A. Amirouche, A. Durieux, S. Banzet, N. Koulmann, R. Bonnefoy et al., Down-Regulation of Akt/Mammalian Target of Rapamycin Signaling Pathway in Response to Myostatin Overexpression in Skeletal Muscle, Endocrinology, vol.150, issue.1, pp.286-294, 2009.
DOI : 10.1210/en.2008-0959

URL : https://hal.archives-ouvertes.fr/inserm-00384326

A. Arsham, J. Howell, and M. Simon, A Novel Hypoxia-inducible Factor-independent Hypoxic Response Regulating Mammalian Target of Rapamycin and Its Targets, Journal of Biological Chemistry, vol.278, issue.32, pp.29655-29660, 2003.
DOI : 10.1074/jbc.M212770200

P. Berthon, S. Duguez, F. Favier, A. Amirouche, L. Feasson et al., Regulation of ubiquitin???proteasome system, caspase enzyme activities, and extracellular proteinases in rat soleus muscle in response to unloading, Pfl??gers Archiv - European Journal of Physiology, vol.283, issue.Pt 1, pp.625-633, 2007.
DOI : 10.1007/s00424-007-0230-6

A. Bigard, P. Douce, D. Merino, F. Lienhard, and C. Guezennec, Changes in dietary protein intake fail to prevent decrease in muscle growth induced by severe hypoxia in rats, J Appl Physiol, vol.80, pp.208-215, 1996.

S. Bodine, E. Latres, S. Baumhueter, V. Lai, L. Nunez et al., Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy, Science, vol.294, issue.5547, pp.1704-1708, 2001.
DOI : 10.1126/science.1065874

S. Bodine, T. Stitt, M. Gonzalez, W. Kline, G. Stover et al., Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo, Nature Cell Biology, vol.3, issue.11, pp.1014-1019, 2001.
DOI : 10.1038/ncb1101-1014

J. Brugarolas, K. Lei, R. Hurley, B. Manning, J. Reiling et al., Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex, Genes & Development, vol.18, issue.23, pp.2893-2904, 2004.
DOI : 10.1101/gad.1256804

S. Cheng, L. Fryer, D. Carling, and P. Shepherd, Thr2446 Is a Novel Mammalian Target of Rapamycin (mTOR) Phosphorylation Site Regulated by Nutrient Status, Journal of Biological Chemistry, vol.279, issue.16, pp.15719-15722, 2004.
DOI : 10.1074/jbc.C300534200

M. Deyoung, P. Horak, A. Sofer, D. Sgroi, and L. Ellisen, Hypoxia regulates TSC1/2 mTOR signaling and tumor suppression through REDD1-mediated 14 3 3 shuttling, Genes & Development, vol.22, issue.2, pp.239-251, 2008.
DOI : 10.1101/gad.1617608

M. Doucet, A. Russell, B. Leger, R. Debigare, D. Joanisse et al., Muscle Atrophy and Hypertrophy Signaling in Patients with Chronic Obstructive Pulmonary Disease, American Journal of Respiratory and Critical Care Medicine, vol.176, issue.3, pp.261-269, 2007.
DOI : 10.1164/rccm.200605-704OC

S. Duguez, M. Bihan, D. Gouttefangeas, L. Feasson, and D. Freyssenet, Myogenic and nonmyogenic cells differentially express proteinases

. Hsp70, BAG-1 during skeletal muscle regeneration, Am J Physiol Endocrinol Metab, vol.285, pp.206-215, 2003.

A. Durieux, R. Bonnefoy, C. Manissolle, and D. Freyssenet, High-efficiency gene electrotransfer into skeletal muscle: description and physiological applicability of a new pulse generator, Biochemical and Biophysical Research Communications, vol.296, issue.2, pp.443-450, 2002.
DOI : 10.1016/S0006-291X(02)00901-4

L. Ellisen, K. Ramsayer, C. Johannessen, A. Yang, H. Beppu et al., REDD1, a Developmentally Regulated Transcriptional Target of p63 and p53, Links p63 to Regulation of Reactive Oxygen Species, Molecular Cell, vol.10, issue.5, pp.995-1005, 2002.
DOI : 10.1016/S1097-2765(02)00706-2

F. Favier, H. Benoit, and D. Freyssenet, Cellular and molecular events controlling skeletal muscle mass in response to altered use, Pfl??gers Archiv - European Journal of Physiology, vol.99, issue.Pt 3, pp.587-600, 2008.
DOI : 10.1007/s00424-007-0423-z

D. Guertin, D. Stevens, C. Thoreen, A. Burds, N. Kalaany et al., Ablation in Mice of the mTORC Components raptor, rictor, or mLST8 Reveals??that mTORC2 Is Required for Signaling to Akt-FOXO and PKC??, but Not S6K1, Developmental Cell, vol.11, issue.6, pp.859-871, 2006.
DOI : 10.1016/j.devcel.2006.10.007

T. Hornberger, R. Stuppard, K. Conley, M. Fedele, M. Fiorotto et al., Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism, Biochemical Journal, vol.380, issue.3, pp.795-804, 2004.
DOI : 10.1042/bj20040274

K. Inoki, Y. Li, T. Zhu, J. Wu, and K. Guan, TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling, Nature Cell Biology, vol.4, issue.9, pp.648-657, 2002.
DOI : 10.1038/ncb839

K. Inoki, T. Zhu, and K. Guan, TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival, Cell, vol.115, issue.5, pp.577-590, 2003.
DOI : 10.1016/S0092-8674(03)00929-2

Y. Izumiya, T. Hopkins, C. Morris, K. Sato, L. Zeng et al., Fast/Glycolytic Muscle Fiber Growth Reduces Fat Mass and Improves Metabolic Parameters in Obese Mice, Cell Metabolism, vol.7, issue.2, pp.159-172, 2008.
DOI : 10.1016/j.cmet.2007.11.003

H. Jin, A. S. Lee, H. Woo, S. Seo, S. Choe et al., Hypoxic condition- and high cell density-induced expression of Redd1 is regulated by activation of hypoxia-inducible factor-1?? and Sp1 through the phosphatidylinositol 3-kinase/Akt signaling pathway, Cellular Signalling, vol.19, issue.7, pp.1393-1403, 2007.
DOI : 10.1016/j.cellsig.2006.12.014

N. Kubica, D. Bolster, P. Farrell, S. Kimball, and L. Jefferson, Resistance Exercise Increases Muscle Protein Synthesis and Translation of Eukaryotic Initiation Factor 2B?? mRNA in a Mammalian Target of Rapamycin-dependent Manner, Journal of Biological Chemistry, vol.280, issue.9, pp.7570-7580, 2005.
DOI : 10.1074/jbc.M413732200

C. Lang, R. Frost, and T. Vary, Acute Alcohol Intoxication Increases REDD1 in Skeletal Muscle, Alcoholism: Clinical and Experimental Research, vol.21, issue.5, pp.796-805, 2008.
DOI : 10.1016/j.cell.2006.01.016

S. Lecker, R. Jagoe, A. Gilbert, M. Gomes, V. Baracos et al., Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression, The FASEB Journal, vol.18, issue.1, pp.39-51, 2004.
DOI : 10.1096/fj.03-0610com

M. Lee, M. Bikram, S. Oh, D. Bull, and S. Kim, Sp1-Dependent Regulation of the RTP801 Promoter and Its Application to Hypoxia-Inducible VEGF Plasmid for Ischemic Disease, Pharmaceutical Research, vol.21, issue.5, pp.736-741, 2004.
DOI : 10.1023/B:PHAM.0000026421.09367.b3

L. Liu, T. Cash, R. Jones, B. Keith, C. Thompson et al., Hypoxia-Induced Energy Stress Regulates mRNA Translation and Cell Growth, Molecular Cell, vol.21, issue.4, pp.521-531, 2006.
DOI : 10.1016/j.molcel.2006.01.010

M. Liu, S. Cai, A. Espejo, M. Bedford, C. Walker et al., 14-3-3 interacts with the tumor suppressor tuberin at Akt phosphorylation site(s) RTP801 is induced in Parkinson's disease and mediates neuron death by inhibiting Akt phosphorylation/ activation, Cancer Res J Neurosci, vol.62, issue.28, pp.6475-6480, 2002.

B. Manning, A. Tee, M. Logsdon, J. Blenis, and L. Cantley, Identification of the Tuberous Sclerosis Complex-2 Tumor Suppressor Gene Product Tuberin as a Target of the Phosphoinositide 3-Kinase/Akt Pathway, Molecular Cell, vol.10, issue.1, pp.151-162, 2002.
DOI : 10.1016/S1097-2765(02)00568-3

W. Mitch and A. Goldberg, Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway, N Engl J Med, vol.335, pp.1897-1905, 1996.

M. Miyazaki and K. Esser, REDD2 is enriched in skeletal muscle and inhibits mTOR signaling in response to leucine and stretch, AJP: Cell Physiology, vol.296, issue.3, pp.583-592, 2009.
DOI : 10.1152/ajpcell.00464.2008

L. Ou, J. Chen, E. Fiore, J. Leiter, T. Brinck-johnsen et al., Ventilatory and hematopoietic responses to chronic hypoxia in two rat strains, J Appl Physiol, vol.72, pp.2354-2363, 1992.

D. Pisani, L. Leclerc, G. Jarretou, J. Marini, and C. Dechesne, SMHS1 is involved in oxidative/glycolytic-energy metabolism balance of muscle fibers, Biochemical and Biophysical Research Communications, vol.326, issue.4, pp.788-793, 2005.
DOI : 10.1016/j.bbrc.2004.11.111

URL : https://hal.archives-ouvertes.fr/hal-00014710

M. Rose, C. Houston, C. Fulco, G. Coates, J. Sutton et al., Operation Everest II: Nutrition and body composition, J Appl Physiol, vol.65, pp.2545-2551, 1988.

M. Sandri, Signaling in Muscle Atrophy and Hypertrophy, Physiology, vol.23, issue.3, pp.160-170, 2008.
DOI : 10.1152/physiol.00041.2007

M. Sandri, C. Sandri, A. Gilbert, C. Skurk, E. Calabria et al., Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy, Cell, vol.117, issue.3, pp.399-412, 2004.
DOI : 10.1016/S0092-8674(04)00400-3

A. Schols, R. Broekhuizen, C. Weling-scheepers, and E. Wouters, Body composition and mortality in chronic obstructive pulmonary disease, Respiratory Medicine: COPD Update, vol.1, issue.2, pp.53-59, 2005.
DOI : 10.1016/j.rmedu.2005.09.028

T. Shoshani, A. Faerman, I. Mett, E. Zelin, T. Tenne et al., Identification of a Novel Hypoxia-Inducible Factor 1-Responsive Gene, RTP801, Involved in Apoptosis, Molecular and Cellular Biology, vol.22, issue.7, pp.2283-2293, 2002.
DOI : 10.1128/MCB.22.7.2283-2293.2002

A. Sofer, K. Lei, C. Johannessen, and L. Ellisen, Regulation of mTOR and Cell Growth in Response to Energy Stress by REDD1, Molecular and Cellular Biology, vol.25, issue.14, pp.5834-5845, 2005.
DOI : 10.1128/MCB.25.14.5834-5845.2005

T. Stitt, D. Drujan, B. Clarke, F. Panaro, Y. Timofeyva et al., The IGF-1/PI3K/Akt Pathway Prevents Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting FOXO Transcription Factors, Molecular Cell, vol.14, issue.3, pp.395-403, 2004.
DOI : 10.1016/S1097-2765(04)00211-4

A. Vigano, M. Ripamonti, D. Palma, S. Capitanio, D. Vasso et al., Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia, PROTEOMICS, vol.129, issue.22, pp.4668-4679, 2008.
DOI : 10.1002/pmic.200800232

P. Wagner, Possible mechanisms underlying the development of cachexia in COPD, European Respiratory Journal, vol.31, issue.3, pp.492-501, 2008.
DOI : 10.1183/09031936.00074807

H. Wang, N. Kubica, L. Ellisen, L. Jefferson, and S. Kimball, Dexamethasone Represses Signaling through the Mammalian Target of Rapamycin in Muscle Cells by Enhancing Expression of REDD1, Journal of Biological Chemistry, vol.281, issue.51, pp.39128-39134, 2006.
DOI : 10.1074/jbc.M610023200

R. Wust and H. Degens, Factors contributing to muscle wasting and dysfunction in COPD patients, Int J Chron Obstruct Pulmon Dis, vol.2, pp.289-300, 2007.