A. Chawla, J. Repa, R. Evans, and D. Mangelsdorf, Nuclear receptors and lipid physiology: opening the X-files Nuclear receptors, inflammation, and neurodegenerative diseases, Bibliography Science. Adv. Immunol, vol.55483, issue.2, pp.1866-1870, 2001.

S. Lalevée, C. Ferry, and C. Rochette-egly, Phosphorylation control of nuclear receptors Recent developments in mass spectrometry-based quantitative phosphoproteomics The age of crosstalk: phosphorylation, ubiquitination, and beyond, Methods Mol. Biol. Biochem. Cell Biol, vol.2, pp.251-266, 2007.

V. Chandra, P. Huang, Y. Hamuro, S. Raghuram, Y. Wang et al., Structure of the intact PPAR-gamma-RXR-alpha nuclear receptor complex on DNA, Mol. Cell. Nature, vol.5, pp.730-738, 2008.

E. Keeton, K. Fertuck, G. Hall, Q. Wang, S. Bekiranov et al., Genome-wide analysis of estrogen receptor binding sites Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis, Nat. Genet, vol.11, pp.1289-1297, 2006.

H. Greschik and D. Moras, Structure-activity relationship of nuclear receptorligand interactions, Curr Top Med Chem, vol.14, pp.1573-1599, 2003.

M. Mahajan and H. Samuels, Nuclear Hormone Receptor Coregulator: Role in Hormone Action, Metabolism, Growth, and Development, Endocrine Reviews, vol.26, issue.4, pp.583-597, 1992.
DOI : 10.1210/er.2004-0012

P. Lefebvre, Y. Benomar, and B. Staels, Retinoid X receptors: common heterodimerization partners with distinct functions, Trends in Endocrinology & Metabolism, vol.21, issue.11, pp.676-683, 2010.
DOI : 10.1016/j.tem.2010.06.009

URL : https://hal.archives-ouvertes.fr/inserm-00521590

J. Dallongeville, D. Hum, F. Kuipers, and B. Staels, Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element, J, 2002.

K. Newhall, D. Cummings, M. Nolan, and G. Mcknight, Deletion of the, 2005.

T. Minor, S. Akbar, and R. Tolba, Preservation of livers from non???heart-beating donors: modulation of cAMP signal and organ viability by glucagon, Proc. 1-2, 1068.
DOI : 10.1016/S0041-1345(98)01907-1

K. Kamal, W. Du, I. Mills, B. Sumpio, E. Gonzalez et al., Antiproliferative effect of elevated glucose in human microvascular endothelial cells Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle, J. Cell. Biochem. Zdychová J & Komers R Physiol Res, vol.418, issue.16, pp.491-501, 1998.

J. Krycer, L. Sharpe, W. Luu, and A. Brown, The Akt???SREBP nexus: cell signaling meets lipid metabolism, Trends in Endocrinology & Metabolism, vol.21, issue.5, pp.268-276, 2010.
DOI : 10.1016/j.tem.2010.01.001

C. Rondinone, E. Carvalho, C. Wesslau, and U. Smith, Impaired glucose transport and protein kinase B activation by insulin, but not okadaic acid, in adipocytes from subjects with Type II diabetes mellitus, Diabetologia, vol.42, issue.7, pp.819-825, 1999.
DOI : 10.1007/s001250051232

J. Zierath, Improved glucose tolerance restores insulin-stimulated Akt kinase activity and glucose transport in skeletal muscle from diabetic Goto-Kakizaki rats, Diabetes, vol.12, pp.2110-2114, 1997.

S. Park, J. Ryu, and W. Lee, O-Glcnac modification on IRS-1 and Akt2 by, 2005.

M. Kunkel, Q. Ni, R. Tsien, J. Zhang, and A. Newton, Spatio-temporal Dynamics of Protein Kinase B/Akt Signaling Revealed by a Genetically Encoded Fluorescent Reporter, Journal of Biological Chemistry, vol.280, issue.7, pp.5581-5587, 2005.
DOI : 10.1074/jbc.M411534200

K. Becker and Y. Hannun, Protein kinase C and phospholipase D: intimate interactions in intracellular signaling, Cellular and Molecular Life Sciences, vol.62, issue.13, pp.1448-1461, 2005.
DOI : 10.1007/s00018-005-4531-7

L. Gallegos, M. Kunkel, and A. Newton, Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonistdependent signaling, J. Biol. Chem, vol.41, pp.30947-30956, 2006.

R. Gopalakrishna and S. Jaken, Protein kinase C signaling and oxidative stress, Free Radical Biology and Medicine, vol.28, issue.9, 2000.
DOI : 10.1016/S0891-5849(00)00221-5

P. Lefebvre, B. Cariou, L. F. Kuipers, F. Staels, and B. , Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation, Physiological Reviews, vol.89, issue.1, pp.147-191, 2009.
DOI : 10.1152/physrev.00010.2008

S. Devaraj, S. Venugopal, U. Singh, and I. Jialal, Hyperglycemia induces monocytic release of interleukin-6 via induction of protein kinase C-{alpha} and -{beta}, 2005.

F. Beguinot and P. Formisano, Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization, J. Biol, 2007.

P. Geraldes and G. King, Activation of Protein Kinase C Isoforms and Its Impact on Diabetic Complications, Circulation Research, vol.106, issue.8, pp.1319-1331, 2010.
DOI : 10.1161/CIRCRESAHA.110.217117

D. Porte and M. Schwartz, Diabetes Complications--Why Is Glucose Potentially Toxic?, Science, vol.272, issue.5262, pp.699-700, 1996.
DOI : 10.1126/science.272.5262.699

E. Kim and E. Choi, Pathological roles of MAPK signaling pathways in human diseases, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1802, issue.4, pp.396-405, 2010.
DOI : 10.1016/j.bbadis.2009.12.009

URL : https://hal.archives-ouvertes.fr/hal-00566733

H. Gehart, S. Kumpf, A. Ittner, and R. Ricci, MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep, pp.834-840, 2010.

N. Ikematsu, H. Jordan, B. Barr, J. Rafferty, and O. Ogunbayo, Ion channel regulation by AMPK: the route of hypoxia-response coupling in the carotid body and pulmonary artery, 2009.

I. Leclerc and G. Rutter, AMP-Activated Protein Kinase: A New Beta-Cell Glucose Sensor?: Regulation by Amino Acids and Calcium Ions, Diabetes, vol.53, issue.Supplement 3, pp.67-74, 2004.
DOI : 10.2337/diabetes.53.suppl_3.S67

J. Wang, L. Yin, and M. Lazar, The orphan nuclear receptor Rev-erb alpha regulates circadian expression of plasminogen activator inhibitor type 1, J. Biol. Chem, vol.45, pp.33842-33848, 2006.

D. Hardie, Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease, FEBS Letters, vol.3, issue.1, pp.81-89, 2008.
DOI : 10.1016/j.febslet.2007.11.018

B. Zhang, G. Zhou, and C. Li, AMPK: An Emerging Drug Target for Diabetes and the Metabolic Syndrome, Cell Metabolism, vol.9, issue.5, pp.407-416, 2009.
DOI : 10.1016/j.cmet.2009.03.012

T. Terashima and D. Hardie, A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias, Curr. Biol, vol.10, pp.861-866, 2003.

G. Steinberg and B. Kemp, AMPK in Health and Disease, Physiological Reviews, vol.89, issue.3, pp.1025-1078, 2009.
DOI : 10.1152/physrev.00011.2008

E. Donahue, L. Swift, M. Charron, and D. Wasserman, Glucagon and lipid interactions in the regulation of hepatic AMPK signaling and expression of PPARalpha and FGF21 transcripts in vivo, Am. J. Physiol. Endocrinol. Metab, vol.4, pp.607-621, 2010.

S. Mcgee and M. Hargreaves, AMPK-mediated regulation of transcription in skeletal muscle, Clinical Science, vol.281, issue.8, pp.507-518, 2010.
DOI : 10.1016/S0092-8674(01)00524-4

E. Richter and N. Ruderman, AMPK and the biochemistry of exercise: implications for human health and disease, Biochemical Journal, vol.418, issue.2, pp.261-275, 2009.
DOI : 10.1042/BJ20082055

E. Ter-haar, J. Coll, D. Austen, H. Hsiao, L. Swenson et al., Structure of GSK3beta reveals a primed phosphorylation mechanism Multisite phosphorylation of glycogen synthase, Nat. Struct. Biol. Woodgett JR & Cohen P, vol.749, pp.593-596, 1984.

S. Frame and P. Cohen, GSK3 takes centre stage more than 20 years after its discovery, Biochemical Journal, vol.359, issue.1, pp.1-16, 2001.
DOI : 10.1042/bj3590001

R. Jope and G. Johnson, The glamour and gloom of glycogen synthase kinase-3, Trends in Biochemical Sciences, vol.29, issue.2, pp.95-102, 2004.
DOI : 10.1016/j.tibs.2003.12.004

S. Hardt and J. Sadoshima, Glycogen Synthase Kinase-3beta: A Novel Regulator of Cardiac Hypertrophy and Development, Circulation Research, vol.90, issue.10, pp.1055-1063, 2002.
DOI : 10.1161/01.RES.0000018952.70505.F1

S. Harrison, Modulation of muscle insulin resistance by selective inhibition of GSK-3, 2003.

D. Ring, K. Johnson, E. Henriksen, and J. Nuss, in Zucker diabetic fatty rats, Am. J. Physiol. Endocrinol. Metab, vol.554, pp.892-900

J. Samuels, I. Slabiak, T. Wagman, A. Hammond, M. Harrison et al., Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo, Diabetes, vol.3, pp.588-595, 2003.

C. Dreyer, G. Krey, H. Keller, F. Givel, G. Helftenbein et al., Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors, Cell, vol.5, pp.879-887, 1992.

P. Lefebvre, G. Chinetti, J. Fruchart, and B. Staels, Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis Emerging roles of PPAR delta in metabolism, J. Clin. Invest, vol.3, pp.571-580, 2006.

A. Sharma and B. Staels, Review: peroxisome proliferator-activated receptor gamma and adipose tissue--understanding obesity-related changes in regulation of lipid and glucose metabolism, J. Clin. Endocrinol. Metab, vol.2, pp.386-395, 2007.

C. Blanquart, R. Mansouri, R. Paumelle, J. Fruchart, B. Staels et al., The protein kinase C signaling pathway regulates a molecular switch between transactivation and transrepression activity of the peroxisome proliferator-activated receptor alpha, 2004.

J. Gray, K. Burns, and T. Leas, Peroxisome proliferator-activated receptors: a critical link among fatty acids, gene expression and carcinogenesis Regulation of peroxisome proliferator-activated receptor alpha by protein kinase C, J. Nutr. Perdew GH & Vanden Heuvel JP Biochemistry, vol.2, issue.30, pp.10313-10321, 1999.

J. Fruchart, D. Dombrowicz, C. Glineur, and B. Staels, Acute anti-inflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the protein kinase C signaling pathway, Circ. Res, vol.3, pp.361-369, 2006.

G. Lazennec, L. Canaple, D. Saugy, and W. Wahli, Activation of Peroxisome Proliferator-Activated Receptors (PPARs) by Their Ligands and Protein Kinase A Activators, Molecular Endocrinology, vol.14, issue.12, 2000.
DOI : 10.1210/mend.14.12.0575

URL : https://hal.archives-ouvertes.fr/inserm-00153813

J. Duncan, K. Bharadwaj, J. Fong, R. Mitra, N. Sambandam et al., Rescue of cardiomyopathy in peroxisome proliferatoractivated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-alpha activators, Circulation, vol.3, pp.426-435, 2010.

P. Barger, A. Browning, A. Garner, and D. Kelly, p38 Mitogen-activated Protein Kinase Activates Peroxisome Proliferator-activated Receptor alpha . A POTENTIAL ROLE IN THE CARDIAC METABOLIC STRESS RESPONSE, Journal of Biological Chemistry, vol.276, issue.48, pp.44495-44501, 2001.
DOI : 10.1074/jbc.M105945200

M. Yoon, G. Lee, J. Chung, Y. Ahn, S. Hong et al., Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMPactivated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferatoractivated receptor alpha, Diabetes, vol.9, pp.2562-2570, 2006.

A. Burger and C. Meier, Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent transactivating domain, J. Biol. Chem, vol.15, pp.10505-10510, 1999.

M. Bronner, R. Hertz, and J. Bar-tana, Comprehensive analysis of gene expression in rat and human hepatoma cells exposed to the peroxisome proliferator WY14,643 Kinase-independent transcriptional coactivation of peroxisome proliferator-activated receptor alpha by AMP-activated protein kinase, MJ Toxicol. Appl. Pharmacol. Biochem. J. Pt, vol.3, issue.2, pp.185-198, 2003.

H. Yuan, C. Wang, N. Pattabiraman, M. Rao, R. Pestell et al., 3- phosphoinositide-dependent protein kinase-1 activates the peroxisome proliferator-activated receptor-gamma and promotes adipocyte differentiation Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha, Mol. Endocrinol, vol.2, pp.268-278, 2006.

E. Joly, R. Roduit, M. Peyot, S. Habinowski, N. Ruderman et al., Glucose represses PPAR? gene expression via AMP-activated protein kinase but not via p38 mitogen-activated protein kinase in the pancreatic ?-cell Glucose-induced repression of PPARalpha gene expression in pancreatic beta-cells involves PP2a activation and AMPK inactivation, J Diabetes. J. Mol. Endocrinol, vol.4, issue.2, pp.263-272, 2006.

E. Hu, J. Kim, P. Sarraf, and B. Spiegelman, Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma, Science, vol.5295, pp.2100-2103, 1996.

P. Fuentes, M. Acuña, M. Cifuentes, and C. Rojas, The anti-adipogenic effect of angiotensin II on human preadipose cells involves ERK1,2 activation and PPARG phosphorylation, Journal of Endocrinology, vol.206, issue.1, pp.75-83, 2010.
DOI : 10.1677/JOE-10-0049

Z. Floyd and J. Stephens, Interferon-gamma-mediated activation and ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes, J. Biol. Chem, vol.6, pp.4062-4068, 2002.

M. Adams, M. Reginato, D. Shao, M. Lazar, and V. Chatterjee, Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site, J. Biol. Chem, vol.8, pp.5128-5132, 1997.

E. Burgermeister, D. Chuderland, T. Hanoch, M. Meyer, M. Liscovitch et al., Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor gamma, Mol. Cell. Biol, vol.3, pp.803-817, 2007.

H. Camp, S. Tafuri, and T. Leff, C-jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-gamma1 and negatively regulates its transcriptional activity, Endocrinology, vol.1, pp.392-397, 1999.
DOI : 10.1210/endo.140.1.6457

E. Spicer, DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies, Proc. Natl. Acad. Sci. U.S.A, vol.6, pp.2417-2421, 1991.

J. Choi, A. Banks, J. Estall, S. Kajimura, P. Boström et al., Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by CDK5 Casein-kinase-IIdependent phosphorylation of PPARgamma provokes CRM1-mediated shuttling of PPARgamma from the nucleus to the cytosol Identification of a nuclear receptor that is activated by farnesol metabolites, Nature. J. Cell. Sci. Cell, vol.73058788, issue.5, pp.451-456, 1995.

K. Mangelsdorf, D. Shan, and B. , Identification of a nuclear receptor for bile acids, 1999.

J. Willson, T. Zavacki, A. Moore, D. Lehmann, and J. , Bile acids: natural ligands for an orphan nuclear receptor, Science, vol.5418, pp.1365-1368, 1999.

H. Bowman, M. Ferrer, J. Anisfeld, A. Edwards, P. Rosenfeld et al., A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR, Mol. Cell, vol.4, pp.1079-1092, 2003.

C. Kaiser, M. Albers, Z. Cheruvallath, D. Jackson, G. Casari et al., Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol, Mol. Cell. Biol, vol.3, pp.864-872, 2003.

J. Fruchart and B. Staels, Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity, Mol. Endocrinol, vol.11, pp.2433-2447, 2008.

T. Frankenberg, T. Miloh, F. Chen, M. Ananthanarayanan, A. Sun et al., The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor, Hepatology, vol.48, issue.pt 2, pp.1896-1905, 2008.
DOI : 10.1002/hep.22431

T. Fournier, N. Mitro, P. Mak, L. Vargas, C. Godio et al., Lipids from oxidized low-density lipoprotein modulate human trophoblast invasion: involvement of nuclear liver X receptors The nuclear receptor LXR is a glucose sensor, Endocrinology. Nature, vol.1097, issue.7124, pp.4583-4591, 2004.

P. Denechaud, P. Bossard, J. Lobaccaro, L. Millatt, B. Staels et al., ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver, Journal of Clinical Investigation, vol.3, pp.956-964, 2008.
DOI : 10.1172/JCI34314

M. Oosterveer, A. Grefhorst, A. Groen, and F. Kuipers, The liver X receptor: control of cellular lipid homeostasis and beyond implications for drug design, Prog. Lipid Res, vol.4, pp.343-352, 2010.

C. Delvecchio and J. Capone, Protein kinase C alpha modulates liver X receptor alpha transactivation, J. Endocrinol, vol.1, pp.121-130, 2008.
DOI : 10.1677/joe-07-0525

T. Yamamoto, H. Shimano, N. Inoue, Y. Nakagawa, T. Matsuzaka et al., Protein Kinase A Suppresses Sterol Regulatory Element-binding Protein-1C Expression via Phosphorylation of Liver X Receptor in the Liver, Journal of Biological Chemistry, vol.282, issue.16, pp.11687-11695, 2007.
DOI : 10.1074/jbc.M611911200

M. Chen, M. Bradley, S. Beaven, and P. Tontonoz, Phosphorylation of the liver X receptors, FEBS Letters, vol.14, issue.20, pp.4835-4841, 2006.
DOI : 10.1016/j.febslet.2006.07.074

I. Torra, N. Ismaili, J. Feig, C. Xu, C. Cavasotto et al., Phosphorylation of liver X receptor alpha selectively regulates target gene expression in macrophages, Mol. Cell. Biol, vol.8, pp.2626-2636, 2008.

Y. Zhao and D. Bruemmer, NR4A orphan nuclear receptors in cardiovascular biology, Drug Discovery Today: Disease Mechanisms, vol.6, issue.1-4, pp.1-4, 2009.
DOI : 10.1016/j.ddmec.2009.06.001

S. Lee, R. Wesselschmidt, G. Linette, O. Kanagawa, J. Russell et al., Unimpaired thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B (Nur77), Science, vol.269, issue.5223, pp.532-535, 1995.
DOI : 10.1126/science.7624775

T. Pols, R. Ottenhoff, M. Vos, J. Levels, P. Quax et al., Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity, Biochemical and Biophysical Research Communications, vol.366, issue.4, pp.910-916, 2008.
DOI : 10.1016/j.bbrc.2007.12.039

I. Davis, T. Hazel, R. Chen, J. Blenis, and L. Lau, Functional domains and phosphorylation of the orphan receptor Nur77, Mol. Endocrinol, vol.8, pp.953-964, 1993.

T. Hazel, R. Misra, I. Davis, M. Greenberg, and L. Lau, Nur77 is differentially modified in PC12 cells upon membrane depolarization and growth factor treatment., Molecular and Cellular Biology, vol.11, issue.6, 1991.
DOI : 10.1128/MCB.11.6.3239

Y. Katagiri, Y. Hirata, J. Milbrandt, and G. Guroff, Differential Regulation of the Transcriptional Activity of the Orphan Nuclear Receptor NGFI-B by Membrane Depolarization and Nerve Growth Factor, Journal of Biological Chemistry, vol.272, issue.50, pp.31278-31284, 1997.
DOI : 10.1074/jbc.272.50.31278

N. Masuyama, K. Oishi, Y. Mori, T. Ueno, Y. Takahama et al., Akt Inhibits the Orphan Nuclear Receptor Nur77 and T-cell Apoptosis, Journal of Biological Chemistry, vol.276, issue.35, pp.32799-32805, 2001.
DOI : 10.1074/jbc.M105431200

J. Letofsky and C. Croce, Akt phosphorylates and regulates the orphan nuclear receptor Nur77, Proc. Natl. Acad. Sci. U.S.A, vol.7, pp.3690-3694, 2001.

Y. Han, X. Cao, B. Lin, F. Lin, S. Kolluri et al., Regulation of Nur77 nuclear export by c-Jun N-terminal kinase and Akt, Oncogene, vol.274, issue.21, pp.2974-2986, 2006.
DOI : 10.1038/sj.onc.1209358

A. Wingate, D. Campbell, M. Peggie, and J. Arthur, Nur77 is phosphorylated in cells by RSK in response to mitogenic stimulation, Biochemical Journal, vol.393, issue.3, pp.715-724, 2006.
DOI : 10.1042/BJ20050967

M. Maira, C. Martens, E. Batsché, Y. Gauthier, and J. Drouin, Dimer-Specific Potentiation of NGFI-B (Nur77) Transcriptional Activity by the Protein Kinase A Pathway and AF-1-Dependent Coactivator Recruitment, Molecular and Cellular Biology, vol.23, issue.3, pp.763-776, 2003.
DOI : 10.1128/MCB.23.3.763-776.2003

D. Kovalovsky, D. Refojo, A. Liberman, D. Hochbaum, M. Pereda et al., Activation and Induction of NUR77/NURR1 in Corticotrophs by CRH/cAMP: Involvement of Calcium, Protein Kinase A, and MAPK Pathways, Molecular Endocrinology, vol.16, issue.7, 2002.
DOI : 10.1210/mend.16.7.0863

D. Shih and M. Stoffel, Molecular etiologies of mody and other early-onset forms of diabetes, Current Diabetes Reports, vol.22, issue.suppl 1, pp.125-134, 2002.
DOI : 10.1007/s11892-002-0071-9

F. Sladek, Identification of an endogenous ligand bound to a native orphan nuclear receptor, PLoS ONE, vol.5, p.5609, 2009.

A. Stegmann, M. Hansen, Y. Wang, J. Larsen, L. Lund et al., Metabolome, transcriptome, and bioinformatic cis-element analyses point to HNF-4 as a central regulator of gene expression during enterocyte differentiation, Physiological Genomics, vol.27, issue.2, pp.141-155, 2006.
DOI : 10.1152/physiolgenomics.00314.2005

B. Viollet, A. Kahn, and M. Raymondjean, Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4., Molecular and Cellular Biology, vol.17, issue.8, 1997.
DOI : 10.1128/MCB.17.8.4208

M. You, M. Fischer, W. Cho, and D. Crabb, Transcriptional Control of the Human Aldehyde Dehydrogenase 2 Promoter by Hepatocyte Nuclear Factor 4: Inhibition by Cyclic AMP and COUP Transcription Factors, Archives of Biochemistry and Biophysics, vol.398, issue.1, pp.79-86, 2002.
DOI : 10.1006/abbi.2001.2713

A. Fukamizu, Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor, J. Biol. Chem, vol.15, pp.13056-13060, 2003.

A. Jetten, S. Kurebayashi, and E. Ueda, The ROR nuclear orphan receptor subfamily: Critical regulators of multiple biological processes, Prog. Nucleic Acid Res. Mol. Biol, pp.205-247, 2001.
DOI : 10.1016/S0079-6603(01)69048-2

M. Teboul, A. Gréchez-cassiau, F. Guillaumond, and F. Delaunay, How nuclear receptors tell time, Journal of Applied Physiology, vol.107, issue.6, pp.1965-1971, 2009.
DOI : 10.1152/japplphysiol.00515.2009

S. Laitinen and B. Staels, Potential roles of ROR-alpha in cardiovascular endocrinology, Nuclear Receptor Signaling, vol.1, p.11, 2003.
DOI : 10.1621/nrs.01011

D. Steinhilber, Extracellular signal-regulated kinase-2 phosphorylates RORalpha4 in vitro, Biochem. Biophys. Res. Commun, vol.3, pp.890-896, 2007.

M. Akashi and E. Nishida, Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock, Genes Dev, vol.6, pp.645-649, 2000.

T. Burris, Nuclear Hormone Receptors for Heme: REV-ERB?? and REV-ERB?? Are Ligand-Regulated Components of the Mammalian Clock, Molecular Endocrinology, vol.22, issue.7, pp.1509-1520, 2008.
DOI : 10.1210/me.2007-0519

L. Yin, J. Wang, P. Klein, and M. Lazar, Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock, Science, vol.5763, pp.1002-1005, 2006.

R. Geiss-friedlander and F. Melchior, Concepts in sumoylation: a decade on, Nature Reviews Molecular Cell Biology, vol.1773, issue.12, 2007.
DOI : 10.1038/nrm2293

E. Johnson, Protein Modification by SUMO, Annual Review of Biochemistry, vol.73, issue.1, pp.355-382, 2004.
DOI : 10.1146/annurev.biochem.73.011303.074118

A. Capili and C. Lima, Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways, Current Opinion in Structural Biology, vol.17, issue.6, 2007.
DOI : 10.1016/j.sbi.2007.08.018

O. Kerscher, R. Felberbaum, and M. Hochstrasser, Modification of Proteins by Ubiquitin and Ubiquitin-Like Proteins, Annual Review of Cell and Developmental Biology, vol.22, issue.1, pp.159-180, 2006.
DOI : 10.1146/annurev.cellbio.22.010605.093503

D. Mukhopadhyay and M. Dasso, Modification in reverse: the SUMO proteases, Trends in Biochemical Sciences, vol.32, issue.6, 2007.
DOI : 10.1016/j.tibs.2007.05.002

L. Sistonen, Pdsm, a motif for phosphorylation-dependent SUMO modification, Proc, 2006.

S. Yang, A. Galanis, J. Witty, and A. Sharrocks, An extended consensus motif enhances the specificity of substrate modification by SUMO, The EMBO Journal, vol.579, issue.21, pp.5083-5093, 2006.
DOI : 10.1038/sj.emboj.7601383

E. Hwang, J. Lee, J. Jeong, J. Park, Y. Yang et al., SUMOylation of RORalpha potentiates transcriptional activation function, Biochem. Biophys. Res. Commun, vol.3, pp.513-517, 2009.

G. Pascual, A. Fong, S. Ogawa, A. Gamliel, A. Li et al., A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma, Nature, vol.7059, pp.759-763, 2005.

E. Treuter and N. Venteclef, Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1812, issue.8, 2011.
DOI : 10.1016/j.bbadis.2010.12.008

Z. Floyd and J. Stephens, Control of peroxisome proliferator-activated receptor gamma2 stability and activity by SUMOylation, Obes. Res, vol.6, pp.921-928, 2004.

M. Shimizu, D. Yamashita, T. Yamaguchi, F. Hirose, and T. Osumi, Aspects of the regulatory mechanisms of PPAR functions: Analysis of a bidirectional response element and regulation by sumoylation, Molecular and Cellular Biochemistry, vol.175, issue.1-2, pp.1-2, 2006.
DOI : 10.1007/s11010-005-9052-z

D. Yamashita, T. Yamaguchi, M. Shimizu, N. Nakata, F. Hirose et al., The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain, Genes Cells, vol.11, pp.1017-1029, 2004.

E. Vu, R. Kraus, and J. Mertz, Phosphorylation-dependent SUMOylation of estrogen-related receptor alpha1, Biochemistry, vol.34, pp.9795-9804, 2007.

M. Hentschke, U. Süsens, and U. Borgmeyer, Transcriptional ERRgamma2- mediated activation is regulated by sentrin-specific proteases, Biochem. J, vol.1, pp.167-176, 2009.
DOI : 10.1042/bj20081556

URL : http://hdl.handle.net/2262/45296

A. Santner and M. Estelle, The ubiquitin-proteasome system regulates plant hormone signaling, The Plant Journal, vol.416, issue.6, pp.1029-1040, 2010.
DOI : 10.1111/j.1365-313X.2010.04112.x

L. Daviet and F. Colland, Targeting ubiquitin specific proteases for drug discovery, Biochimie, vol.90, issue.2, pp.270-283, 2008.
DOI : 10.1016/j.biochi.2007.09.013

C. Scheidereit, IkappaB kinase complexes: gateways to NF-kappaB activation and transcription, Oncogene, vol.51, pp.6685-6705, 2006.
DOI : 10.1038/sj.onc.1209934

K. Haglund and I. Dikic, Ubiquitylation and cell signaling, The EMBO Journal, vol.427, issue.19, pp.3353-3359, 2005.
DOI : 10.1038/sj.emboj.7600808

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1276169

D. Love and J. Hanover, The Hexosamine Signaling Pathway: Deciphering the "O-GlcNAc Code", Science Signaling, vol.2005, issue.312, pp.312-325, 2005.
DOI : 10.1126/stke.3122005re13

Q. Zeidan and G. Hart, The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways, Journal of Cell Science, vol.123, issue.1, pp.13-22, 2010.
DOI : 10.1242/jcs.053678

C. Guinez, A. Mir, V. Dehennaut, R. Cacan, A. Harduin-lepers et al., Protein ubiquitination is modulated by O-GlcNAc glycosylation, The FASEB Journal, vol.22, issue.8, pp.2901-2911, 2008.
DOI : 10.1096/fj.07-102509

URL : https://hal.archives-ouvertes.fr/hal-00318447

X. Cheng and G. Hart, Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity, J. Biol. Chem, vol.13, pp.10570-10575, 2001.

X. Cheng, R. Cole, J. Zaia, and G. Hart, Alternative O-glycosylation/Ophosphorylation of the murine estrogen receptor beta, Biochemistry, vol.38, pp.11609-11620, 2000.

E. Anthonisen, L. Berven, S. Holm, M. Nygård, H. Nebb et al., Nuclear Receptor Liver X Receptor Is O-GlcNAc-modified in Response to Glucose, Journal of Biological Chemistry, vol.285, issue.3, 2010.
DOI : 10.1074/jbc.M109.082685

K. Burns and J. Heuvel, Modulation of PPAR activity via phosphorylation, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1771, issue.8, pp.952-960, 2007.
DOI : 10.1016/j.bbalip.2007.04.018

S. Han, D. Lonard, and B. Malley, Multi-modulation of nuclear receptor coactivators through posttranslational modifications, Trends in Endocrinology & Metabolism, vol.20, issue.1, pp.8-15, 2009.
DOI : 10.1016/j.tem.2008.10.001

M. Rosenfeld, V. Lunyak, and C. Glass, Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response, Genes & Development, vol.20, issue.11, pp.1405-1428, 2006.
DOI : 10.1101/gad.1424806