AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila. - Archive ouverte HAL Access content directly
Journal Articles Molecular Biology of the Cell Year : 2011

AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila.

(1, 2) , (2, 1) , (2, 1) , (3) , (4) , (2) , (2, 1) , (5) , (4) , (6) , (2, 1)
1
2
3
4
5
6

Abstract

Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing "glue granules" that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1- and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules.

Dates and versions

inserm-00586827 , version 1 (18-04-2011)

Identifiers

Cite

Jason Burgess, Miluska Jauregui, Julie Tan, Janet Rollins, Sylvie Lallet, et al.. AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila.. Molecular Biology of the Cell, 2011, 22 (12), pp.2094-105. ⟨10.1091/mbc.E11-01-0054⟩. ⟨inserm-00586827⟩
213 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More