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Trimmed-Likelihood Estimation for Focal Lesions
and Tissue Segmentation in Multi-Sequence MRI
for Multiple Sclerosis

Daniel Garcia-Lorenzo, Sylvain Prima, Douglas L. Arndld, Louis Collins, Christian Barillot

Abstract—We present a new automatic method for segmen-

tation of multiple sclerosis (MS) lesions in magnetic rescmnce
images. The method performs tissue classification using a rdel
of intensities of the normal appearing brain tissues. In orér to
estimate the model, a trimmed likelihood estimator is initalized
with a hierarchical random approach in order to be robustto MS
lesions and other outliers present in real images. The algdhm is
first evaluated with simulated images to assess the importae of
the robust estimator in presence of outliers. The method ishten
validated using clinical data in which MS lesions were delirated
manually by several experts. Our method obtains an average ibe
similarity coefficient (DSC) of 0.65, which is close to the arage
DSC obtained by raters (0.66).

Index Terms—Segmentation, Multiple Sclerosis, MRI, EM,
Gaussian Mixture Model.

I. INTRODUCTION

M

ULTIPLE sclerosis (MS) is a chronic inflammatory- noas _
demyelinating disease of the central nervous systefigve been presented that can be classified in two categories:

this manuscript, the term MS lesions refers to all three gype
of lesions and no distinction is made among the three types.
In order to avoid positive false lesion detections, MS Iesio
have to be present on more than one MRI sequence [6], which
implies the use of multi-sequence approaches.

Manual segmentation of MS lesions has been used for the
segmentation of MS lesions but it shows high intra- and inter
rater variability, and is very time consuming [7]. To reduce
this variability, semi-automatic segmentation methodseha
been proposed [8], [9], [10]. In large clinical trials, semi
automatic segmentation methods need human raters to segmen
hundreds of images. The use of an automatic segmentation
method should reduce the human interaction and improve
reproducibility but the variability of MR protocols and the
heterogeneity of the disease make it difficult to develoghsuc
automatic segmentation methods.

Several automatic segmentation methods for MS lesions

Magnetic resonance imaging (MRI) detects lesions in M8&pervised or data-driven. Supervised methods employta tes

patients with high sensitivity but low specificity, and issdsor

database of previously segmented images to learn the eharac

diagnosis, prognosis and as a surrogate marker in MS tfihls [teristics of MS lesions [11], [12], [13], [14]. The resultstbe
In these trials, the number of MS lesions and the total lesi§iPervised methods depend on the way the test database has

load (TLL) have been used as markers [2].

been segmented and on the MR protocol of the database which

Conventional MRI in MS usually consists in T2-weightednay limit the interest of these approaches in multi-cemialst
(T2-w), proton density (PD), fluid-attenuated inversion re Data-driven methods avoid the use of any sample database,
covery (FLAIR), and T1-weighted (T1-w) with and withouteXtracting all the necessary information directly from the
gadolinium enhancement [3]. MS lesions can occur in ajages [15], [16], [17], [18]. The majority of these data-
tissue of the central nervous system but on conventiorffiven methods models the distribution of the image integssi
MRI, MS lesions in the gray matter (GM) have a signa#sing a Gaussian mixture model (GMM), where each Gaussian
intensity similar to the intensity of the surrounding notmdaw represents a tissue: e.g. cerebrospinal fluid (CSFy, gra
appearing GM and therefore other specialized sequences Bgiter (GM) or white matter (WM). The GMM enables
necessary to detect GM lesions [4]. On the contrary, whifdaracterization of the image intensities with a reducem-nu
matter (WM) lesions are described as hyper-intense cordpaRer of parameters. In healthy subjects [19], these paramete
to the surrounding normal appearing WM on T2-w, FLAIR)ave been estimated using a maximum likelihood estimator
and PD sequences [5]. Depending on the intensity on the oth¥LE) with an optimization method such as the Expectation-
sequences, lesions are classified as: T2-w lesions (isnset Maximization (EM) algorithm [20]. The EM algorithm has
lesions on T1-w), black holes (hypo-intense lesions on TReen widely used in this context because it is very easy to

w) and active lesions (lesions enhanced by gadolinium).
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implement and always converges to a local maximum (or
saddle point) of the data likelihood.

This approach has been extended to segment the normal
appearing brain tissues (NABT) and the MS lesions in difiere
ways. Some authors proposed a more complex model to
include an extra class for MS lesions using an extra Gaus-
sian [21] or a uniform probability density function [22]. e
ever, MS lesions are heterogeneous thus it is difficult toehod
their intensities distribution. Another option is to trehé MS



lesions as outliers to the standard 3-class model and mthgify T:I.*-w TZ;W PD;W

estimation method to account for these outliers. Followirig
idea, a modified EM algorithm [23] was presented where, in E’reprocessing Preprocessing] E’reprocessing]
each iteration, voxels whose intensities are not well aotzxl

for by the model were down-weighted to reduce their influence
in the estimation process and an atlas was used to include the
information about the expected location of the major tissue
types. However, no proof of convergence of the algorithm was
given.

In a similar way, the trimmed likelihood estimator
(TLE) [24] was employed for the segmentation of MS le-
sions [25]. The main difference with the previous method
is that the h percent of the points considered as outliers
are completely rejected from the estimation, not only down-
weighted. The parametér, which has to be set manually, is ™ Image
a trade-off between the accuracy and the robustness of the -/
estimation. The TLE can be computed using the FAST-TLE \ Segmentation
algorithm that has the same convergence properties as the _ _ _
EM algorithm for the MLE whenh is constant. The TLE Fig. 1.  Workflow for the proposed automatic MS lesions segatam
was combined with an atlas and a hidden Markov chain in

the segmentation of lesions [26]. The authors proposed @mposed of three steps: correction of intensity inhomo-

a_daptiveh b“t.*_“’ proof ‘_’fFOF‘VGTge”CE‘ of the approach Wa&eneities [32], and rigid registration of the T1-w imagent
given. In addition, the initialization of the FAST-TLE was he T2-w image [33]. The T1-w image is used for skull
performed using the MLE that reduces the robustness of ipping in order to focus the segmentation on the brain

global approach. voxels [34]. Our segmentation method is composed of three

In this paper, we propose a new automatic multi-sequer}a%ps: estimation of the NABT model, detection of candidate
segmentation method for MS lesions and normal appeariQions and application f priori heuristic rules to extract
brain .t|ssues .that does not require a trammg databasethé MS lesions from these outliers.
atlas information. A previous version of this method was
presented in [27] and an extension using the mean shift
algorithm was proposed in [28]. In this paper, we explaift- Estimation of NABT Model
the method in greater detail and include significantly more In conventional MRI, the noise follows a Rician distribu-
validation when compared to the previous conference papdisn [35], which can be approximated by a Gaussian dis-
We use the FAST-TLE to estimate the NABT tissues with tibution for high SNR [36]. The distribution of intensite
fixed h [24] and we propose a hierarchical initialization basedithin each brain structure is usually also approximated by
on random initializations [29] to avoid its convergence to a Gaussian distribution. We then model the image intessitie
local maximum and to provide an accurate initializationeThof a healthy brain with a 3-class GMM, where each Gaussian
method segments all MS lesions in one class; a classificatimpresents one of the brain tissues WM, GM and CSF. We
into the different lesion subtypes could be done afterwardsnsider then MR sequences as a multi-sequence image with
using other algorithms [30], [25]. n voxels. The intensity vectay; = [y, ...ys,,] Of the voxel:

We validate our method using both simulated [31] andan be modeled as follows,
clinical data. On clinical images, our method is compareith wi 3
five raters anq anothe_r automatic segmentguon methqd [23]. f(yil0) = ZO‘J‘ -N(p;, %) 1)

The paper is organized as follows. Section Il explains the i=1
segmentation method. Results on simulated and clinica dat . ,

. . ' . . Where the mean; and the covariance matrixi; define the
are described in Sections Il and [V respectively. We discus J ;
) ) parameters of each Gaussiai(p,,X;). These parameters
our results in Section V. L J .
and the mixing parametes; are merged in the parameter
vectord.
Il. METHODS These parameters can be estimated using the MLE
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The proposed method classifies each voxel of the brain . n
as one of four classes: MS lesions, WM, GM, or CSF. We 0 = argmax L(0) = argmax [ [ f(y:/0) 2
consider a typical MR protocol for MS (T1-w, T2-w and PD f ¢ =
images) as input of our method. However, other sequences fawe considery; as independent and identically distributed
be added with minimal modifications; for example, FLAIRandom variables, and is the likelihood function.
images can be exchanged for PD images. Figure 1 illustratesn order to obtain the MLE, we can employ the EM algo-
the workflow proposed for the segmentation of MS lesiorrthm [20], a technique which is used to iteratively estienat
and NABT. MR images go through a preprocessing stage From a givend;, the EM algorithm obtains anothéy,



whereL(0,41) > L(6;). The algorithm is generally considerectlass is randomly drawn using a uniform distribution betwee
to have converged whefy; and ¢, are “sufficiently” close the minimum and maximum of the image and the standard
to each other. deviation of each class is set to a third of the standard tewia

This method is usually chosen because it is easy to imf intensities of the whole image. The advantage of using thi
plement and there is a proof of convergence, but it has twandom initialization only on one sequence is that the numbe
main drawbacks. The first drawback is that the EM algorithof initializations can be reduced significantly comparedh®
does not ensure to reach the global maximum; differentinitimulti-sequence approach and the T1-w is chosen because it
parameters), may lead to different solutions, which makedas the best contrast between NABT.
the choice off, an important issue. The second drawback By using the NABT parameters computed in the T1-w
is the sensitivity of the MLE to outliers. In statistics, ghi image, we compute an initial classification image of each
sensitivity is measured by the breakdown point (BP), whidissue. One option would be to apply the same technique as
can be defined as the smallest number of outliers that dar{23] considering this initial T1-w classification as outas,
cause the estimator to take arbitrarily large values [3itl, a but that would lead to masks containing errors that can &ffec
in the case of the MLE, BP=0. In other words, a single outlighe estimation of the NABT parameters on the other sequences
can cause at least one of the parameters to become arbitrdrilpractice on T1-w, lesions are either classified as GM or WM
large. depending on their intensity and errors in the extractiothef

We propose two solutions to minimize the effect of thederain are typically classified as CSF. For this reason, ali66-
two drawbacks: employing a hierarchical initializatiomneme histogram is computed for each tissuee CSF,GM, W M
in order to increase the chances of reaching the global maaind sequence € T2, PD using the T1-w classification. The
mum, and replacing the likelihood with the trimmed likeldtb histogram is then smoothed using a Gaussian kernel with
(TL) computed using a FAST-TLE algorithm [24]. standard deviation of 5 bins and all modes of the histogram

1) Hierarchical Initialization: When using MLE, the ini- are found. For WM and GM where outliers are less important
tialization of the EM can be given by a probabilistic atlaghan in CSF, we set the initiad, ; as the absolute mode of the
where each voxel contains the probabilities of belonging tistogram, but for CSF, we seicsgs as the brightest mode.
the WM, GM or CSF. In [23], the atlas was linearly registeretf this method is employed on FLAIR images, the rrarr
to the patient images and the initial tissue parameters rimez all tissues are set to the absolute mode because thersutlie
and variance) were computed using the probabilities givéaave less effect on the estimation of the CSF than on T2-w
by the atlas. Such an atlas-based initialization method h@&ull-stripping errors and CSF are dark in FLAIR images).
two drawbacks; the registration is a time-consuming tasl, a We then compute the variance of each tissue and sequence
may provide improper initializations in MS patients havingising a robust variance estimator [38]
considerable brain atrophy or lesion load. ) )

In other clustering applications, a general approach uses o5 = (L4918 - med(|ys — pes]))™ ©)

the EM algorithm with differe_nt rar_1dom in_itial parametersg, oo med() is the median operator. The final covariance
fo and then selects the solution with maximuin t0 gain  aiy for each tissue that is used in the initialization of

more chances of reaching the global maximum, more startin% FAST-TLE is given by
parameters are needed, which increases the computational

time. o2, 0 0
Biernacki et al. [29] proposed to reduce the computational 0 02, 0 _ (4)
cost of the above-mentioned random technique with a four- 0 0 o2y
,t

step method. First, they chose multiple starting pararaeter
at random. Second, they ran the EM algorithm for each2) Trimmed Likelihood: Neykov et al. [24] proposed a
set of starting parameters but, instead of waiting until thgodification of the MLE in order to make it more robust to
convergence of the algorithm, they provided intermediagutliers. The basic idea consists in maximizing the trimmed
parameters only after 50 iterations of the EM algorithniikelihood (TL) instead of the likelihood,
Third, they selected the intermediate parameters prayidin
the best likelihood and fourth, they ran the EM algorithm
again until the convergence was reached, starting with the TL®) = Hf(y”@'e) ®)
best intermediate parameters. In practice, the numbeiitélin =t
set of starting parameters needs to be high to cover the lavgeere the trimming parametér(n/2 < k < n) determines
range of possible solutions, and this number greatly imggahow many voxels are rejected from the estimation and the
in multidimensional spaces. function v () sorts all voxels according to their probability
We propose a new method to initialize our multi-sequengy,(;)|¢). In other words, the likelihood is only computed
NABT estimation which includea priori information in order with the & voxels that are the most likely to belong to the
to reduce the computational cost. First, we perform a NABModel. In the rest of the document, we employ the fraction
estimation on the T1-w only, applying the initializatiorheme h = ”T"“ where0 < h < 0.5. Forh = 0, the TLE is equivalent
proposed by Biernacki et al. [29] using 100 initial randorto the MLE.
parameters obtaining the mean and the variance for eadetiss The TLE can be computed using the FAST-TLE algo-
in T1-w. For the random initial parameters, the mean of eacithm [24]. First, a subset of points is selected using(:)

k



according to the initial parameteé8. Second, the EM algo- [1l. VALIDATION USING SIMULATED DATA
rithm is employed to compute the MLE of thegepoints and The McConnell Brain Imaging Center (Montréal, Qc,

obtainf". Trr]\ese wo stepi arehiterated until convergence. We,, 52 developed a realistic simulated brain image dsgaba
can prove that FAST'TLE as the same convergence properﬁ%%ly available onling called BrainWeb [31]. This database
as _the EM algorithm and that the preakdown pqlnh '?37]' was based on a realistic anatomic phantom and a MR simu-
which means that the TLE can obtain a good estimation of the . 1o phantom was based on high-SNR MRI images of
data even if the data are contaminated with ug toutliers. a healthy subject in order to obtain a realistic anatomy. To
the original healthy phantom, they added MS lesions so as to

. . obtain three MS phantoms with different lesion loads: mild
A high value should be chosen for the trimming parambter(O 4 ¢m?), moderate 3.5 ¢m®) and severe1(.1 cm?). The

in order to ensure all MS lesions voxels and other artifaggs MR simulator allowed the configuration of the MR acquisition

rejected from the estimation of the NABT model. In practice,_ .. - iars and the addition of image artifacts (noise and
the h rejected voxels contain some voxels that actually fit t fitensity inhomogeneity)

(l;lABTﬂr]node_l _reals?\?art:l); weg._ Tg_uf’ we d]?];'r:'e th(_a é('jlstance The advantage of BrainWeb is the existence of a ground
: as the minimal Manhalanobis distance ot theé VOXEIOm i, that can be used in the evaluation of our automatic

one of the Gaussians in the NABT model. segmentation method. For this paper, we downloaded MR
. Ta ] images (T1-w, T2-w and PD) obtained from the three MS
di = i {\/(YZ - 1) 2 (vi — “j)}- (6) phantoms with several levels of noise (n= 1%, 3%, 5%, 7%
' and 9% of the intensity of the brightest tissue) and intgnsit
inhomogeneity (rf= 0%, 20% and 40%) with a resolution of
1 mn? in plane and 1 mm and 3 mm slice-thickness.
To compare the results of the segmentation with the ground
Huth, we employ the Dice similarity coefficient (DSC)

2SN R
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C. A Priori Heuristic Rules _ 151+ _| _

Candidate lesions detected with the Mahalanobis distan}ggergfé C|;S the refefrerrlf;:e(z) ?egirgentat;ontaﬁmb thetsigmenti\r-]
include MS lesions, vessels, registration errors, flowfaots, lon. ranges frord.0 to 1.0 (perfect segmentation), wi

noise, etc. We define three rules in order to discriminate Npsvalue 0f0.7 generally considered to be a good segmenta-

lesion voxels from the other voxels: intensity rule, sizéeru tloln [4;:.]' . d ibe th . h
and neighbor information rule. n this section, we describe three experiments on the

1) Intensity Rule. MS lesions are known to be hyper_BrainWeb images. The first experiment assesses the ability

intense compared to the WM intensity on T2-w and pp-Rf the TLE to estimate the NABT model adequately. The

and FLAIR sequences. We use the information given by yggcond experiment studies the Mahalanobis distance and the
NABT model to define hyper-intensity. a priori heuristic rules for the detection of lesions. The third

A voxel is considered to be hyper-intense for a giveﬁxperiment evaluates the segmentation results of our @fiom
sequence €g. T2-w) if its intensity y is greater than a method in presence of noise and intensity inhomogeneity. In

thresholdys that is defined by the probability of the GaussiaRFder to focus in the segmentation method, no preprocessing
distribution (denoising or intensity inhomogeneity correction) is eoygld

o0 in this section.
Phyper = N(NTWZM ) 0\1/;/2M) dy. (7)
Yth

If the voxel is not considered hyper-intense on T2-w an} Estimation of the NABT Model
PD (and FLAIR, if this sequence is available), it is discafde We evaluated the accuracy and robustness of TLE with
as a lesion. Other intensity rules can also be defined for othiifferent » values when varying the slice thickness and the
subtypes of MS lesions [25]. number of outliers. Typical outliers, other than MS lesions

2) Sze Rule: In order to avoid false positives, candidat&ome from errors occurring in the brain extraction stepnysi
lesions smaller than 9 mivin size are rejected. These smalBrainweb images, we have simulated the two types of outliers
candidate lesions are usually produced by noise or flowThe T1-w, T2-w and PD images from BrainWeb with 3%
artifacts. In clinical practice, lesions must have a radifis of noise and 20% of inhomogeneities and moderate lesion
3 mm on one image slice to be considered as such [40]. |oad were employed. In order to evaluate the influence of the

3) Neighbor Information Rule: In MRI, external CSF may resolution and partial volumes, both 3 mm slice-thickness a
contain artifacts due to fluid flow. These effects can causemm slice-thickness were employed. Errors from the brain
voxels in the cortex or external CSF to have intensitieslaimi extraction step were simulated by dilating the perfectrbrai
to MS lesions. In order to reduce the number of false positivg, 55k mask,, from the phantom with spherical structuring
due to these effects, we remove all candidate lesions teat glements of different sizest, mask,1 (4% of outliers); 2,
not contiguous to WM voxels, as classified by the TLE, or
that are contiguous to the brain mask border. Lhttp://www.bic.mni.mcgill.ca/brainweb/

B. Detection of Candidate Lesions

If we consider that the voxel intensities of each tissuefell
a Gaussian law, the Mahalanobis distance followg?alaw
with m degrees of freedom [25], [39], where is the number
of MR sequences. The voxels considered aandidate lesion
when the distancé; is greater than a threshold that is define

by the x2, law for a given p-valu®mana

DSC= 8)



mask,2 (8% of outliers); and3, mask,3 (12% of outliers). sensitive to the size of the segmentation, which may explain
Using the voxels already labelled as lesion in the origin#e lower results of the mild lesion load compared to theigeve
images, more lesions voxels were added to the original isjagkesion load [41].
creating additional sets of three images wiif of outliers, Using these results, we obtained the optimal parameters of
10% of outliers andl 5% of outliers. The position of these newour method for the segmentation of lesions intersecting the
lesion voxels is not relevant in this experiment as no spatzones of the graph using the best results of each lesion load,
information is used in the estimation of the NABT. we obtainetpmana= 0.3 and ppyper= 1 - 1072 that we use as
The NABT model was estimated for each simulated imagdke optimal parameter for running our algorithm.
with h varying from 0 (MLE) to 0.49 (limit of convergence).
Each voxel was classified gsing the NABT model and the DS& Noise and Intensity Inhomogeneity
was computed for each tissue (CSF, GM and WM). In this
section, lesion detection was not performed because th,ESfO%
was on the estimation of the NABT model only. r
For brain extraction errors in 1 mm slice-thickness imag
(Figure 2), the DSC for MLEK = 0) decreased when outliers
were added to the image. This was more visible in CS?E .- : o : )
because there were less CSF voxels than GM or WM voxels> denaising, nor intensity mhompgeneﬂy corre.ctlonbl.eT
and the DSC is sensitive to the size of the segmentationttargge"’ir"’uﬁneters found in the 'a_S§ section were used: 0.05,
Onceh > outliers, the DSC was stable and similar to th@maha= 0-3 andpnyper= 1-107*. Our automatic segmentation
value obtained when no outliers were present. Finally, Whgﬁaé' comdpare(; to ;fhe gr;)un_d truth husmg the DS.C' Fi 6
h > outliers, the DSC dropped because too many poirﬁs egarding the effect of noise on the segmentation (Figure 6)

were rejected and the TLE failed to estimate the NABT mode|gh levels of nms_er( > T%) resulted in low DSC < 0.5)
properly. and, for1% of noise, the DSC was lower than 8% of

For brain extraction errors in 3 mm slice-thickness imag noise. Regarding the effect of inhomogeneity (Figure 63, th

(Figure 3), the behavior of the TLE was similar to th?SC scores of images with0% of intensity inhomogeneity
' Were lower than those of images with no inhomogeneity while

one observed for 1 mm slice-thickness images. Due to t|ma es0% and20% of inhomogeneity obtained similar scores
reduction in the number of brain voxels, the DSC values wefe geshze ° genetty

lower and the instability happened for lowlerwwhen compared ' 3% and5% of NOISE. The DSC was higher when the Iesllon
. X . load increases, which can be explained by the above mentione
to the 1 mm slice-thickness images.

. . : . ensitivity of the DSC to the volume of lesions.
When including lesions voxels as outliers, we observed thée . .
. . . The problems obtained for 1% of noise can be due to the
same behavior as for brain extraction errors (results ooy f.

3 mm slice-thickness, Figure 4). The classification of WA stability of the EM algorithm for small covariances [42].

; ; . or 1% of noise, the results were improved when the in-
was very affected by the inclusion of the outliers when< homogeneity increased as the variance of each tissue also
outliers. Onceh > outliers, the TLE obtained similar DSC. 9 y

values to those obtained with MLE with no outliers. increased, reducing the problems of instability. For higirels

) of noise, our method failed to segment the image because it
In our method, we set = 0.25 for the segmentation of real . . : . .
: . . : . is based only on intensity. In presence of high levels of &ois
images, which was high enough to cope with a high numbér . - .

. . - we consider that the use of a denoising technique may be
of outliers but out of the instability range. Although whéret necessary [43]

perfect mask is employed for the BrainWeb images, we use . .
h = 0.05 (Sections 11I-B and 111-C). The accuracy of our algorithm was reduced for high levels

of inhomogeneity. Our approach assumes that the intensity
of each tissue is constant and the inhomogeneity biases our
B. Detection of Lesions estimation of the NABT model, reducing accuracy. In our

In our method, lesion detection consists of two steps: tﬁgtting, we propose to correct these intensity inhomogesei

detection of candidate lesions and the use pfiori heuristic in order to f';lv0|d this bias. )
rules to discriminate the true lesions from the other orglie "N refation between the DSC and the total lesion load can

The detection of candidate lesions depends onpthga and be associated with the dependency of the DSC on the target

the use of heuristic rules depends mper volume: for mild lesion loads, an error of one voxel causes th
In this experiment, we employed thepimages T1-w. T2-w arldSC to decrease more than for higher lesion loads because

PD with 1mm slice-thickness from BrainWeb with 3% noiS(Izhe measure is normalized by the size of the segmentation

and 20% inhomogeneity with the three available lesion loalfy9et [41].

(mild, moderate and severe). Segmentation was performed

using the perfect brain mask extracted from the ground truth IV. VALIDATION USING CLINICAL DATA

and with different values gfmana@ndpnyper Our segmentation Ten MRI were acquired on a 1.5T Philips Gyroscan

was compared to the ground truth using the DSC. (Philips Medical Systems, Best, The Netherlands) scanmer a
The results are displayed in Figure 5. The best DSC valMR protocol including FFE T1-w acquisition (TE=10 ms,

varied for each lesion load, increasing with lesion loaddmi TR=35 ms, angle=4) FOV=250 mm, in-plane voxel size

(> 0.7), moderate ¥ 0.8) and severe* 0.85). The DSC is 0.97x0.97 mm) and TSE dual echo (T2-w and PD) acquisition

Our algorithm was applied to segment the MS lesions in
ainWeb images with 1mm slice-thickness for all levels of
é]é)ise, inhomogeneity and lesion load to give a complete eval
uation of our algorithm. The brain mask was extracted from
e ground truth and no other preprocessing was performed
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shows a good stability when we increase the number of asitiempared to the MLEAX = 0.0).

CSF GM WM
095 q
09F q
0.851 T
08 q
0 0.75F T
07k q
065 q
06 Mask 06 Mask 06 Mask 1
Dilated r1 Dilated r1 Dilated rl
0.55| —— Dilated r2 1 0.551 —— Dilated r2 1 0.551 —— Dilated r2 1
—— Dilated 13 —— Dilated 13 —— Dilated 13
o : T . . . . . . . 05 : T . . . . . . 05 : : . . . . . . .
) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05 0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05
h h h

Fig. 3. DSC for each brain tissue with variation foon BrainWeb images (3mm slice-thickness) with errors inkifen extraction step. The same response
as for 1mm slice-thickness is observed but enhanced by theee voxel resolution in the image, especially for highugal of h.
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Fig. 4. DSC for each brain tissue with variation /ofon BrainWeb (3mm slice-thickness) images with an increasgdber of lesion voxels. The influence
of outliers is reduced wheh is larger than the number of outliers but when too many paingésrejected the estimation is no longer accurate.

0.45 045 045

Be-2 le-2 503 1e-3 5e4 le4 55 1e5 5e$ 1le-b 5e2 le-2 Be-3 le-3 5e-4 le-4 Be5 leb 506 1e6 5e2 le-2 Be-3 le-3 5e-4 le-4 Be5 leb 506 1e6

Pryper Pryper Phyper

osc N~ T T TTNEEE osc T T | TN cscc N T T | TThEEE
01 02 0.3 0.4 0.5 06 o7 0.8 0.9 1 0.1 02 0.3 0.4 0.5 06 07 0.8 0.9 1 .

Fig. 5. DSC values for the automatic segmentation varyiregfahalanobis thresholghgang and the hyper-intensity definitiorpgype) on the BrainWeb
images. From left to right: mild, moderate and severe lessanls. The optimal set of parameters on averaggnigha= 0.3 andphyper=1 - 10~3.

(TEL/TE2=30/90 ms, TR=2 s, angle=90FOV=250 mm, thickness.

in-plane voxel size 0.97x0.97 ninwith 3-mm axial slice  Fye raters manually segmented MS lesions on every patient
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. BrainWeb results: DSC values for the automatic segatien performed by our algorithm for the three MS phantand all levels of noise and
inhomogeneity.

Patient 1 2 3 4 5

6

7

8

9 10

TLL (em?)

10 12 14 27 28 6.0 6.2 20.0 33.9 4.4

TABLE |

TOTAL LESION LOAD (TLL) IN cm? FOR THE PATIENTS COMPUTED USING
THE CONSENSUS SILVER STANDARD

aflas initializationTL?,, . was always lower than the one
obtained by the hierarchical initializatiofi L9, . for every
patient (average differenc&’'L?.. — TLY, . . = 71,705),
which is a good improvement compared to the difference be-
tween log-likelihood using the atlas initialization ane tlog-

likelihood after convergence (average differenﬂt%fl‘gl -
TLY, .. = 141,280). The number of iterations required using

using thedi spl ay? software developed at the McConnelthe hierarchical initialization404.3 +212.1) was smaller than
Brain Imaging Center. In addition, all the raters segmetited the number of iterations using the atlas-based initidtiraf
same images again 8 months later. To sum up, each patie.5+252.4) and the final log-likelihood was larger using the
has 10 manual segmentations of the MS lesions, two times p@rarchical initialization than the atlas-based iniration for

rater

6 patients (average differencBL! " — pp/in

hier atlas

= 14, 461)

Although manual segmentation performed by a unique rai@nd the same for the other 4 patients.
is often used as a gold standard of the comparison betweelVe conclude that the proposed hierarchical initialization
automatic methods, large intra-rater and inter-rateratslity
has been demonstrated in manual segmentation [7]. To redtiazation and resulting in less number of iterations Lnti
the influence of these variabilities, we built a consensgsnvergence and in a slightly better final log-likelihood.
silver standard with manual segmentations, where a voxgel wa
considered to be a part of a lesion if the majority of thg pgyrameter 1
manual segmentations considered it as a lesion. In thetiresul

consensus, isolated voxels were removed from the Iesitss.cle}h

The patients were ordered according to their total lesi@al lo
(TLL) (Table 1).

A. Evaluation of the hierarchical initialization

We performed an experiment to compare the two approactf¥l Phyper = 1¢ — 3) and the segmentations were performed
of initialization described in Section 1I-Al: the atlasdeal for 0 <h < 0.5. The segmentations were compared with the

is faster, providing a better initialization than the atias

We are unable to perform the same analysis of the TLE that
e one performed with the simulated data because of the lack
of information on the NABT in clinical images. Instead, the
consensus silver standard was used to study the effebteof

the segmentation of MS lesions. The parameters of the lesion
detection step were fixed as for simulated dat@afa = 0.3

initialization and the hierarchical initialization. Fone atlas- consensus silver standard using DSC.

based initialization, the anatomical atlas [44] was lihear The MLE (h = 0) obtained DSC values near or equal to

registered [33] to the patient image and the mean intensg§ro (Figure 7). The MLE failed to obtain a good segmentation

and variance for each tissue using the probability of easué because the presence of outliers such as lesions, vesskls an

type given by the atlas. For the ten patients, we computed #/&0rs in the extraction of the brain, caused a sub-optimal

initialization parameters with both methods and meastined testimation of the NABT model.

time employed in the initialization. The log-likelihood wa TWO different behaviors were observed according to the TLL

then computed with the initialization parametesL{) and ©f the patients for the TLE. The patients with low TLL (Pa-

with the solution of the FAST-TLE algorithm with = 0.25 tients 1 to 7) obtained their best scores whelrd < h < 0.35.

(T Lfinaly, These patients had a TLL similar to the simulated images and
The time employed by the atlas-based initialization wdherefore had a similar behavior although they require adrig

around170 seconds while the hierarchical initialization took? because there are probably more outliers in real images than

around 5 seconds in an Intel(R) Core(TM)2 Quad cpun the simulated images from BrainWeb.

2.40GHz. with 4Gb. of memory. The log-likelihood using the On the contrary, the patients with the highest TLL (Patients
8,9 and 10) obtained their best DSC values wies 0.49.

2http:/fwww.bic.mni.mcgill.ca/software/Display/Dispt. html The TLL of these patients was higher th2drm?, which was



Mean IRDSC | EMS | TLEMS_h25 | TLEMS_h35

1 0.56 0.35 0.55 0.54

2 0.62 0.31 0.56 0.48

3 0.57 0.38 0.50 0.42

4 0.51 0.43 0.54 0.45

5 0.66 0.54 0.73 0.65

6 0.69 0.68 0.77 0.70

7 0.62 0.64 0.77 0.74

8 0.79 0.77 0.82 0.83

9 0.77 0.73 0.65 0.74

10 0.80 0.76 0.65 0.78

Average 0.66 0.56 0.65 0.63

Patient TABLE Il
: ; : : DSCVALUES FOR THE RATERS AGREEMENTEMSAND TLEMS ON
bscC m Y EETT T OF“ CLINICAL DATA USING THE CONSENSUS SILVER STANDARD

Fig. 7. DSC values for the automatic segmentation on thécalidata when
varying h. size. While the first four patients had values lower tfia6b,
the last three patients were over75. When we compared

more than twice the size of lesions in the BrainWeb databagég Cautcimatlc fmTeLtE(l)\Ad;h\évgh tzeTIFEDI\/? Sch 3v5ve obser\_/(;q that
The increase in thé for these patients was not proportional t values o = an = were within

the increase of TLL. Their lesions were less conspicuous a _tandard dewatlo_n of the IRDSC or better in 8 out of 10
bright, and they were mixed with dirty white matter (Figur@""t'e.mS and EMS in 7 out of 10 patients only. TLEMBS
10). For these patients, experts also segmented part ofrtige btained the best re;ults for the three last pqtlents and was
white matter as lesions and thereférevas required to be high always better or similar than EMS for all patients. On .the
for this patients to consider the dirty white matter as eusli contrary, TLEMS—hZS obtained the best results for the first
and not only the lesions. seven patients. .
The average DSC of TLEM$125 wad).65, higher than the

) ) average of TLEMSh35 (0.63) or EMS (0.56) and very close
C. Comparison using DSC to the average of the IRDSC that wa$6. Paired t-tests were

We compared our method TLEMS (TLE for MS Segmenperformed on the DSC values of each segmentation method
tation) to the agreement between experts and to a publif¢ly < 0.05). The DSC of EMS was significantly lower than
available method called EMS [ZB]JEMS is an automatic seg- those of IRDSC, TLEMSh25 and TLEMSh35, but the DSC
mentation method also based on the estimation of a GMM feLEMS_h25 and TLEMSh35 were not significantly different
the NABT. It uses a modified EM algorithm where voxels arthan IRDSC. Visual examples of the differences are shown for
down-weighted in the estimation according to the probgbilitwo patients with different TLL in Figures 9 and 10.
they have to be outliers. This method has one main parameter
k that adjusts the sensibility of the method to outliers. TF

modified EM algorithm also includes information from a brait
atlas and corrects intensity inhomogeneity. It includeskda 0.9r 1
random fields to avoid small lesion detection and intensi 08l o o {g %V %
rules to select lesions from other outliers. The output ofEEM ol (o} {9 x |
is a probabilistic image of the MS lesions and a threshold o o
0.5 was used to obtain the final binary segmentation. In ord 0'6{5 IL % t ‘}Y 1
to obtain the optimak for our data, we employed EMS on 3 ost x 1o
our images varying: from 2.6 to 3.6. We obtained the best oal X
results usings = 3, which is the default value of EMS. 'V v

The similarity of every pair of manual segmentations we o3
computed using DSC for each patient. The mean and t 02y O IRDSC
variance of these DSC values gave us a measure of 01f 9 MSTLE hoo.22 |
inter-rater agreement, we called these values the inter-re oL ‘ ‘ ‘ ‘ ‘ LV _EMS ‘
DSC (IRDSC). For each automatic segmentation method, R S A

computed the DSC with the consensus silver standard. | ..
TLEMS, two differenth values were selectech = 0.25 _ )

! Fig. 8. DSC values for the two automatic methods TLEMS and EM8&
(TLEMS_h25) andh = 0.35 (TLEMS_h35). Our method the meant one standard deviation of the agreement between ratersSERD
takes around 2 minutes to segment one image in an Intel(R)

Core(TM)2 Quad CPU 2.40GHz. with 4Gh. of memory.
The IRDSC increased with the lesion load (Figure 8), wh|cB_ Comparison using STAPLE

might be explained by the bias of DSC towards the lesion }
The STAPLE (Simultaneous Truth And Performance Level

3http://www.medicalimagecomputing.com/downloads/ghg. Estimation) algorithm was designed to study the perforreanc



Fig. 9. Slice from patient 5. Top, from left to right: T2-w, Rand consensus silver standard. Bottom, from left to rigiMS, TLEMS h25 and TLEMSh35
segmentations.

of different experts when the ground truth is not availadfe]] automatic methods because the manual segmentations for the

This algorithm takes into account that all segmentationrhmetevaluation were not the same as the ones employed in the

ods or experts are somehow imperfect and that their seifsiticcreation of the SSS.

and specificity can be measured. The sensitivity and spiégific  The results of the STAPLE evaluation are shown in Fig-

of each method is estimated using an EM approach thae 11. Experts showed low sensitivity in the segmentation

computes at the same time the STAPLE silver standard (SS8ith the median for each patient going from 0.42 to 0.79. The
Once the SSS is created, we can compute the sensifivity variability among experts was large. The specificity of etpe

and specificitySp of other methods as follows was higher for patients with lower sensitivity.
S D W EMS obtained a higher sensitivity than the experts in the
Se==i=L ' __* (9) majority of the images but a lower specificity. TLEM®5
i Wi and TLEMS h35 showed a higher specificity than EMS and in
S Di-(1-Wh) the range of the experts in half of the patients. The seitgitiv
== o (10)  of both TLEMS h25 and TLEMSh35 was within the range

) _ ) ) ~ of the experts in the first seven patients and was lower in the
whereD; is the voxel: of the binary segmentation andl; is patients with the highest lesion load, which agreed with the

the probability of the voxel to be a lesion on the SSS and resuits of the evaluation using the consensus silver stdnda
is the number of voxels of the image. Our specificity measures

are computed in the whole brain. Considering that the volume ) ) )

of lesions is small compared to the brain volume, specificify COmParison using total lesion load

values are always close to one. We studied the correlation between the TLL computed
The first manual segmentation of every expert was employathnually by the experts and the automatic methods using the

for the computation of the SSS. Sensitivity and specificifyearson’s correlation and the intraclass correlationficierft

were then computed for all automatic segmentations and {€C) [46].

second manual segmentations using equations (9) and (10)MVe computed the Pearson’s correlation coefficient between

This option provided a fair comparison of the experts anshch pair of experts to obtain the inter-rater variabilitye
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Fig. 10. Slice from patient 9. Top, from left to right: T2-wDRv and consensus silver standard. Bottom, from left totrigfMS, TLEMS h25 and
TLEMS_h35 segmentations.
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Fig. 11. The boxplot shows the median and the quartiles ofspexificity (left) and sensitivity (right) of the raters ngithe STAPLE algorithm using
clinical data and the points show the results for the autmnmaethods: TLEMSh25 and TLEMSh35 and EMS. Experts segmented twice each image, the

first manual segmentations were employed to create the SEAfNer standard and the second ones were employed to @vdahespecificity and sensitivity
of the experts.

also employed the two manual segmentations performed \mried between 0.97 and 0.98 (Table lll), similar to the
the same expert to obtain the intra-rater variability. Fjpave intra-rater correlation. The automatic methods showedlaim
computed the correlation coefficient for the automatic md¢h performance and very good correlations of 0.97 for EMS and
compared to each rater. The average inter-rater correlatibLEMS_h35, and 0.96 for TLEMSh25.
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Rater 1 2 3 4 5 Average

1 - - . - 097 1 001 V. DISCUSSION

2 097 - - - - | 097+0.01 . .

3 098 096 - B} - | 098 +0.01 In this paper, we proposed a new algorithm for the segmen-

4 0.96 098 099 - - | 0.98+0.01 tation of MS lesions, based on a TLE [24] which provides a

> 098 098 099 099 - | 0984001 good estimation of the intensity parameters of the NABT. In

Intra-rater 097 098 098 0.98 0,98 0.98+0.00 . . S

TLEMS h25 [ 097 094 097 095 0.7 0.96 £0.01 our experiments, we demonstrated how the trimmed likelihoo

TLEMS_h35 | 0.95 097 097 0.97 0.98 0.9740.01 estimator allows a better estimation compared to the maximu

EMS 099 095 097 095 09§ 0.97+0.01 likelihood estimator when there are outliers. In our vaiiia,
TABLE Il the MLE was not able to correctly estimate the NABT model,

PEARSON S CORRELATION COEFFICIENT BETWEEN RATERGINTER-AND  \which makes us think that a robust estimation is critical for
INTRA-RATER)ANDAUTOMATIC METHODS . . . . . .
any kind of model estimation in MR brain images.
Outliers include MS lesions but also other voxels that do
not follow the NABT model such as skull-stripping errors,

The ICC gives measures the agreement all raters simul¢gssels or acquisition artifacts. As shown in the BrainWeb
neously contrary to the Pearson’s correlation that can orffperiments, our method does not require a perfect braik mas
be used to compare two raters. According to the notatiéh order to perform a accurate segmentation; errors in the
of [46], we used the third case of study proposed witBKull-stripping process are correctly detected as ostligy
one single measure (ICC(3,1)). We observed a very goBte TLE without affecting the NABT model estimation. It
agreement among the raters (ICC(3,1)=0.94). To evaluate f¥ggests that the TLE could be used in order to reduce the
automatic methods, we computed the ICC using the fisull-stripping errors and obtain a more accurate brainkmas
raters and each automatic method independently. The ses{@ atrophy studies.
were: EMS (ICC(3,1)=0.93), TLEMS5 (ICC(3,1)=0.91) and We have proposed a new hierarchical method to initialize
TLEMS_h25 (ICC(3,1)=0.89). The ICC in all cases is largethe estimation of the NABT without the use of an atlas.
which showed a good agreement between the volumes &imilarly to the EM, k-means or the fuzzy c-means, the ikitia
tained by manual segmentation and the volumes computedibgtion of the TLE is important in order to avoid local maxima
the automatic methods. and get rid of the outliers but there is little informationthre
literature about how the methods are initialized. Our métho
takes into account tha priori information about the tissue

F. Segmentation using FLAIR images ) | e e
. h dical . ) q intensity on each sequence and uses random initializatons
During t e 2008 Me ica Imaging Computing an Comr'educe the risk of convergence to a local maximum of the
puter Assisted Intervention conference (MICCAI 2008), i med likelihood

chall;nge on autqmatic segmentation of M.S lesions Was or9an - method can work both with and without FLAIR images.
mijho' d-rshergrgoasrgéeirnsapr?r:;%r.zcig/: \(I:Voamparlson ofthe d'ﬁereELAlR is a very sensitive sequence specially for periventri

prop X ) Y- : ular lesions but it is known to be less sensitive than T2-

Images from MS patients were separated into two groups: and PD in the posterior fossa and it is more prone to

testing and training, and only the manual segmentation ef t lse positives. The use of both T2-w and FLAIR at the

training data was available to tune the s_egmentation ”.‘e‘h°§l me time should give complementary information to improve
Organizers kept the manual segmentation of the testing d a segmentation and we believe it should be the standard

making the participants blind to the final evaluation of thSrotocol for lesion segmentation. In clinical practice, R

segmentat_|on. Four metncs_v_vere employed: VO'UF”e diffezen is not always employed and thus the development of methods
average distance, true positives and false negatives. dine c_ . : o
ithout FLAIR images is still necessary.

parison included data from two different sites and T1-w, Té’y . . . . L
Evaluation of segmentation algorithms in medical images

W, FLAIR and DWI images were available and lesions Weri% complicated because of the absence of a ground truth. We

segmented by two experts. Metrics were normalized betweén . - :
g y P ployed a simulated realistic phantom in order to evaluate

0 and 100 conS|der,|ng 90 to be the experts agreement [42 algorithm with different acquisition parameters, butge
where the experts’ agreement was computed as: 68%ir(r)1a es are not as complex as real images and this first valida-
volume difference, 75% of overlap error, 68% of true positiv.. 9 b 9

rate in lesion detection and 32% of false negative rate. tion has to be seen only as a preliminary step before the real

A preliminary version of our method [27], participated invalldatlon on clinical images. In the literature, most _atlgtms
are compared to a manual gold standard, often defined by only

the MICCAI challenge using T1-w, T2-w and FLAIR images, single rater. Manual segmentation is subject to high-iand

The Images were alr_eady registered ar_1d gpsa_lmpled by ﬁ?t%r—ratervariability [7]. We compared our algorithm vive
organizers to isotropic 0.5 mm. Our pipeline included the

intensity inhomogeneity correction of the three sequepteks raters in order to evaluate our algorithm, taking into aettou

o : . . the variability among raters, thus enabling a more accurate
and skull-stripping [34] prior to using our automatic seg evaluation of our algorithm. We also compared our method

tion method. In this challenge, our method obtained thetfour ith a similar segmentation approach, EMS, showing that our

E?((): en(())?tf;)rf f?(l)r::} t%aert\ll:,:ilﬁsg:ssxtrz awf;q?frll \s/;:;)Sre;?)f 71 out Omethod performs better than EMS specially for low lesion

loads.
“http:/www.ia.unc.edu/MSseg/ The relation between the volume of lesions and the number



of rejected outliers cannot explain the necessityrof 0.49

for patients high TLL shown in our experiments. Lesions
on patients with high lesion loads seem less bright than in
other patients because they are surrounded by dirty white
matter and the definition of the lesion boundary is less awio
(Figure 10). The distinction of dirty white matter and lesian
some cases is very subtle and both definitions should be clari
fied in order to have more information to differentiate thém.
addition, we employed BrainWeb images with different TLL
to choose the optimal parameters for our method and therefo%

12

Method Clinical Images | BrainWeb

TLEMS_h25 | 0.65 0.72
17 0.63 0.81
11 0.60 0.79
23 0.51 0.80°
16 0.75 NA
49 0.61 NA
50 NA 0.63
18 NA 0.79°
[26] NA 0.77

TABLE IV

OMPARISON OFDSCFOR AUTOMATIC SEGMENTATION METHODS FROM
HE LITERATURE WITH CLINICAL AND BRAINWEB IMAGES (3% NOISE

we obtained high DSC scores for patients with similar TLLaND 20%INHOMOGENEITY). EACH METHOD USES DIFFERENT CLINICAL

compared with images from BrainWek< ( 10 e¢m?) but the
patients with the highest TLL required an adaptation of the
parameters. An extension of the BrainWeb database will be
interesting in order to cover a wider range of TLL for MS
patients to better evaluate the segmentation methods.

The TLE for the estimation of the NABT needs a fixed!™
parameterh in order to guarantee convergence and there is
no method to estimate the optimal value foffor a given [6]
image. We have proven that our algorithm can have a stable
behavior oncek is larger than the number of outliers but high
values of h will result in a more robust but less accurate[7]
estimation. In the field of robust estimation in regression,
several methods have been proposed in order to obtain high
breakdown point while maintaining a good accuracy. Thedasi
idea is to first perform a robust estimation with a methodsl
with a high breakdown point followed by a step to improve
the accuracy of the estimation [38]. These methods could be
adapted to the estimation of GMM in order to improve the
estimation of the NABT parameters. 9

However, the results on clinical data show similar agregmen
of our method with the silver standard to the agreement
between raters. The comparison of our method with othigf!
methods of the literature is complicated as few methods are
freely available and each method is usually optimized for a
specific MR protocol which make the comparison difficult!1]
As shown in Table 1V, the results of TLEMS are comparable
with other results reported in the literature. Our methodsdo
not require registration of an atlas for the segmentati@j, [2 [12]
[11], [49], [17] nor the use of a training database [49], [11]
an effort to make the comparison with other methods possibjes]
our application can be used online (http://www.irisaiages/
benchmarks/).

[14]
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