D. H. Miller, Biomarkers and surrogate outcomes in neurodegenerative disease: Lessons from multiple sclerosis, NeuroRX, vol.59, issue.Suppl 3, pp.284-294, 2004.
DOI : 10.1602/neurorx.1.2.284

D. H. Miller, R. I. Grossman, S. C. Reingold, and H. F. Mcfarland, The role of magnetic resonance techniques in understanding and managing multiple sclerosis, Brain, vol.121, issue.1, pp.3-24, 1998.
DOI : 10.1093/brain/121.1.3

A. Traboulsee, D. K. Li, G. Zhao, and D. W. Paty, Conventional MRI Techniques in Multiple Sclerosis, MR Imaging in White Matter Diseases of the Brain and Spinal Cord, pp.211-223, 2005.
DOI : 10.1007/3-540-27644-0_14

F. Nelson, A. Poonawalla, P. Hou, F. Huang, J. Wolinsky et al., Improved Identification of Intracortical Lesions in Multiple Sclerosis with Phase-Sensitive Inversion Recovery in Combination with Fast Double Inversion Recovery MR Imaging, American Journal of Neuroradiology, vol.28, issue.9, pp.1645-1649, 2007.
DOI : 10.3174/ajnr.A0645

R. Zivadinov and R. Bakshi, Role of MRI in multiple sclerosis I: inflammation and lesions, Frontiers in Bioscience, vol.9, issue.1-3, pp.665-683, 2004.
DOI : 10.2741/1251

P. D. Molyneux, D. H. Miller, M. Filippi, T. A. Yousry, E. W. Radü et al., Visual analysis of serial T2-weighted MRI in multiple sclerosis: intra- and interobserver reproducibility, Neuroradiology, vol.41, issue.12, pp.882-888, 1999.
DOI : 10.1007/s002340050860

J. Grimaud, M. Lai, J. Thorpe, P. Adeleine, L. Wang et al., Quantification of MRI lesion load in multiple sclerosis: A comparison of three computer-assisted techniques, Magnetic Resonance Imaging, vol.14, issue.5, pp.495-505, 1996.
DOI : 10.1016/0730-725X(96)00018-5

M. Filippi, M. A. Horsfield, S. Bressi, V. Martinelli, C. Baratti et al., Intra- and inter-observer agreement of brain MRI lesion volume measurements in multiple sclerosis, Brain, vol.118, issue.6, pp.1593-1600, 1995.
DOI : 10.1093/brain/118.6.1593

J. Lecoeur, S. Morissey, J. Ferré, D. Arnold, D. Collins et al., Multiple Sclerosis Lesions Segmentation using Spectral Gradient and Graph Cuts, Proc. MICCAI workshop on Medical Image Analysis on Multiple Sclerosis, pp.92-103, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00323042

J. K. Udupa, L. Wei, S. Samarasekera, Y. Miki, M. A. Van-buchem et al., Multiple sclerosis lesion quantification using fuzzy-connectedness principles, IEEE Transactions on Medical Imaging, vol.16, issue.5, pp.598-609, 1997.
DOI : 10.1109/42.640750

A. P. Zijdenbos, R. Forghani, and A. C. Evans, Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis, IEEE Transactions on Medical Imaging, vol.21, issue.10, pp.1280-1291, 2002.
DOI : 10.1109/TMI.2002.806283

P. Anbeek, K. L. Vincken, M. J. Van-osch, R. H. Bisschops, and J. Van-der-grond, Probabilistic segmentation of white matter lesions in MR imaging, NeuroImage, vol.21, issue.3, pp.1037-1044, 2004.
DOI : 10.1016/j.neuroimage.2003.10.012

Z. Lao, D. Shen, D. Liu, A. F. Jawad, E. R. Melhem et al., Computer-Assisted Segmentation of White Matter Lesions in 3D MR Images Using Support Vector Machine, Academic Radiology, vol.15, issue.3, pp.300-313, 2008.
DOI : 10.1016/j.acra.2007.10.012

A. Akselrod-ballin, M. Galun, J. Gomori, M. Filippi, P. Valsasina et al., Automatic Segmentation and Classification of Multiple Sclerosis in Multichannel MRI, IEEE Transactions on Biomedical Engineering, vol.56, issue.10, pp.2461-2469, 2009.
DOI : 10.1109/TBME.2008.926671

F. Admiraal-behloul, D. Van-den-heuvel, H. Olofsen, M. Van-osch, J. Van-der-grond et al., Fully automatic segmentation of white matter hyperintensities in MR images of the elderly, NeuroImage, vol.28, issue.3, pp.607-617, 2005.
DOI : 10.1016/j.neuroimage.2005.06.061

R. Khayati, M. Vafadust, F. Towhidkhah, and M. Nabavi, Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model, Computers in Biology and Medicine, vol.38, issue.3, pp.379-390, 2008.
DOI : 10.1016/j.compbiomed.2007.12.005

N. Shiee, P. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi et al., A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions, NeuroImage, vol.49, issue.2, pp.1524-1535, 2010.
DOI : 10.1016/j.neuroimage.2009.09.005

O. Freifeld, H. Greenspan, and J. Goldberger, Multiple Sclerosis Lesion Detection Using Constrained GMM and Curve Evolution, International Journal of Biomedical Imaging, vol.5, issue.1
DOI : 10.1007/3-540-48236-9_13

W. Wells, I. , W. Grimson, R. Kikinis, and F. Jolesz, Adaptive segmentation of MRI data, IEEE Transactions on Medical Imaging, vol.15, issue.4, pp.429-442, 1996.
DOI : 10.1109/42.511747

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, J Royal Stat. Soc, vol.39, issue.1, pp.1-38, 1977.

R. Kikinis, C. R. Guttmann, D. Metcalf, W. M. Iii, G. J. Ettinger et al., Quantitative follow-up of patients with multiple sclerosis using MRI: Technical aspects, Journal of Magnetic Resonance Imaging, vol.1, issue.4, pp.519-530, 1999.
DOI : 10.1002/(SICI)1522-2586(199904)9:4<519::AID-JMRI3>3.0.CO;2-M

M. Roua¨?niaroua¨?nia, M. Medjram, and N. Doghmane, Brain MRI segmentation and lesions detection by EM algorithm, Proc. World Academy Science, pp.301-304, 2006.

K. Van-leemput, F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens, Automated segmentation of multiple sclerosis lesions by model outlier detection, IEEE Transactions on Medical Imaging, vol.20, issue.8, pp.677-688, 2001.
DOI : 10.1109/42.938237

N. Neykov, P. Filzmoser, R. Dimova, and P. Neytchev, Robust fitting of mixtures using the trimmed likelihood estimator, Computational Statistics & Data Analysis, vol.52, issue.1, pp.299-308, 2007.
DOI : 10.1016/j.csda.2006.12.024

L. S. A¨?ta¨?t-ali, S. Prima, P. Hellier, B. Carsin, G. Edan et al., STREM: a robust multidimensional parametric method to segment MS lesions in MRI, Int. Conf. Med. Image Comput. and Computer-Assisted Intervention, vol.8, pp.409-416, 2005.

S. Bricq, C. Collet, and J. P. Armspach, Markovian segmentation of 3D brain MRI to detect Multiple Sclerosis lesions, 2008 15th IEEE International Conference on Image Processing, pp.733-736, 2008.
DOI : 10.1109/ICIP.2008.4711859

D. García-lorenzo, S. Prima, S. P. Morrissey, and C. Barillot, A robust Expectation-Maximization algorithm for Multiple Sclerosis lesion segmentation, IJ -2008 MICCAI Workshop -MS Lesion Segmentation, 1445.

D. García-lorenzo, S. Prima, D. L. Collins, D. L. Arnold, S. P. Morrissey et al., Combining Robust Expectation Maximization and Mean Shift algorithms for Multiple Sclerosis Brain Segmentation, Proc. MICCAI workshop on Medical Image Analysis on Multiple Sclerosis, pp.82-91, 2008.

C. Biernacki, G. Celeux, and G. Govaert, Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models, Computational Statistics & Data Analysis, vol.41, issue.3-4, pp.3-4, 2003.
DOI : 10.1016/S0167-9473(02)00163-9

S. Datta, B. R. Sajja, R. He, J. S. Wolinsky, R. K. Gupta et al., Segmentation and quantification of black holes in multiple sclerosis, NeuroImage, vol.29, issue.2, pp.467-474, 2006.
DOI : 10.1016/j.neuroimage.2005.07.042

D. Collins, A. Zijdenbos, V. Kollokian, J. Sled, N. Kabani et al., Design and construction of a realistic digital brain phantom, IEEE Transactions on Medical Imaging, vol.17, issue.3, pp.463-468, 1998.
DOI : 10.1109/42.712135

J. G. Sled, A. P. Zijdenbos, and A. C. Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, vol.17, issue.1, pp.87-97, 1998.
DOI : 10.1109/42.668698

D. Collins, P. Neelin, T. M. Peters, and A. C. Evans, Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space, Journal of Computer Assisted Tomography, vol.18, issue.2, pp.192-205, 1994.
DOI : 10.1097/00004728-199403000-00005

S. M. Smith, Fast robust automated brain extraction, Human Brain Mapping, vol.20, issue.3, pp.143-155, 2002.
DOI : 10.1002/hbm.10062

O. Dietrich, J. G. Raya, S. B. Reeder, M. Ingrisch, M. F. Reiser et al., Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics, Magnetic Resonance Imaging, vol.26, issue.6, pp.754-762, 2008.
DOI : 10.1016/j.mri.2008.02.001

J. Sijbers, A. Den-dekker, P. Scheunders, and D. Van-dyck, Maximum-likelihood estimation of Rician distribution parameters, IEEE Transactions on Medical Imaging, vol.17, issue.3, pp.357-361, 1998.
DOI : 10.1109/42.712125

C. H. Müller and N. Neykov, Breakdown points of trimmed likelihood estimators and related estimators in generalized linear models, Journal of Statistical Planning and Inference, vol.116, issue.2, pp.503-519, 2003.
DOI : 10.1016/S0378-3758(02)00265-3

P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection, 1987.
DOI : 10.1002/0471725382

G. Dugas-phocion, M. Gonzalez, C. Lebrun, S. Chanalet, C. Bensa et al., Hierarchical segmentation of multiple sclerosis lesions in multi-sequence MRI, 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE Cat No. 04EX821), pp.157-160, 2004.
DOI : 10.1109/ISBI.2004.1398498

URL : https://hal.archives-ouvertes.fr/inria-00615969

]. F. Barkhof, M. Filippi, D. H. Miller, P. Scheltens, A. Campi et al., Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis, Brain, vol.120, issue.11, pp.2059-2069, 1997.
DOI : 10.1093/brain/120.11.2059

A. Zijdenbos, B. Dawant, R. Margolin, and A. Palmer, Morphometric analysis of white matter lesions in MR images: method and validation, IEEE Transactions on Medical Imaging, vol.13, issue.4, pp.716-724, 1994.
DOI : 10.1109/42.363096

C. Biernacki and S. Chrétien, Degeneracy in the maximum likelihood estimation of univariate Gaussian mixtures with EM, Statistics & Probability Letters, vol.61, issue.4, pp.373-382, 2003.
DOI : 10.1016/S0167-7152(02)00396-6

P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.425-441, 2008.
DOI : 10.1109/TMI.2007.906087

URL : https://hal.archives-ouvertes.fr/inserm-00169658

V. Fonov, A. C. Evans, K. Botteron, C. R. Almli, R. C. Mckinstry et al., Unbiased average age-appropriate atlases for pediatric studies, NeuroImage, vol.54, issue.1, pp.313-327, 2011.
DOI : 10.1016/j.neuroimage.2010.07.033

S. Warfield, K. Zou, and W. Wells, Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation, IEEE Transactions on Medical Imaging, vol.23, issue.7, pp.903-921, 2004.
DOI : 10.1109/TMI.2004.828354

P. E. Shrout and J. L. Fleiss, Intraclass correlations: Uses in assessing rater reliability., Psychological Bulletin, vol.86, issue.2, pp.420-428, 1979.
DOI : 10.1037/0033-2909.86.2.420

M. Styner, J. Lee, B. Chin, M. Chin, O. Commowick et al., 3D Segmentation in the Clinic: A Grand Challenge II: MS lesion segmentation, 2008.

J. Mangin, Entropy minimization for automatic correction of intensity nonuniformity, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737), pp.162-169, 2000.
DOI : 10.1109/MMBIA.2000.852374

R. Harmouche, L. Collins, D. Arnold, S. Francis, and T. Arbel, Bayesian MS Lesion Classification Modeling Regional and Local Spatial Information, 18th International Conference on Pattern Recognition (ICPR'06), pp.984-987, 2006.
DOI : 10.1109/ICPR.2006.318

F. Rousseau, F. Blanc, J. De-seze, L. Rumbach, and J. Armspach, An a contrario approach for outliers segmentation: Application to Multiple Sclerosis in MRI, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.9-12, 2008.
DOI : 10.1109/ISBI.2008.4540919