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ABSTRACT

In this paper, we propose a new approach to compute the mean

shape of unstructured, unlabelled point sets with an arbitrary num-

ber of points. This approach can be seen as an extension of the

EM-ICP algorithm, where the fuzzy correspondences between each

point set and the mean shape, the optimal non-linear transforma-

tions superposing them, and the mean shape itself, are iteratively

estimated. Once the mean shape is computed, one can study the

variability around this mean shape (e.g. using PCA) or perform

statistical analysis of local anatomical characteristics (e.g. cortical

thickness, asymmetry, curvature). To illustrate our method, we per-

form statistical shape analysis on human osseous labyrinths and sta-

tistical analysis of global cortical asymmetry on control subjects and

subjects with situs inversus.

Index Terms— point set, mean shape, EM-ICP, shape analysis,

symmetry, surface

1. INTRODUCTION

Algorithmic tools for groupwise anatomical studies are of great in-

terest to characterise and compare anatomical structures over and

between populations in an efficient and comprehensive way. Lots

of efforts have been made to design methods allowing to build sta-

tistical shape models (i.e. defining and computing a mean shape

M from the observations and characterising the main variations of

the shapes around M ) when the shapes are represented by implicit

surfaces, meshes or simple point sets. Recent works include meth-

ods based on i) the minimum description length (MDL) theory [1]:

one looks for the most compact model (i.e. involving as few pa-

rameters as possible) that best explains the population or on ii) the

definition of the mean shape as the minimiser of a registration-like

criterion [2, 3, 4, 5, 6]; the subsequent model simply explains the

variability of the population with respect to the distance (typically a

mixture of data superimposition distance and of smoothness of the

underlying transformations) assumed by the registration criterion.

Among this last class of methods, the Mean Shape EM-ICP

(MS-EM-ICP) recently developed by Hufnagel and colleagues [4]

is based on the original EM-ICP developed by Granger and Pennec

[7] and more recently extended to handle non-linear deformations

efficiently [8]. This algorithm relies on a probabilistic modelling of

the point-to-point correspondences that allows i) a pragmatic defini-

tion of the superimposition of two point sets and ii) to work on a rela-

tively smooth cost function to minimise [7]. Moreover, this approach

is well-grounded (monotonic convergence), generic (no assumption

on tessellation/topology/number of points), can deal with large point

sets and can be easily improved in many ways (adding priors, ...).

However, only a few works have been dedicated to the investigation

of the ability to this approach to perform groupwise studies.

The purpose of this paper is to extend the previous work of Huf-

nagel and colleagues and show that the EM-ICP approach leads to

particularly simple and powerful solutions for groupwise studies. In

particular, its underlying probabilistic modelling allows to define

the mean shape of a given population and the projection of indi-

vidual pointwise information on the mean shape in a simple way.

In Section 2, we first introduce the mean shape EM-ICP (MS-EM-

ICP) algorithm as an extension of the classical Procrustean mean

to unlabelled point sets. From a population of point sets X =
{X1, . . . , XC}, the MS-EM-ICP allows to estimate both a mean

shape M and a “virtual” correspondent of each point of M in each

point set Xc. Then we identify some flaws of the MS-EM-ICP and

develop two alternative extensions of the MS-EM-ICP allowing to

tackle them. Finally, we show that these algorithms allow to per-

form statistical shape analysis (e.g. PCA) and to project individual

local characteristics (e.g. cortical thickness, asymmetry, curvature)

on the common reference M . In Section 3, we show how the previ-

ous tools can be used to perform a statistical analysis of asymmetries

over and between populations of anatomical structures. These tools

entirely rely on extensions of the EM-ICP algorithm. Finally, we

illustrate our methods on real applications for the shape analysis of

osseous labyrinths (Section 4.2) and the comparison global of corti-

cal asymmetry between two patients with situs inversus and a control

population (Section 4.3).

2. MEAN SHAPE AND VIRTUAL CORRESPONDENCES

TO THE MEAN SHAPE

In this section, we first present the mean shape EM-ICP (MS-EM-

ICP) algorithm (Section 2.1.2) as an extension of the Procrustean

mean to unlabelled point sets (Section 2.1.1). Then, we study its

limitations (Section 2.1.3) and we propose two extensions aiming at

tackling these limitations (Section 2.2.1 and Section 2.2.2). Finally,

we notice that the MS-EM-ICP algorithm outputs some quantities

allowing to compute virtual correspondences from each Xc to M
and to project efficiently pointwise information of each Xc to M
(Section 2.3).



2.1. Mean shape EM-ICP

2.1.1. Basics: labelled point sets

The Procrustean mean is a Fréchet mean for the space of labelled

point sets. This space is defined as the orbit space of the non-

coincident point set configurations under the action of the rigid-

body (or similarity) transformation. In other words, the shape of

an object is defined as the geometrical information that remains

when one filters out translation, rotation (and optionally scale).

The distance from a shape V 1 = {v1
1 , . . . , v1

N} to another shape

V 2 = {v2
1 , . . . , v2

N} is considered as the sum of the squared Eu-

clidean distances between each labelled point after an optimal rigid

(or rigid plus scale) alignment of the shapes. In case of rigid-body

alignment, this Procrustean distance writes:

d2(V 1, V 2) = min
T

X

i

||T (v1
i ) − v2

i ||
2, (1)

where T is a rigid-body transformation. This distance d allows the

definition of the Fréchet mean for d of a set of labelled point sets

V = {V 1, . . . , V C}:

M̃ = arg min
M

C
X

c=1

d2(M, V c). (2)

M̃ can be computed using the classical Procrustean superimposition

framework:

Init: choose an arbitrary reference point set V ref in V

Step 1: compute the optimal rigid body transformation T̃ c

for all c, T̃ c = arg minT c

P

i ||T
c(vc

i ) − vref
i ||2

Step 2: compute the optimal mean shape M̃

for all i, m̃i = 1
C

P

c T̃ c(vc
i )

Then the variability of the population around the mean can be

studied by analysing the residuals (V c − M) (e.g. using PCA).

2.1.2. Basics : unlabelled point sets

However, in practice, defining and labelling adequate points (land-

marks) characterising the surfaces of interest is often problematic.

To cope with this limitation, one can study unlabelled point sets rep-

resenting the surfaces under study. The classical Procrustean dis-

tance between two labelled point sets is what remains when the op-

timal superimposition has been applied, thus in order to extend this

approach to unlabelled point sets, we have to design a measure of

what remains when the optimal superimposition and the optimal la-

belling have been applied. The EM-ICP algorithm, designed as a

solution to a ML problem for a rigid-body transform T superposing

a point set T (X1) to its noised version X2, is a pragmatic and effi-

cient solution for this purpose. This ML estimation is performed by

an EM algorithm that amounts to the alternated minimisation of the

following criterion with respect to two unknowns T /A:

δ2(X1, X2) = min
A,T

X

x1
i
∈X1

X

x2
j
∈X2

Ai,j ||T (x1
i ) − x2

j ||
2

(3)

+2σ2
X

i,j

Ai,j log(Ai,j), with ∀i, j, Ai,j ≥ 0 and ∀j,
X

i

Ai,j = 1

where:

• A = (Ai,j) is the match matrix encoding the a posteriori

probabilities of correspondence between points of X1 and of

X2. This probabilistic interpretation of A is linked to the

presence of the barrier function
P

i,j Ai,j log(Ai,j) [3]. In

essence, the greater Ai,j , the more likely the point x1
i ∈ X1

to be the correspondent of the point x2
j ∈ X2. σ2 is the

Gaussian noise variance on X . This fuzzy control on the

correspondences allows to handle efficiently problems due to

differences of sampling/number of points: we do not look for

one-to-one correspondences between points of each shape but

instead for “fuzzy” correspondences linking each point of X2

to the surface represented by T (X1).

• T is a rigid-body (or rigid+scale) transformation superposing

X1 on X2.

Strictly speaking, this departure δ is not a distance as it satisfies

neither the symmetry constraint nor the triangle inequality. Note

that the symmetry constraint could be achieved by symmetrising the

criterion [8] but for a sake of clarity, we do not discuss this aspect

here.

Then, if we consider a set of C unlabelled point sets (of differ-

ent size) defining a population under study X = {X1, . . . , XC}

and M̃ = {m1, ..., mN} as the mean shape corresponding to the

population X (we consider the number of points N fixed), M̃ can

be written as:

M̃ = arg min
M

C
X

c=1

δ2(M, Xc) (4)

M̃ = arg min
M

C
X

c=1

min
Ac,T c

h

X

xc
i
∈Xc

X

mj∈M

Ac
i,j ||T

c(xc
i )−mj ||

2
(5)

+2σ2
X

xc
i
∈Xc,mj∈M

Ac
i,j log(Ac

i,j)
i

,

with ∀c, ∀j, ∀iAc
i,j ≥ 0, and ∀c, ∀j,

X

i

Ac
i,j = 1,

where:

• for all c, Ac = (Ac
i,j) is the match matrix linking Xc and M ,

• T c is either a rigid-body or a similarity transformation super-

posing Xc on M .

This formulation can be seen as an extension of the well-known

EM-ICP algorithm [7] and can be viewed as a ML problem mod-

elling M̃ as a noised version of T c(Xc) (∀c) that can be solved

using an EM algorithm. This EM algorithm writes:

Algo MS1: MS-EM-ICP

Init: M̃ is one of the point sets from X . ∀c, T̃ c = Id

Step 1: update Ãc

for all c, for all i, j, Ãc
i,j =

exp(−||T̃ c(xc
i )−m̃j ||

2/(2σ2))
P

k exp(−||T̃ c(xc
k
)−m̃j ||2/(2σ2))

Step 2: update T̃ c

for all c, T̃ c = arg minT c

P

i

P

j Ãc
i,j ||T

c(xc
i ) − m̃j ||

2

Step 3: update M̃

for all j,m̃j = 1
C

P

c

P

i Ãc
i,j T̃

c(xc
i )



As for the original EM-ICP algorithm, this algorithm is itera-

tive and decreases the value of the criterion (and increases the corre-

sponding likelihood function) until local convergence.

M̃ is typically initialised using a point set from X that appears

both of good quality (no hole, no segmentation artifacts) and a “typ-

ical” representative of X . Step 1 can be performed efficiently using

a kd-tree. When T is a rigid/similarity transformation Step 2 has a

closed-form solution. Step 3 is computationally tractable.

In this framework, one can interpret the mean shape as the one

for which the sum of “fuzzy residuals” Ãc
i,j ||T̃

c(xc
i ) − m̃j ||

2 sub-

ject to optimal transformations T̃ c and optimal match matrices Ãc

is minimal. In this sense, it extends the classical Procrustean mean.

Particularly, if we note ṽc
j =

P

i Ãi,j T̃
c(xc

i ) then m̃j = 1
C

P

c ṽc
j .

We call ṽc
j the “virtual correspondent” of mj in T̃ c(Xc); the term

“virtual” is coined because vc
j is not guaranteed to be in T̃ c(Xc).

The algorithm MS1 can then be simply rewritten as:

Step 1: update correspondences (ṽc
j )

for all c, compute T̃ c and Ãc

for all c, for all j, ṽc
j =

P

i Ãi,j T̃
c(xc

i )

Step 2: update M̃ :

for each j, m̃j = 1
C

P

c ṽc
j

For a better understanding of this process, one can regard it as:

M̃ = arg min
M,V

X

c

d2(M, V c(Xc, M)), (6)

where M and V c(., .) are labelled point sets with N points each and

d(, .) is the Procrustean distance described in Eq. 1. Each labelled

point set V c(Xc, M) = (ṽc
j ) (c ∈ [1, . . . , C]) is obtained from the

rigid (or rigid+scale) registration of Xc on M . Then the previous

algorithm can be described as i) the estimation of V c knowing the

population Xc and M and ii) the estimation of M knowing V c.

2.1.3. Limitations

This framework appears seductively simple: it naturally extends the

classical Procrustes mean shape while solving the correspondence

problem between the point sets under study, using all the points

of the surfaces, in a unified probabilistic framework, where a well-

defined likelihood criterion can be maximised using a 3-step iterative

algorithm.

However, it is deceptively attractive and inherently flawed. In

this framework, the point-to-point correspondences are computed

based on the implicit hypothesis that the point sets are identical up

to a rigid-body (or rigid+scale) transformation and a Gaussian noise.

As a consequence, the further the shape of the surfaces are differ-

ent from each other, the worse the correspondences. This is illus-

trated on Fig.1. In this case, the mean shape will then be computed

based on erroneous matches, and the subsequent analysis of variabil-

ity around this mean shape will be strongly biased. In other words,

this algorithm turns out to be useless when there is a high variability

within the set of point sets of interest.

To cope with this problem, following Hufnagel et al. [4], we

could replace the rigid-body/similarity transformations by more gen-

eral affine transformations. This improves the estimation of corre-

spondences, but with the deleterious effect of removing the poten-

tially relevant differences between the surfaces under study (such as

non-uniform scaling or stretching).

In the following, we propose to explore this idea further by im-

proving the previous definition of the mean shape by considering the

transformations T c (c ∈ [1, . . . , C]) as non-linear transformations

subject to regularisations L(T c). Interestingly, depending on the

way we interpret the original MS-EM-ICP criterion, this improve-

ment can lead to two different paradigms. These two paradigms are

equivalent when T c is a simple linear transformation but quite differ-

ent when dealing with non-linear deformations. In the two following

paragraphs, we discuss these two paradigms.

2.2. Handling non-linear transformations

2.2.1. First solution: adding penalised non-linear deformations in

δ

The natural solution to handle non-linear transformations consists in

replacing the linear transformation in Eq 3 by a non-linear transfor-

mation T subject to regularisation L:

δ2(X1, X2) = min
Ac,T c

X

xi∈X1

X

xj∈X2

Ai,j ||T (x1
i ) − x2

j ||
2

(7)

+ 2σ2
X

i,j

Ai,j log(Ai,j) + αL(T )

where α weighs the strength of the regularisation over the data at-

tachment term (including the barrier function
P

i,j Ai,j log(Ai,j)).

Roughly speaking, the subsequent mean shape M̃ is then defined as

the shape that minimises both the overall “mismatches”
P

xc
i
∈Xc

P

mj∈M Ac
i,j ||T

c(xc
i )−mj ||

2 and the deformation ener-

gies αL(T c) between each Xc and M̃ . The choice of the parameter

α and of L is crucial as it has a strong impact on the definition of

the mean shape and thus on the interpretation of the subsequent sta-

tistical model. Moreover, in order not to capture simple differences

of pose, orientation (and optionally scale) of the point set Xc in the

model, the regulariser L must not penalise rigid-body (or similarity)

transformations.

Similarly to the original MS-EM-ICP, this modified criterion can

be minimised by the following algorithm:

Algo MS2: non linear MS-EM-ICP

Step 1: update Ãc

for all c, for all i, j, Ãc
i,j =

exp(−||T̃ c(xc
i )−m̃j ||

2/(2σ2))
P

k exp(−||T̃ c(xc
k
)−m̃j ||2/(2σ2))

Step 2: update T̃ c:

for all c, T̃ c = arg minT c

P

i,j Ãc
i,j ||T

c(xc
i ) − m̃j ||

2 + αL(T c)

Step 3: update M̃ :

for all j, m̃j = 1
C

P

c

P

i Ãc
i,j T̃

c(xc
i )

Step 1 can be performed efficiently using a kd-tree. Step 2 can

be solved efficiently using the techniques we recently proposed in

the registration context [8]. This algorithm is quite close to the one

proposed by Chui and colleagues [3]. It mainly differs by the fact

that Chui and colleagues introduce a clustering task in Step 1 al-

lowing to reduce the size of matrices Ac and thus the computational

burden during Step 2. We think that our solution is more natural and

simpler than the one they propose.

2.2.2. Second solution: improving correspondence estimation using

non linear deformations

Although the previous solution provides a first proposition, it im-

portantly modifies the nature of the distance and thus the interpre-

tation of the estimated mean with respect to the initial Procrustean

point of view. Indeed, by modifying the deformation model as we

did in Section 2.2.1, one both affects i) the estimation of correspon-

dences and ii) the nature of the distance d considered as the sum of



X
1 (in dotted line)

T
1(X1) and M

T
1(X1) and M

mj

mj
mj

∑
i
A1

i,jT
1(xi)

=
∑

i
A1

i,jT
1
inv(xi)

T
1

inv
(X1) and M

T
1(X1) and M

mj

v1
j

=
∑

i
A1

i,jT
1(xi)

v
1

j

∑
i
A1

i,jT
1(xi)

and M (in solid line) with T
1 rigid

with T
1 non linear

Fig. 1. First row: Illustration of the classical MS-EM-ICP

(MS1). From left to right: i) the point set X1 and M , ii)

T (X1) and M (T 1 is a rigid-body transformation) and the re-

sulting matching
P

i A1
i,jT

1(xi) and iii) the resulting correspon-

dences v1
j =

P

i A1
i,jT

1(xi), Second row: Illustration of the

improved MS-EM-ICP (MS3). From left to right: i) T 1(X1)
on M (T 1 is a non-linear smooth transformation) and the result-

ing matching
P

i A1
i,jT

1(xi) and ii) the resulting correspondences

v1
j =

P

i A1
i,jT

1
inv(xi).

“mismatches”
P

xi∈Xc

P

mj∈M Ac
i,j ||T

c(xc
i ) − mj ||

2 and of the

deformation energies αL(T c) between each Xc and M̃ .

An alternative solution would consist in improving the es-

timation of the correspondences vc
j by introducing a non-linear

deformation linking M and Xc inside the criterion. However,

to preserve the spirit of the original Procrustean mean, the non-

linear deformations must affect only the estimation of the matrices

Ac not to change the nature of the shape space (that is defined

as an orbit space under the action of a simple rigid or similar-

ity transformation). This view results in the following algorithm:

Algo MS3: Improved Procrustean mean on unlabelled point sets

Step 1: update correspondences (ṽc
j ):

∀c, compute T̃ c and Ãc

∀c, compute T̃ c
inv as the rigid component of T̃ c

∀c, ∀j, compute ṽc
j =

P

i Ãc
i,j T̃

c
inv(xc

i )

Step 2: update M̃ :

for each j, m̃j = 1
C

P

c ṽc
j

Step 1 can be performed efficiently using the techniques pro-

posed in [8]. Step 2 is computationally tractable. This algorithm

can be seen as a generalisation of MS1 but we did not find any

proper criterion it minimises. However, we observe that the value
P

c d(M, V c(X, M))2 decreases throughout the iterations and that

the obtained mean shape fits well the data X . An illustration of this

strategy is given in the second row of Figure 1. By contrast with

MS2, this algorithm provides a mean that does not depend directly

on the regulariser L but on the quality of the correspondences ob-

tained during the registration process. As a result, we think that this

approach is less dependent on the design of L. On the other hand, by

explicitly taking into account the regularisation into δ, MS2 is more

suited to characterise large deformations linking a point set of the

population Xc to the mean.

2.2.3. Conclusion

When modelling T c as linear transformations (without penalisation),

the two developed algorithms MS2 and MS3 are equivalent. When

using non-linear transformations, the two algorithms describe two

different points of view. As of now, we did not investigate the re-

spective merits of both frameworks for the estimation of statistical

model and in the following, we choose to use the improved auto-

matic Procrustean mean (MS3) to perform mean shape estimation

and statistical shape analysis because of i) its simplicity of interpre-

tation as opposed to MS2 (largely depending on the choice of L/α)

and ii) the easiness of the underlying statistical analysis (that can

be performed from the virtual correspondence similarly to what is

done in the classical Procrustean framework). Finally, notice that

the estimations given by the algorithms MS1, MS2 and MS3 are ini-

tialisation dependent and thus provide biased means (contrary to the

classical Procrustean mean for labelled point sets). The sensitivity

to initialisation is a key property to investigate in future works.

2.3. Virtual correspondence & projection

As previously mentioned, the match matrices allow to compute the

“virtual” correspondent of each point of the mean shape M to each

point of the Xcs using the a posteriori probabilities of matching

encoded in Ac
i,j (∀c): vc

j =
P

i Ac
i,jT

c
invxc

i . In the following, we

assume that the point sets Xc are initially rigidly registered together

and thus that Tinv = Id and vc
j =

P

i Ac
i,jx

c
i .

Another interesting use of this a posteriori probability concerns

the projection of pointwise individual mapping on the mean shape

M . Consider that each point xc
i of Xc contains a scalar informa-

tion (e.g. cortical thickness, local asymmetry, curvature, ...) that we

call sXc

i . Then, the projection of SXc

= (sXc

i ) on M is given by

sXc→M
j =

P

i Ac
i,js

Xc

i . As ∀j,
P

i Ac
i,j = 1, the “interpolated”

value at mj is a weighted mean of the values at different points of

Xc. This last property will be useful below for the projection of

individual asymmetry maps on a reference template.

mj sXc
→M

j
=

∑
i

Ac
i,j

sXc

i

xc
i1
xc

i2 xc
i...

M

Xc

T c(Xc)
(and subsequent Ac)

M

Fig. 2. Projection of scalar information on the mean shape: From

left to right i) mean shape M and Xc. ii) M and T c(Xc) (computed

jointly with M ). iii) the subsequent correspondences (hot (resp.

cold) colors indicate high (resp. low) values for Ac
i,j) between each

point mj and points of Xc allow to compute the projected scalar

information at point mj of M .

3. QUANTIFICATION OF ASYMMETRIES

OVER/BETWEEN POPULATIONS

In this section, based on the previously described tools, we develop a

pipeline for the quantification of asymmetries over or between pop-

ulations. We consider that all the structures can be and are oriented



in a common orthogonal frame consisting of three axes that we call

anterior-posterior, left-right and head-foot.

3.1. Computation of individual asymmetry maps

Let Xc ∈ X be a point set representing an anatomical structure un-

der study. Its individual asymmetry maps are computed as follows:

1. computation of the approximate symmetry plane P of Xc us-

ing a modified EM-ICP algorithm [9].

2. computation of the asymmetry field as the deformation field

best superposing Xc and SP (Xc) using another modified

EM-ICP algorithm [8].

3. computation of the 3 individual asymmetry maps by pro-

jecting each pointwise vector of the asymmetry field on

the 3 coordinate axes. This allows to differentiate the

anterior-posterior, left-right and head-foot components of

the asymmetry field. This leads to 3 different scalar asym-

metry maps for each point set Xc. We call these asymmetry

maps SXc,AP , SXc,LR and SXc,HF .

3.2. Computation of a mean shape & projection of the asymme-

try mappings

We consider C point sets X1, . . . , XC representing the C structures

under study. Their individual asymmetry maps SXc,AP SXc,LR and

SXc,HF have to be put in a common geometry to be compared. For

this purpose, we use the algorithm MS3 described above to itera-

tively compute:

1. the point set M representing the mean shape,

2. the match matrices {A1, . . . , AC} (describing the fuzzy

point-to-point correspondences between the point sets Xc

and M ),

3. the transformations T c (best superposing the point sets Xc

and M ).

Once the mean point set M and the fuzzy match matrices

AC are computed, we project each individual (scalar) asymmetry

maps SXc,AP , SXc,LR and SXc,HF on M which provides the

normalised individual asymmetry maps SXi→AP , SXi→M,LR and

SXi→M,HF . As pointed out in Section 2.3, the mapping at point

mj ∈ M is defined as sXc→M,AP
j =

P

i Ac
ijs

Xc,AP
i (and similarly

for sXc→M,LR and sXc→M,HF ).

4. EXAMPLES OF APPLICATION

4.1. Implementation details

The transformation T is parametrised as a deformation field (i.e.

T (x) = x + t(x)). The regularisation L(T ) = L(t) is chosen

as a scalar Fourier based regulariser:

L(t = (t1, t2, t3)
T ) = L(t1) + L(t2) + L(f3),

with L(ti) =
1

(2π)3

Z ∞

−∞

|t∗i (ω)|2

φ∗(|ω|/b)
dω,

where ∗ is the Fourier transform operator, φ : IR → IR is an in-

tegrable function and b is a real positive rescaling factor. We choose

φ as a Wu kernel. The resulting algorithmic solutions are given in a

previous work [8].

The parameters are initialised as: α = 400, σ2 = 20 × S,

b = 250 × S where S is the size (in metres) of the object; α, σ2,

b are then decreased throughout the algorithm until they reach the

respective values of 20, 5 × S and 150 × S.

Finally, notice that we add a second match matrix B that is col-

umn stochastic in addition to the first match matrix A that is row

stochastic in the function δ (Eq. 3 and 7). This modification does not

change the general minimisation strategy and tends to make the for-

mulation of δ more symmetrical (particularly the matching process)

and to improve the estimation of correspondences between points.

We omitted these details in the previous sections for a sake of clar-

ity.

4.2. Shape analysis on osseous labyrinths

The shape analysis of the inner ear, and especially of the vestibular

system (composed of the three semicircular canals) could be relevant

to understand diseases such as adolescent idiopathic scoliosis, which

affects about 3% of children between 10 and 16 worldwide [10].

More generally, the morphometric analysis of the bony/osseous

labyrinth (that houses the membranous semicircular canals, the

vestibule and the cochlea) has been shown to be key to the establish-

ment of phylogenetic affinities between fossil hominids [11].

We segmented 15 osseous labyrinths of modern Homo sapiens

from CT images with amira.com, giving surfaces of about 30,000

points. We validated our non-linear registration method on osseous

labyrinths in a previous paper [8]. In Fig 3, we display the mean

and two principal modes of variations around the mean obtained

by analysing these 15 osseous labyrinths using MS3 and a principal

component analysis on the residuals (M − V c) (where V c are the

virtual correspondents of M with respect to point set Xc). These re-

sults illustrate the ability of our algorithm to work on large and very

convoluted structures with complicated topologies.

Fig. 3. Mean shape and first modes of variation on 15 osseous

labyrinths. The magnitude of the deformations around the mean

are mapped. The first mode of variation can be mainly interpreted

as a change of size and of position of the lateral semicircular canal.

The second mode of variation can be mainly interpreted as a change

of size of the posterior semicircular canal.



4.3. Global cerebral asymmetries of subjects with situs inversus

Subjects with situs inversus (SI) have the potential to provide unique

clues into the developmental mechanisms underlying the brain

anatomical asymmetry and its relationship with hemispheric dom-

inance for language. Situs inversus is a very rare condition where

all the visceral organs are on the opposite side of the body to where

they would be expected and as if they were reflected in a mirror.

Indeed, Kennedy [12] et al. report that the brain torque (re-

versed left-right differences in position and width of the frontal and

occipital lobes) is reversed in subjects with situs inversus and that

leftward anatomical asymmetry of language structures e.g. planum

temporale is present in situs inversus. Moreover, Kennedy et al.

suggest a left hemisphere functional dominance for language using

fMRI [12]. Therefore, structurally there seems to be preserved lo-

cal asymmetries of language-related structures in situs inversus but

reversed torque and reversed functional dominance for language.

4.3.1. Material

Subjects: Data were available for two right-handed male subjects

with situs inversus [12]. Both were aged 33 years. The control sub-

jects are eleven right-handed male volunteers, ranging in age from

24 to 42 years (mean 28 ± 4.8).

Preprocessing: For each subject’s MRI, the following pipeline was

applied. We first segmented grey matter and separated each hemi-

sphere (surfer.nmr.mgh.harvard.edu). The mesh was

smoothed to remove inter-subject variability arising from the gyri

and sulci using a technique similar to the one proposed in [13]. By

removing the gyri and the sulci, we concentrate our study on gross

brain asymmetries. Each generated mesh contains about 100K

points.

4.3.2. Results

Pointwise results: We computed the collection of C (× 3) scalar

normalised individual asymmetry maps SX1→M , . . . , SXC→M pro-

jected on a common mean mesh M . For each point of M and each

of the 3 components of the asymmetry field, we computed the mean

asymmetry and its standard deviation over the 11 subjects and we

performed a pointwise t-test with the null hypothesis H0: “There is

a perfect symmetry”. We corrected the obtained p-values for mul-

tiple comparisons using permutation tests. Then, we compared the

control and the SI populations by performing a pointwise permu-

tation test (H0: both SI subjects belong to the control population)

using the mean difference as a statistic (correcting p-values for mul-

tiple comparisons). In Figures 4 and 6, we display components of

the asymmetry field and views that appear the most significant. In

Figure 5, we display the asymmetry maps for one of the two SI pa-

tients.

Integrated results: For an easier interpretation of the results, we in-

tegrated the pointwise asymmetry values over the frontal and occip-

ital lobes of each of the subjects. Both lobes were extracted follow-

ing affine registration of the LONI LPBS40/SPM5 atlas [14] to each

subject of each of the subjects. Then for each subject, we computed

the average left-right ("width") and the posterior-anterior ("protru-

sion") components for both the frontal (F) and occipital (O) lobes.

To be even more synthetic, for each subject we noted the lobe (L or

R, i.e. left or right) that appears wider and that protrudes more than

its counterpart. When the difference in width or protrusion between

the hemispheres was low (< 10−1 mm), we noted 0 instead of L

or R. For both the width (L-R), protrusion (P-A) components of the

asymmetry field over the frontal and occipital lobes), we performed

a t-test with the null hypothesis H0: “There is a perfect symmetry”.

This integrated analysis was performed both on controls and SI sub-

jects (Table 1 and Table 2).

Fig. 4. Mean (first row) and p-value (second row) for each of

the 3 components of the asymmetry field (11 subjects). From left

to right: left-right, head-foot, posterior-anterior components of the

asymmetry field. Only the most significant view for each of the 3

tests is displayed (From left to right; posterior, above and posterior)

Fig. 5. Asymmetry maps obtained for one of the SI subject. We

display the same views and the same components as in Figure 4.

From left to right: left-right, head-foot, posterior-anterior compo-

nents of the asymmetry field.

Fig. 6. p-value of permutation test with H0: SI population and

control population are identical From left to right: left-right and

posterior-anterior components of the asymmetry field.

4.3.3. Interpretation

Control population: At the population level, and at the chosen sig-

nificance level (p=0.05, corrected for multiple comparisons) the left

occipital lobe appears to be wider (or bending towards the other side)

and protrudes more posteriously than the right occipital lobe (Fig. 4

and Table 1). This observation is in line with the literature. At last

and interestingly, we also find an area in the parietal lobe with a small

significant "vertical" (head-foot) asymmetry: the right side seems to

be "higher" compared to its counterpart (Fig. 4).



1 2 3 4 5 6 7 8 9 10 11 p

O protrusion L L L L R L L L L L 0 p<0.05

O width L L 0 L R L L L L L L p<0.05

F protrusion R R R R L R L R L L 0 p>0.05

F width R L 0 R R 0 L 0 L R L p>0.05

Table 1. Protrusion/width interhemispheric differences. We dis-

play these differences for the 11 subjects for occipital (O) and frontal

(F) lobe. More details in the core of the text.

- Subject 1 Subject 2 p

O protrusion R R p<0.05

O width L R p>0.05

F protrusion L L p<0.05

F width L L p<0.05

Table 2. Integrated values for the two SI subjects and p-value

(t-test) with H0: SI subjects belong to the control population.

SI population: The two SI subjects appear significantly different

from the control subjects in the frontal lobes for the left-right com-

ponent and in the occipital lobes for the antero-posterior component

(Fig 6). Right occipital lobes protrude more anteriorly than the left

in the two subjects, while it is the opposite in the frontal lobes. The

left frontal lobes are also wider than the right counterpart and bend

towards it. On the contrary, width measurements are different be-

tween the two subjects in the occipital lobes (Table 2). Interestingly,

both SI and controls show significant, but opposite, protrusion asym-

metries in the occipital lobes.

5. CONCLUSION

Our contributions are threefold. First, we analysed and extended

previous works allowing to build a mean shape by using an EM-ICP

variant. Second, we showed how the a posteriori probabilities of

correspondences (encoded in the match matrices) estimated by the

MS-EM-ICP algorithm allow to perform the statistical analysis of

bilateral asymmetries. Third, we showed on some real applications

that our improved automatic Procrustean mean (and subsequent sta-

tistical shape analysis) and our pipeline for asymmetry quantifica-

tion allow to deal efficiently with large structures. Both methodolo-

gies (shape and asymmetry analysis) can deal with numerous appli-

cations. In particular, a more practical study comparing the global

asymmetry of human and chimpanzee cortex is proposed in another

ISBI 2011 paper [13].

An important point of our methodology is that there is no need to

define a parametrisation on the surfaces to register, and no assump-

tion on their topology. Moreover, there is no need to have one-to-

one correspondences between the surfaces to register, which allows

to tackle the difference of sampling and the outliers in an efficient

way. As previously mentioned, the process proposed to study anal-

ysis can easily be modified to analyse other local patterns such as

cortical thickness, curvature, etc. Further works will mainly con-

sist in investigating the respective merits of MS2 and MS3 for the

estimation of statistical models and comparing them with existing

methods [2, 1, 5, 6].
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