diabetes-a Matter of ??-Cell Life and Death?, Science, vol.307, issue.5708, pp.380-384, 2005.
DOI : 10.1126/science.1104345

A. Riboulet-chavey and F. Diraison, Inhibition of AMP-Activated Protein Kinase Protects Pancreatic ??-Cells From Cytokine-Mediated Apoptosis and CD8+ T-Cell-Induced Cytotoxicity, Diabetes, vol.57, issue.2, pp.415-423, 2008.
DOI : 10.2337/db07-0993

S. Richards and L. Parton, Over-expression of AMP-activated protein kinase impairs pancreatic ??-cell function in vivo, Journal of Endocrinology, vol.187, issue.2, pp.225-235, 2005.
DOI : 10.1677/joe.1.06413

C. Roberts and R. Barnard, Acute exercise increases nitric oxide synthase activity in skeletal muscle, Am J Physiol, vol.277, pp.390-394, 1999.

J. Rodgers and P. Puigserver, Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1, Proceedings of the National Academy of Sciences, vol.104, issue.31, pp.12861-12866, 2007.
DOI : 10.1073/pnas.0702509104

M. Rossmeisl and G. Barbatelli, Expression of the uncoupling protein 1 from the aP2 gene promoter stimulates mitochondrial biogenesis in unilocular adipocytes in vivo, European Journal of Biochemistry, vol.15, issue.1, 2002.
DOI : 10.1046/j.0014-2956.2002.02627.x

L. Rubin and L. Magliola, Metabolic activation of AMP kinase in vascular smooth muscle, Journal of Applied Physiology, vol.98, issue.1, pp.296-306, 2005.
DOI : 10.1152/japplphysiol.00075.2004

R. Russell and J. Li, AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury, Journal of Clinical Investigation, vol.114, issue.4, pp.495-503, 2004.
DOI : 10.1172/JCI19297

A. Saha and P. Avilucea, Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo, Biochemical and Biophysical Research Communications, vol.314, issue.2, pp.580-585, 2004.
DOI : 10.1016/j.bbrc.2003.12.120

A. Saltiel and C. Kahn, Insulin signalling and the regulation of glucose and lipid metabolism, Nature, vol.414, issue.6865, pp.799-806, 2001.
DOI : 10.1038/414799a

M. Sanders and P. Grondin, Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade, Biochemical Journal, vol.403, issue.1, pp.139-148, 2007.
DOI : 10.1042/BJ20061520

URL : https://hal.archives-ouvertes.fr/hal-00478681

H. Sell and D. Dietze-schroeder, Cytokine secretion by human adipocytes is differentially regulated by adiponectin, AICAR, and troglitazone, Biochemical and Biophysical Research Communications, vol.343, issue.3, pp.700-706, 2006.
DOI : 10.1016/j.bbrc.2006.03.010

R. Shaw and K. Lamia, The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin, Science, vol.310, issue.5754, pp.1642-1646, 2005.
DOI : 10.1126/science.1120781

R. Shibata and N. Ouchi, Adiponectin-mediated modulation of hypertrophic signals in the heart, Nature Medicine, vol.104, issue.12, pp.1384-1389, 2004.
DOI : 10.1074/jbc.270.29.17513

R. Shibata and N. Ouchi, Adiponectin Stimulates Angiogenesis in Response to Tissue Ischemia through Stimulation of AMP-activated Protein Kinase Signaling, Journal of Biological Chemistry, vol.279, issue.27, pp.28670-28674, 2004.
DOI : 10.1074/jbc.M402558200

R. Shibata and K. Sato, Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2???dependent mechanisms, Nature Medicine, vol.101, issue.10, pp.1096-1103, 2005.
DOI : 10.1074/jbc.M300643200

A. Smith and C. Bruce, AMP kinase activation with AICAR further increases fatty acid oxidation and blunts triacylglycerol hydrolysis in contracting rat soleus muscle, The Journal of Physiology, vol.270, issue.2, 2005.
DOI : 10.1113/jphysiol.2004.081687

X. Song and M. Fiedler, 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice, Diabetologia, vol.45, issue.1, 2002.
DOI : 10.1007/s125-002-8245-8

G. Steinberg and B. Michell, Tumor necrosis factor ??-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling, Cell Metabolism, vol.4, issue.6, pp.465-474, 2006.
DOI : 10.1016/j.cmet.2006.11.005

G. Steinberg and B. Kemp, AMPK in Health and Disease, Physiological Reviews, vol.89, issue.3, pp.1025-1078, 2009.
DOI : 10.1152/physrev.00011.2008

T. Stephens and Z. Chen, Progressive increase in human skeletal muscle AMPK??2 activity and ACC phosphorylation during exercise, American Journal of Physiology - Endocrinology And Metabolism, vol.282, issue.3, pp.688-694, 2002.
DOI : 10.1152/ajpendo.00101.2001

J. Stoppani and A. Hildebrandt, AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle, American Journal of Physiology - Endocrinology And Metabolism, vol.283, issue.6, pp.1239-1248, 2002.
DOI : 10.1152/ajpendo.00278.2002

J. Sullivan and K. Brocklehurst, Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase, FEBS Letters, vol.306, issue.1, pp.33-36, 1994.
DOI : 10.1016/0014-5793(94)01006-4

C. Sun and F. Zhang, SIRT1 Improves Insulin Sensitivity under Insulin-Resistant Conditions by Repressing PTP1B, Cell Metabolism, vol.6, issue.4, pp.307-319, 2007.
DOI : 10.1016/j.cmet.2007.08.014

G. Sun and A. Tarasov, Ablation of AMP-activated protein kinase ??1 and ??2 from mouse pancreatic beta cells and RIP2.Cre neurons suppresses insulin release in vivo, Diabetologia, vol.24, issue.5, pp.924-936, 2010.
DOI : 10.1007/s00125-010-1692-1

M. Suter and U. Riek, Dissecting the Role of 5'-AMP for Allosteric Stimulation, Activation, and Deactivation of AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.281, issue.43, pp.32207-32216, 2006.
DOI : 10.1074/jbc.M606357200

URL : https://hal.archives-ouvertes.fr/inserm-00390888

A. Suzuki and S. Okamoto, Leptin Stimulates Fatty Acid Oxidation and Peroxisome Proliferator-Activated Receptor ?? Gene Expression in Mouse C2C12 Myoblasts by Changing the Subcellular Localization of the ??2 Form of AMP-Activated Protein Kinase, Molecular and Cellular Biology, vol.27, issue.12, pp.4317-4327, 2007.
DOI : 10.1128/MCB.02222-06

E. Tomas and T. Tsao, Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation, Proceedings of the National Academy of Sciences, vol.99, issue.25, pp.16309-16313, 2002.
DOI : 10.1073/pnas.222657499

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC138607

J. Treebak and J. Birk, AS160 phosphorylation is associated with activation of ??2beta2??1- but not ??2beta2??3-AMPK trimeric complex in skeletal muscle during exercise in humans, AJP: Endocrinology and Metabolism, vol.292, issue.3, pp.715-722, 2007.
DOI : 10.1152/ajpendo.00380.2006

J. Tuomilehto and J. Lindstrom, Prevention of Type 2 Diabetes Mellitus by Changes in Lifestyle among Subjects with Impaired Glucose Tolerance, New England Journal of Medicine, vol.344, issue.18, pp.1343-1350, 2001.
DOI : 10.1056/NEJM200105033441801

J. Um and S. Park, AMP-Activated Protein Kinase-Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol, Diabetes, vol.59, issue.3, pp.554-563, 2010.
DOI : 10.2337/db09-0482

R. Unger, Lipotoxicity in the Pathogenesis of Obesity-Dependent NIDDM: Genetic and Clinical Implications, Diabetes, vol.44, issue.8, pp.863-870, 1995.
DOI : 10.2337/diab.44.8.863

V. Gaal, L. Mertens, and I. , Mechanisms linking obesity with cardiovascular disease, Nature, vol.105, issue.7121, pp.875-880, 2006.
DOI : 10.1038/nature05487

A. Viana and H. Sakoda, Role of hepatic AMPK activation in glucose metabolism and dexamethasone-induced regulation of AMPK expression, Diabetes Research and Clinical Practice, vol.73, issue.2, pp.135-142, 2006.
DOI : 10.1016/j.diabres.2005.12.011

B. Viollet and F. Andreelli, Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models, Biochemical Society Transactions, vol.31, issue.1, pp.216-219, 2003.
DOI : 10.1042/bst0310216

X. Wang and L. Zhou, Troglitazone acutely activates AMP-activated protein kinase and inhibits insulin secretion from beta cells, Life Sciences, vol.81, issue.2, pp.160-165, 2007.
DOI : 10.1016/j.lfs.2007.04.034

M. Watt and A. Holmes, Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue, AJP: Endocrinology and Metabolism, vol.290, issue.3, pp.500-508, 2006.
DOI : 10.1152/ajpendo.00361.2005

E. Weiss and S. Racette, Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial, Am J Clin Nutr, vol.84, pp.1033-1042, 2006.

W. Willett and W. Dietz, Guidelines for Healthy Weight, New England Journal of Medicine, vol.341, issue.6, pp.427-434, 1999.
DOI : 10.1056/NEJM199908053410607

W. Winder and D. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes, Am J Physiol, vol.277, pp.1-10, 1999.

W. Winder and B. Holmes, Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle, J Appl Physiol, vol.88, pp.2219-2226, 2000.

R. Wing and M. Goldstein, Behavioral Science Research in Diabetes: Lifestyle changes related to obesity, eating behavior, and physical activity, Diabetes Care, vol.24, issue.1, pp.117-123, 2001.
DOI : 10.2337/diacare.24.1.117

L. Witters and G. Gao, Hepatic 5???-AMP-Activated Protein Kinase: Zonal Distribution and Relationship to Acetyl-CoA Carboxylase Activity in Varying Nutritional States, Archives of Biochemistry and Biophysics, vol.308, issue.2, pp.413-419, 1994.
DOI : 10.1006/abbi.1994.1058

A. Woods and D. Azzout-marniche, Characterization of the Role of AMP-Activated Protein Kinase in the Regulation of Glucose-Activated Gene Expression Using Constitutively Active and Dominant Negative Forms of the Kinase, Molecular and Cellular Biology, vol.20, issue.18, pp.6704-6711, 2000.
DOI : 10.1128/MCB.20.18.6704-6711.2000

A. Xu and Y. Wang, The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice, Journal of Clinical Investigation, vol.112, issue.1, pp.91-100, 2003.
DOI : 10.1172/JCI200317797

T. Yamauchi and J. Kamon, The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity, Nature Medicine, vol.7, issue.8, pp.941-946, 2001.
DOI : 10.1038/90984

URL : https://hal.archives-ouvertes.fr/hal-00174777

T. Yamauchi and J. Kamon, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase, Nature Medicine, vol.105, issue.11, pp.1288-1295, 2002.
DOI : 10.1074/jbc.M005816200

URL : https://hal.archives-ouvertes.fr/hal-00174612

T. Yamauchi and J. Kamon, Globular Adiponectin Protected ob/ob Mice from Diabetes and ApoE-deficient Mice from Atherosclerosis, Journal of Biological Chemistry, vol.278, issue.4, pp.2461-2468, 2003.
DOI : 10.1074/jbc.M209033200

M. Zang and S. Xu, Polyphenols Stimulate AMP-Activated Protein Kinase, Lower Lipids, and Inhibit Accelerated Atherosclerosis in Diabetic LDL Receptor-Deficient Mice, Diabetes, vol.55, issue.8, pp.2180-2191, 2006.
DOI : 10.2337/db05-1188

E. Zarrinpashneh and K. Carjaval, Role of the alpha2 isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia, Am J Physiol Heart Circ Physiol, 2006.

J. Zhang and Z. Xie, Identification of Nitric Oxide as an Endogenous Activator of the AMP-activated Protein Kinase in Vascular Endothelial Cells, Journal of Biological Chemistry, vol.283, issue.41, pp.27452-27461, 2008.
DOI : 10.1074/jbc.M802578200

G. Zhou and R. Myers, Role of AMP-activated protein kinase in mechanism of metformin action, Journal of Clinical Investigation, vol.108, issue.8, pp.1167-1174, 2001.
DOI : 10.1172/JCI13505

L. Zhou and X. Wang, Berberine Acutely Inhibits Insulin Secretion from ??-Cells through 3???,5???-Cyclic Adenosine 5???-Monophosphate Signaling Pathway, Endocrinology, vol.149, issue.9, pp.4510-4518, 2008.
DOI : 10.1210/en.2007-1752

M. Zhou and B. Lin, UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase, Am J Physiol Endocrinol Metab, vol.279, pp.622-629, 2000.

H. Zong and J. Ren, AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proceedings of the National Academy of Sciences, vol.99, issue.25, pp.15983-15987, 2002.
DOI : 10.1073/pnas.252625599

K. Zwetsloot and L. Westerkamp, AMPK regulates basal skeletal muscle capillarization and VEGF expression, but is not necessary for the angiogenic response to exercise, The Journal of Physiology, vol.88, issue.24, pp.6021-6035, 2008.
DOI : 10.1113/jphysiol.2008.159871