Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis. - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Medical Imaging Year : 2011

Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis.

(1, 2) , (1) , (2) , (2) , (1)
1
2

Abstract

We present a new automatic method for segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. The method performs tissue classification using a model of intensities of the normal appearing brain tissues. In order to estimate the model, a trimmed likelihood estimator is initialized with a hierarchical random approach in order to be robust to MS lesions and other outliers present in real images. The algorithm is first evaluated with simulated images to assess the importance of the robust estimator in presence of outliers. The method is then validated using clinical data in which MS lesions were delineated manually by several experts. Our method obtains an average Dice similarity coefficient (DSC) of 0.65, which is close to the average DSC obtained by raters (0.66).
Fichier principal
Vignette du fichier
TMI2011.pdf (532.41 Ko) Télécharger le fichier
Vignette du fichier
inserm-00590724_edited.pdf (744.37 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Loading...

Dates and versions

inserm-00590724 , version 1 (04-05-2011)

Identifiers

Cite

Daniel García-Lorenzo, Sylvain Prima, Douglas L. Arnold, Louis D. Collins, Christian Barillot. Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis.. IEEE Transactions on Medical Imaging, 2011, 30 (8), pp.1455-67. ⟨10.1109/TMI.2011.2114671⟩. ⟨inserm-00590724⟩
319 View
616 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More