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ABSTRACT

The iterative closest point (ICP) algorithm is probably the most popular algorithm for fine registration of
surfaces. Among its key properties are: a simple minimization scheme, proofs of convergence as well as the
easiness to modify and improve it in many ways (e.g. use of fuzzy point correspondences, incorporation of a
priori knowledge, extensions to non-linear deformations, speed-up strategies, etc.) while keeping the desirable
properties of the original method. However, most ICP-like registration methods suffer from the fact that they
only consider the distance between the surfaces to register in the criterion to minimize, and thus are highly
dependent on how the surfaces are aligned in the first place. This explains why these methods are likely to be
trapped in local minima and to lead to erroneous solutions. A solution to partly alleviate this problem would
consist in adding higher-order information in the criterion to minimize (e.g. normals, curvatures, etc.), but
previous works along these research tracks have led to computationally intractable minimization schemes. In
this paper, we propose a new way to include the point unit normals in addition to the point coordinates to
derive an ICP-like scheme for non-linear registration of surfaces, and we show how to keep the properties of the
original ICP algorithm. Our algorithm rests on a simple formula showing how the unit normal changes when
a surface undergoes a small deformation. The use of this formula in an ICP-like algorithm is made possible by
adequate implementation choices, most notably the use of a local, differentiable, parametrization of the surfaces
and a locally affine deformation model using this local parametrization. Then we experimentally show the strong
added value of using the unit normals in a series of controlled experiments.

1. INTRODUCTION

Non-linear registration is a key tool for many applications in medical imaging: morphometric analyses, follow-up
studies, computer-assisted surgery, etc. Surfaces represented by point clouds or meshes are especially convenient
to represent a subject’s anatomy, as they allow to focus the subsequent analyses on the structure of interest.
Many surface registration algorithms have been proposed in the literature. One of the most popular is the ICP
algorithm proposed by Besl & McKay.1 Over the years it has led to numerous successful variants and extensions
providing many ICP-like algorithms using fuzzy correspondences,2 a priori knowledge,3 selection of points for
faster convergence,4 robust techniques to deal with outliers,5,6 etc. Extensions to non-linear deformations have
also been successfully developed.2,3, 7 In essence, the ICP algorithm minimizes the distance between the two
surfaces. However, some works have tried to add higher-order information in the ICP criterion, to alleviate the
well-known local convergence problem of the algorithm, but they have led to intractable solutions.

For instance, Feldmar & Ayache have shown how to include the normals and curvatures.8 After showing how
these quantities are modified by a locally affine deformation, they devised a criterion combining point coordinates,
normals and curvatures and showed how to minimize it in an iterative manner similarly to the original ICP
algorithm. However, solving for the optimal transformation given correspondences in this framework is a non-
linear problem which makes the overall scheme computationally expensive and difficult to implement in case of
large surfaces. Another significant work along these lines has been done by Kambhamettu and colleagues in
a series of papers9–16 where they showed how to properly derive a simple solution to this last problem, using
linear algebra, when the hypothesis of a special type of deformations (a subclass of affine transformations) is
made. However, in their work this solution was not encompassed in an ICP-type algorithm, and an exhaustive
search over all possible pairs of correspondences was made instead to register the two surfaces. Moreover, the
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point-to-point distances was not taken into account in their algorithm, while these are of the utmost importance
when the normals cannot be faithfully estimated.
In this paper, 1) we propose to use the locally affine transformations subtype proposed by Kambhamettu and
colleagues to devise a proper ICP-type registration criterion using these transformations, the point coordinates
and the point unit normals, 2) we show how to derive an iterative solution to optimise this criterion, possessing
the desirable convergence and simplicity properties of the original ICP algorithm, and 3) we experimentally show
that adding the unit normals in the ICP criterion significantly improves the registration.

2. GENERAL SCHEME
The problem of surface registration consists in finding the transformation which best superposes a surface P with
a reference surface X. In this paper we consider surfaces represented by point sets or triangle meshes. We call
these sets P = {pi}, i = 1 . . . NP and X = {xj}, j = 1 . . . NX . A very fruitful approach to tackle this problem is
to introduce point correspondences as intermediate variables. Following this idea, Besl & McKay have proposed
the ICP algorithm, whose criterion to minimize has been later modified by Chui and Rangarajan2 as well as
Combès and Prima,3 and that can be formulated in a very general way as follows:

ε(T,A) =
NP∑
i=1

NX∑
j=1

AijdT (xj ,pi) + βL(T ) + γ

NP∑
i=1

NX∑
j=1

Aij log(Aij) with ∀i,
∑

j

Aij = 1 and ∀(i, j), Aij ≥ 0 (1)

• T is the transformation best superposing the surfaces (and that can be rigid, affine, elastic, etc.).
• A is a NP ×NX matrix that describes the fuzzy correspondences between the surface points. The greater Aij ,
the more likely the point xj ∈ X to be the correspondent of the point pi ∈ P . A can be viewed as a hidden
variable of the registration problem and will be called the match matrix.
• dT (xj ,pi) is a general distance measuring the discrepancy between xj and T (pi).
• L is a regularizer allowing to penalize discontinuities of T over the space, with β ≥ 0 weighing its influence.
• ∑NP

i=1

∑NX

j=1 Aij log(Aij) is a barrier function allowing to control the fuzziness of A (the higher γ ≥ 0, the
greater the fuzziness). In practice, this term convexifies the criterion.
The strategy first proposed by Besl & McKay1 to minimize ε consists in alternating the estimation of the point-
to-point fuzzy correspondences A and of the transformation T . This has been shown to converge to an at least
local minimum of the criterion ε. The iterative algorithm can then be simply written as follows:

Step 0: Initialize T 0

Step 1: An+1 = arg minA ε(Tn,A)
Step 2: Tn+1 = arg minT ε(T,An+1)
Step 3: if |Tn+1 − Tn| ≥ μ go to Step 1 else exit

Solving Steps 1 and 2 mainly depends on the choice of dT , L and T , and the main challenge in this framework
is to make realistic choices while keeping Step 1 and Step 2 computationally tractable. In the original ICP
algorithm, dT is simply the Euclidean distance between xj and T (pi), T is a rigid-body transformation, L is the
null function and γ is set to to zero. Step 1 is then solved setting An+1

ij to 1 if and only xj is the closest point
of Tn(pi) in X and zero else (typically using a kd-tree). Solving Step 2 then consists in finding the rigid-body
transformation best superposing the correspondences established during Step 1 in the least-squares sense, which
can be done in a closed-form using for instance unit quaternions17,18 or the SVD.19

This iterative algorithm is very satisfying, as it is very simple and can be easily extended to cope with some
specific types of non-linear transformations. However, the lack of a good initial transformation T makes it likely
to be trapped in a local minimum, mostly because dT is only based on the Euclidean distance between point
coordinates. In the following we propose to include the unit normals in addition to the point coordinates to
devise a new distance term dT . We show how an adequate transformation model and regularization term can be
used to keep Steps 1 and 2 of the above-mentioned iterative scheme tractable.
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3. CHOICE OF THE DISTANCE TERM
Instead of using the Euclidean distance between surface points dT (xj ,pi) = ||xj − T (pi)||2 (as in the original
ICP), we propose to use instead: dT (xj ,pi) = ||xj − T (pi)||2 + λ

∣∣∣∣nxj
− nT (pi)

∣∣∣∣2 where nxj
and nT (pi) are the

unit normal vectors at points xj ∈ X and T (pi) ∈ T (P ), and λ is a positive value weighing the influence of the
normal-to-normal distance term over the point-to-point distance term.
It turns out that nT (pi) can be expressed simply in terms of npi

(unit normal vector at point pi ∈ P ) if additional
hypotheses are made. We rely on the work by Kambhamettu and colleagues9–16 to derive this expression. First
we assume that:
• The surface P is given in parametric form, and each point p is a vector-valued differentiable function of
parameters u and v.
• This parametrization is orthogonal, i.e. pu · pv = 0 (pu and pv are the derivatives of p with respect to u and
v respectively and · is the dot product).
• The position of point p after the transformation is T (p) = p+ s, where s is a displacement function capturing
the local deformation of the surface P .
• The deformation of P is small, i.e. all second-order quantities involving s in the computations are neglected.
Then nT (pi) can be shown to be equal to:

nT (pi) = npi
− npi

×
(

pui
× sui

pui
· pui

+
pvi × svi

pvi
· pvi

)
(2)

In the notation, × is the cross product, · the dot product, and ui and vi are the parameters at point pi. Note that
this formula is independent of the chosen parametrization, provided it is orthogonal. The orthogonality of the
parametrization and the hypothesis of a small deformation mostly allow to simplify the computations. Relaxing
these constraints would be possible, at the cost of more complex computations.20 We explain in Section 5 how
to derive a local differentiable orthogonal parametrization for P .
As a summary, we design the distance term dT as follows:

dT (xj ,pi) = ||xj − pi − si||2 + λ

∣∣∣∣
∣∣∣∣nxj

− npi
− npi

×
(

pui
× sui

pui
· pui

+
pvi

× svi

pvi
· pvi

)∣∣∣∣
∣∣∣∣
2

(3)

4. MINIMIZATION OF THE CRITERION
4.1 Derivatives of the Distance and Regularization Terms w.r.t. the Transformation
Before tackling the minimization of the whole ICP criterion, we need to further specify the deformation model
and the associated regularization term. As suggested by Kambhamettu and colleagues,9–16 we propose to use a
locally affine deformation model:

s(ui, vi) = uiai + vibi

We also propose to design a first-order regularization term that we define as:

L(T ) =
∑

(k,l)∈C2(P )

||ukak + vkbk − (ulal + vlbl)||2

where C2(P ) is the set of second-order cliques of P . In practice, the cliques are determined using a mesh:
(k, l) ∈ C2 ⇔ there exists an edge between points pk and pl. These choices are especially convenient, as they
allow Step 2 of our ICP-type algorithm to stay tractable, as we will see in Section 4.2.2.
Below, we provide the derivatives of the distance and regularization terms with respect to the transformation
parameters ai and bi. Using I as the identity matrix in R

3×3 and writing everything in block matrix form, we
get:
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• Derivatives of the point coordinates term:
( ∂

∂ai
∂

∂bi

)
||xj − pi − (uiai + vibi)||2 =

( −2ui[xj − pi − (uiai + vibi)]
−2vi[xj − pi − (uiai + vibi)]

)
= 2

(
u2

i I uiviI
uiviI v2

i I

) (
ai

bi

)
− 2

(
ui[xj − pi]
vi[xj − pi]

)
(4)

• Derivatives of the point unit normal term:
( ∂

∂ai
∂

∂bi

) ∣∣∣∣∣∣nxj
− npi

− npi
×

(
pui

×sui

pui
·pui

+ pvi
×svi

pvi
·pvi

)∣∣∣∣∣∣2 =

2

⎛
⎝

npi
nT
pi

pui
·pui

0

0
npi

nT
pi

pvi
·pvi

⎞
⎠ (

ai

bi

)
+ 2

⎛
⎝

(nxj
−npi

)·pui

pui
·pui

npi

(nxj
−npi

)·pvi

pvi
·pvi

npi

⎞
⎠ (5)

• Derivatives of the regularization term:
( ∂

∂ai
∂

∂bi

) ∑
(k,l)∈C2(P ) ||ukak + vkbk − (ulal + vlbl)||2 =

2|V (i)|
(

u2
i I uiviI

uiviI v2
i I

) (
ai

bi

)
− 2

(
ui

∑
k∈V (i)(ukak + vkbk)

vi

∑
k∈V (i)(ukak + vkbk)

)
(6)

where V (i) contains the indices of neighbors of point pi in P and |V (i)| is its cardinality.

4.2 Minimization of the Criterion
Using the choices made in Sections 3 and 4.1 for the distance and the regularization terms, the general criterion (1)
becomes:

ε(T,A) =
∑NP

i=1

∑NX

j=1 Aij

(
||xj − pi − (uiai + vibi)||2 + λ

∣∣∣∣∣∣nxj
− npi

− npi
×

(
pui

×sui

pui
·pui

+ pvi
×svi

pvi
·pvi

)∣∣∣∣∣∣2
)

+β
∑

(k,l)∈C2(P ) ||ukak + vkbk − (ulal + vlbl)||2 + γ
∑NP

i=1

∑NX

j=1 Aij log(Aij) (7)

We now proceed to the actual iterative minimization of this criterion, by first computing the optimal match
matrix A when the transformation is given, and second computing the optimal transformation T for a given
match matrix. These optima are computed as values where the derivatives vanish.

4.2.1 Step 1: Point Correspondences
Minimizing the criterion with respect to Aij given the constraints ∀i,

∑
j Aij = 1 and ∀(i, j), Aij ≥ 0 can be done

in a straightforward way using Lagrange multipliers and give the following results:

∀(i, j),
Aij

αj
= exp

⎛
⎜⎝ ||xj − pi − (uiai + vibi)||2 + λ

∣∣∣∣∣∣nxj
− npi

− npi
×

(
pui

×sui

pui
·pui

+ pvi
×svi

pvi
·pvi

)∣∣∣∣∣∣2
−γ

⎞
⎟⎠ (8)

where αj is such that
∑

j Aij = 1. To reduce the computational cost of estimating the optimal transformation
in Step 2, we choose to compute one-to-one correspondences from the fuzzy match matrix A, as proposed by
Chui & Rangarajan.2 That is once we have estimated A we consider that pi is matched with the virtual point
x̂i =

∑
j Aijxj . Thus we consider that one-to-one correspondences between P and S are achieved in this first

step.
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0.00 0,500 1.00 1.50 2.00- 0.00 0,500 1.00 1.50 2.00-
(a) Original (green) and deformed (red)
ventricles

(b) Registration with our algorithm af-
ter 10 iterations

(c) Registration with the reference al-
gorithm after 120 iterations

Figure 1. Mapping of registration errors for rotated (4 degrees) and non-linearly deformed (TPS) ventricles.

4.2.2 Step 2: Transformation

After matching each point pi ∈ P with a point x̂i, we use the formulas (4), (5) and (6) obtained in Section 4.1
to minimize the criterion (7) with respect to ai and bi, ∀i ∈ 1 . . . NP . This yields a system of 6NP equations:

∀i ∈ 1 . . . NP ,

⎛
⎝ (1 + β|V (i)|)u2

i I + λ
npi

nT
pi

pui
·pui

(1 + β|V (i)|)uiviI

(1 + β|V (i)|)uiviI (1 + β|V (i)|)v2
i I + λ

npi
nT
pi

pvi
·pvi

⎞
⎠ (

ai

bi

)

=

⎛
⎝ ui[(x̂i − pi) + β

∑
k∈V (i)(ukak + vkbk)] − λ

(nx̂i
−npi

)·pui

pui
·pui

npi

vi[(x̂i − pi) + β
∑

k∈V (i)(ukak + vkbk)] − λ
(nx̂i

−npi
)·pvi

pvi
·pvi

npi

⎞
⎠ (9)

The point x̂i does not necessarily belong to the surface X. To compute nx̂i
, we simply project the point x̂i on

the surface X and use the unit normal at this point in the formulas. The complete set of formulas obtained
when keeping the entire fuzzy match matrix as computed in Step 1 using Equation (8) would be easy to derive,
but we omit them for the sake of simplicity.

It could appear at first that the 6 equations obtained by differentiating with respect to the unknowns ai and bi

are enough to compute them. It is not the case, because ai and bi also appear in the equations obtained when
differentiating with respect to ak and bk, when k ∈ V (i). Thus, in order to minimize the criterion with respect
to the set (ai,bi), i ∈ 1 . . . NP we use an Iterated Coordinate Descent (ICD) algorithm, where we minimize with
respect to each pair of parameters (ai,bi) in turn, while keeping all the other pairs fixed:

Step 2.0: Initialize (ai,bi) ∀i ∈ 1 . . . NP

Step 2.1: ∀i ∈ 1 . . . NP ãj , b̃j = arg min
ai,bi

ε((ã0, b̃0) . . . (ai,bi) . . . (ãNP
, b̃NP

),A)

Step 2.2: If |ε̃ − ε| ≥ μ go to Step 2.0 else exit

Thus, each Step 2.1 consists of NP linear systems with a simple 6 × 6 matrix inversion, given by Equation (9).
It can be shown that using the ICD algorithm does not change the convergence properties of the algorithm.

5. IMPLEMENTATION DETAILS
We look for a Monge patch representation at each point p of the surface P . Such a representation is of the
form (x, y, z) = (u, v, f(u, v)) and is an especially simple type of orthogonal parametrization. To obtain this
representation, we first compute the unit normal at each point p ∈ P using the widely used VTK library
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Rotation + TPS deformation
Rotation in degrees 4 5 6 7 8 9
Our algorithm (10 iterations) 0.52 0.56 0.63 0.72 0.83 0.98
Reference algorithm (10 iterations) 1.63 1.87 2.35 3.67 5.48 6.40
Reference algorithm (120 iterations) 1.04 1.10 1.29 1.64 4.32 5.48

Table 1. Mean error of registration for rotated, non-linearly deformed (using thin plate splines) ventricles using our
algorithm (after 10 iterations) and using the reference algorithm (after 10 and 120 iterations).

(http://www.vtk.org); the same is done for each point x ∈ X. Then, using the unit normal at point p, we
define a local coordinate system (where p is at (0, 0, 0) and the unit normal lies along the positive z-axis) and
we fit a quadratic surface of the type f(u, v) = Au2 + Buv + Cv2 in the least-squares sense using the neighbors
of p.21

We use the point coordinates and the unit normals of surface X to build a kd-tree (k = 6) for an efficient
implementation of Equation (8). The use of a kd-tree is made possible by introducing a threshold function

ρδ(x) =
{

x : |x| < δ
δ : else and thus replacing the original distance term by a term of the form dT,δ(·) = ρδ(dT (·)).

It can be shown that this change does not affect the convergence properties of the algorithm.22 It allows us to
use range queries in the kd-tree to compute the values Aij and thus reduce the time complexity of the algorithm.
Moreover, the matrix A becomes sparse, reducing the space complexity. Another positive side effect of this
threshold function is to make the algorithm less vulnerable to outliers. Note that when γ becomes close to 0,
Equation (8) boils down to a simple nearest neighbor query.

6. EXPERIMENTS AND RESULTS
As outlined in the introduction, the convergence of the classical ICP algorithm depends on the initial position
of the surfaces: badly aligned surfaces in the first place may trap the algorithm in a local minimum. We show in
this section that our algorithm may help to avoid this kind of problems. We generate the data in the following
way:

• We segment several lateral ventricles from 3T T1-weighted brain isotropic MRI data using itk-SNAP
(http://www.itksnap.org), which gives surfaces X of about 10,000 points.

• We generate P from X by applying 1) a random thin plate spline transformation (to simulate such a transfor-
mation, we select a set of 8 landmarks on X and randomly move them independently in a sphere of radius 20
mm around their initial position) and then 2) rotations with increasing angles. This gives us ground truth pairs
(X, P ).

• We register each such obtained pair using 1) our algorithm (with the following parameters: β = 50, γ = 0,
λ = 1000) and 2) a reference algorithm (where λ = 0, i.e. only the point coordinates are used to register X and
P ).

• We evaluate the registration error by computing the mean distance between homologous points after registra-
tion. The values shown in Table 1 are the mean of these mean errors over the different ventricle pairs and results
on one of the pairs are displayed on Figure 1.

The conclusions of these preliminary experiments are twofold: 1) the accuracy of our algorithm is much higher
and 2) its convergence is much faster compared to the reference algorithm.

7. DISCUSSION
In this paper we have presented a novel algorithm for non-linear registration of surfaces. We have shown how to
include the unit normals in addition to the point coordinates in an ICP-type criterion and we have shown how
to minimize it in a simple way when a special type of small deformations is assumed between the two surfaces.
Numerous adaptations and variants proposed in the literature for the original ICP algorithm could be applied in
a straightforward way to our algorithm, such as the use of a prior affinity distance term as proposed by Combès
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& Prima.3 Future work could also consist in adding a term based on the curvature in the criterion, using another
set of formulas derived by Kambhamettu and colleagues. We have presented a set of preliminary experiments,
and extending the validation dataset would be necessary. Evaluating different sets of parameters and different
multiresolution or multiscale schemes would also be needed. At last, our algorithm needs to be compared with
others, especially with landmark-free approaches23 and with other methods that do not resort to point-to-point
correspondences.24
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