J. Kendrew, G. Bodo, H. Dintzis, R. Parrish, and H. Wyckoff, A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis, Nature, vol.178, issue.4610, pp.662-666, 1958.
DOI : 10.1002/hlca.19490320118

L. Pauling and R. Corey, TWO HYDROGEN-BONDED SPIRAL CONFIGURATIONS OF THE POLYPEPTIDE CHAIN, Journal of the American Chemical Society, vol.72, issue.11, p.5349, 1950.
DOI : 10.1021/ja01167a545

D. Eisenberg, The discovery of the ??-helix and ??-sheet, the principal structural features of proteins, Proceedings of the National Academy of Sciences, vol.100, issue.20, pp.11207-11210, 2003.
DOI : 10.1073/pnas.2034522100

L. Pauling, R. Corey, and H. Branson, The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain, Proceedings of the National Academy of Sciences, vol.37, issue.4, pp.205-211, 1951.
DOI : 10.1073/pnas.37.4.205

L. Pauling and R. Corey, The Pleated Sheet, A New Layer Configuration of Polypeptide Chains, Proceedings of the National Academy of Sciences, vol.37, issue.5, pp.251-256, 1951.
DOI : 10.1073/pnas.37.5.251

H. Berman, J. Westbrook, Z. Feng, G. Gilliland, and T. Bhat, The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

M. Bansal, S. Kumar, and R. Velavan, HELANAL: A Program to Characterize Helix Geometry in Proteins, Journal of Biomolecular Structure and Dynamics, vol.31, issue.5, pp.811-819, 2000.
DOI : 10.1107/S0021889891004399

J. Martin, G. Letellier, A. Marin, J. Taly, and A. De-brevern, Protein secondary structure assignment revisited: a detailed analysis of different assignment methods, BMC Structural Biology, vol.5, issue.1, p.17, 2005.
DOI : 10.1186/1472-6807-5-17

URL : https://hal.archives-ouvertes.fr/inserm-00090199

A. Chan, E. Hutchinson, D. Harris, and J. Thornton, Identification, classification, and analysis of beta-bulges in proteins, Protein Science, vol.170, issue.10, pp.1574-1590, 1993.
DOI : 10.1002/pro.5560021004

J. Richardson, E. Getzoff, and D. Richardson, The beta bulge: a common small unit of nonrepetitive protein structure., Proceedings of the National Academy of Sciences, vol.75, issue.6, pp.2574-2578, 1978.
DOI : 10.1073/pnas.75.6.2574

C. Venkatachalam, Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units, Biopolymers, vol.1, issue.10, pp.1425-1436, 1968.
DOI : 10.1002/bip.1968.360061006

J. Richardson, The Anatomy and Taxonomy of Protein Structure, Adv Protein Chem, vol.34, pp.167-339, 1981.
DOI : 10.1016/S0065-3233(08)60520-3

G. Rose, Prediction of chain turns in globular proteins on a hydrophobic basis, Nature, vol.85, issue.5654, pp.586-590, 1978.
DOI : 10.1016/0014-5793(76)80184-6

J. Makowska, S. Rodziewicz-motowidlo, K. Baginska, J. Vila, and A. Liwo, Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins, Proceedings of the National Academy of Sciences, vol.103, issue.6, pp.1744-1749, 2006.
DOI : 10.1073/pnas.0510549103

L. Pauling and R. Corey, The Structure of Fibrous Proteins of the Collagen-Gelatin Group, Proceedings of the National Academy of Sciences, vol.37, issue.5, pp.272-281, 1951.
DOI : 10.1073/pnas.37.5.272

P. Cowan, S. Mcgavin, and A. North, The Polypeptide Chain Configuration of Collagen, Nature, vol.176, issue.4492, pp.1062-1064, 1955.
DOI : 10.1021/ja01650a082

S. Arnott and S. Dover, The structure of poly-L-proline II, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.24, issue.4, pp.599-601, 1968.
DOI : 10.1107/S056774086800289X

V. Sasisekharan, Structure of poly-L-proline. II., Acta Crystallographica, vol.12, issue.11, pp.897-903, 1959.
DOI : 10.1107/S0365110X59002535

N. Fitzkee, P. Fleming, H. Gong, N. Panasik, J. Street et al., Are proteins made from a limited parts list?, Trends in Biochemical Sciences, vol.30, issue.2, pp.73-80, 2005.
DOI : 10.1016/j.tibs.2004.12.005

L. Perskie and G. Rose, Physical-chemical determinants of coil conformations in globular proteins, Protein Science, vol.326, issue.Suppl 8, pp.1127-1136, 2010.
DOI : 10.1002/pro.399

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-2637, 1983.
DOI : 10.1002/bip.360221211

A. Adzhubei and M. Sternberg, Left-handed Polyproline II Helices Commonly Occur in Globular Proteins, Journal of Molecular Biology, vol.229, issue.2, pp.472-493, 1993.
DOI : 10.1006/jmbi.1993.1047

T. Creamer, Left-handed polyproline II helix formation is (very) locally driven, Proteins: Structure, Function, and Genetics, vol.24, issue.2, pp.218-226, 1998.
DOI : 10.1002/(SICI)1097-0134(19981101)33:2<218::AID-PROT6>3.0.CO;2-E

B. Stapley and T. Creamer, A survey of left-handed polyproline II helices, Protein Science, vol.117, issue.3, pp.587-595, 1999.
DOI : 10.1110/ps.8.3.587

T. Creamer and M. Campbell, Determinants of the polyproline II helix from modeling studies, Adv Protein Chem, vol.62, pp.263-282, 2002.
DOI : 10.1016/S0065-3233(02)62010-8

B. Chellgren, A. Miller, and T. Creamer, Evidence for Polyproline II Helical Structure in Short Polyglutamine Tracts, Journal of Molecular Biology, vol.361, issue.2, pp.362-371, 2006.
DOI : 10.1016/j.jmb.2006.06.044

S. Hollingsworth, D. Berkholz, and P. Karplus, On the occurrence of linear groups in proteins, Protein Science, vol.44, issue.6, pp.1321-1325, 2009.
DOI : 10.1002/pro.133

Z. Liu, K. Chen, A. Ng, Z. Shi, and R. Woody, Solvent Dependence of PII Conformation in Model Alanine Peptides, Journal of the American Chemical Society, vol.126, issue.46, pp.15141-15150, 2004.
DOI : 10.1021/ja047594g

A. Kentsis, M. Mezei, T. Gindin, and R. Osman, Unfolded state of polyalanine is a segmented polyproline II helix, Proteins: Structure, Function, and Bioinformatics, vol.7, issue.3, pp.493-501, 2004.
DOI : 10.1002/prot.20051

M. Mezei, P. Fleming, R. Srinivasan, and G. Rose, Polyproline II helix is the preferred conformation for unfolded polyalanine in water, Proteins: Structure, Function, and Bioinformatics, vol.98, issue.3, pp.502-507, 2004.
DOI : 10.1002/prot.20050

N. Sreerama and R. Woody, Molecular dynamics simulations of polypeptide conformations in water: A comparison of ?, ?, and poly(pro)II conformations, Proteins: Structure, Function, and Genetics, vol.306, issue.4, pp.400-406, 1999.
DOI : 10.1002/(SICI)1097-0134(19990901)36:4<400::AID-PROT3>3.0.CO;2-B

F. Avbelj and R. Baldwin, Origin of the change in solvation enthalpy of the peptide group when neighboring peptide groups are added, Proceedings of the National Academy of Sciences, vol.106, issue.9, pp.3137-3141, 2009.
DOI : 10.1073/pnas.0813018106

M. Cubellis, F. Caillez, T. Blundell, and S. Lovell, Properties of polyproline II, a secondary structure element implicated in protein-protein interactions, Proteins: Structure, Function, and Bioinformatics, vol.179, issue.4, pp.880-892, 2005.
DOI : 10.1002/prot.20327

R. Berisio, S. Loguercio, D. Simone, A. Zagari, A. Vitagliano et al., Polyproline Helices in Protein Structures: A Statistical Survey, Protein & Peptide Letters, vol.13, issue.8, pp.847-854, 2006.
DOI : 10.2174/092986606777841154

E. Blanch, L. Morozova-roche, D. Cochran, A. Doig, and L. Hecht, Is polyproline II helix the killer conformation? a raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme, Journal of Molecular Biology, vol.301, issue.2, pp.553-563, 2000.
DOI : 10.1006/jmbi.2000.3981

J. Hicks and V. Hsu, The extended left-handed helix: A simple nucleic acid-binding motif, Proteins: Structure, Function, and Bioinformatics, vol.69, issue.2, pp.330-338, 2004.
DOI : 10.1002/prot.10630

G. Banks, L. Judge, J. Allen, and J. Chamberlain, The Polyproline Site in Hinge 2 Influences the Functional Capacity of Truncated Dystrophins, PLoS Genetics, vol.345, issue.24, p.1000958, 2010.
DOI : 10.1371/journal.pgen.1000958.s006

G. Darnell, J. Orgel, R. Pahl, and S. Meredith, Flanking Polyproline Sequences Inhibit ??-Sheet Structure in Polyglutamine Segments by Inducing PPII-like Helix Structure, Journal of Molecular Biology, vol.374, issue.3, pp.688-704, 2007.
DOI : 10.1016/j.jmb.2007.09.023

M. Kuemin, S. Schweizer, C. Ochsenfeld, and H. Wennemers, Effects of Terminal Functional Groups on the Stability of the Polyproline II Structure: A Combined Experimental and Theoretical Study, Journal of the American Chemical Society, vol.131, issue.42, pp.15474-15482, 2009.
DOI : 10.1021/ja906466q

Z. Shi, K. Chen, Z. Liu, and N. Kallenbach, Conformation of the Backbone in Unfolded Proteins, Chemical Reviews, vol.106, issue.5, pp.1877-1897, 2006.
DOI : 10.1021/cr040433a

Z. Shi, C. Olson, G. Rose, R. Baldwin, and N. Kallenbach, Polyproline II structure in a sequence of seven alanine residues, Proceedings of the National Academy of Sciences, vol.99, issue.14, pp.9190-9195, 2002.
DOI : 10.1073/pnas.112193999

Z. Shi, R. Woody, and N. Kallenbach, Is polyproline II a major backbone conformation in unfolded proteins?, Adv Protein Chem, vol.62, pp.163-240, 2002.
DOI : 10.1016/S0065-3233(02)62008-X

P. Vlasov, G. Kilosanidze, D. Ukrainskii, A. Kuz-'min, and V. Tumanian, Left-handed helix conformation of poly-L-proline II type in globular proteins. Statistics of incidence and a role of sequence], Biofizika, vol.46, pp.573-576, 2001.

K. Chen, Z. Liu, C. Zhou, Z. Shi, and N. Kallenbach, Neighbor Effect on PPII Conformation in Alanine Peptides, Journal of the American Chemical Society, vol.127, issue.29, pp.10146-10147, 2005.
DOI : 10.1021/ja052094o

R. Pappu and G. Rose, A simple model for polyproline II structure in unfolded states of alanine-based peptides, Protein Science, vol.40, issue.10, pp.2437-2455, 2002.
DOI : 10.1110/ps.0217402

M. Tyagi, A. Bornot, B. Offmann, and A. De-brevern, Analysis of loop boundaries using different local structure assignment methods, Protein Science, vol.34, issue.9, pp.1869-1881, 2009.
DOI : 10.1002/pro.198

URL : https://hal.archives-ouvertes.fr/inserm-00392504

F. Bernstein, T. Koetzle, G. Williams, E. Meyer, J. Brice et al., The protein data bank: A computer-based archival file for macromolecular structures, Journal of Molecular Biology, vol.112, issue.3, pp.535-542, 1977.
DOI : 10.1016/S0022-2836(77)80200-3

S. King and W. Johnson, Assigning secondary structure from protein coordinate data, Proteins: Structure, Function, and Genetics, vol.234, issue.3, pp.313-320, 1999.
DOI : 10.1002/(SICI)1097-0134(19990515)35:3<313::AID-PROT5>3.0.CO;2-1

R. Srinivasan and G. Rose, A physical basis for protein secondary structure, Proceedings of the National Academy of Sciences, vol.96, issue.25, pp.14258-14263, 1999.
DOI : 10.1073/pnas.96.25.14258

M. Cubellis, F. Cailliez, and S. Lovell, Secondary structure assignment that accurately reflects physical and evolutionary characteristics, BMC Bioinformatics, vol.6, issue.Suppl 4, p.8, 2005.
DOI : 10.1186/1471-2105-6-S4-S8

B. Offmann, M. Tyagi, and A. De-brevern, Local Protein Structures, Current Bioinformatics, vol.2, issue.3, pp.165-202, 2007.
DOI : 10.2174/157489307781662105

URL : https://hal.archives-ouvertes.fr/inserm-00175058

A. Joseph, A. Bornot, and A. De-brevern, Local Structure Alphabets, Protein Structure Prediction wiley, pp.75-106, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00557300

A. De-brevern, New assessment of a structural alphabet, In Silico Biol, vol.5, pp.283-289, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00132875

A. De-brevern, C. Etchebest, and S. Hazout, Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.271-287, 2000.
DOI : 10.1002/1097-0134(20001115)41:3<271::AID-PROT10>3.0.CO;2-Z

URL : https://hal.archives-ouvertes.fr/inserm-00132821

A. Joseph, G. Agarwal, S. Mahajan, J. Gelly, and L. Swapna, A short survey on protein blocks, Biophysical Reviews, vol.30, issue.3, pp.137-145, 2010.
DOI : 10.1007/s12551-010-0036-1

URL : https://hal.archives-ouvertes.fr/inserm-00512823

G. Wang, R. Dunbrack, and J. , PISCES: a protein sequence culling server, Bioinformatics, vol.19, issue.12, pp.1589-1591, 2003.
DOI : 10.1093/bioinformatics/btg224

G. Wang, R. Dunbrack, and J. , PISCES: recent improvements to a PDB sequence culling server, Nucleic Acids Research, vol.33, issue.Web Server, pp.94-98, 2005.
DOI : 10.1093/nar/gki402

L. Fourrier, C. Benros, and A. De-brevern, Use of a structural alphabet for analysis of short loops connecting repetitive structures, BMC Bioinformatics, vol.5, issue.1, p.58, 2004.
DOI : 10.1186/1471-2105-5-58

URL : https://hal.archives-ouvertes.fr/inserm-00112104

J. Martin, A. De-brevern, and A. Camproux, local structure approach: A case study on Outer Membrane Proteins, Proteins: Structure, Function, and Bioinformatics, vol.76, issue.1, pp.92-109, 2008.
DOI : 10.1002/prot.21659

URL : https://hal.archives-ouvertes.fr/inserm-00176452

A. Bornot and A. De-brevern, Protein beta-turn assignments, Bioinformation, vol.1, issue.5, pp.153-155, 2006.
DOI : 10.6026/97320630001153

URL : https://hal.archives-ouvertes.fr/inserm-00133658

G. Labesse, N. Colloc-'h, J. Pothier, and J. Mornon, P-SEA: a new efficient assignment of secondary structure from C?? trace of proteins, Bioinformatics, vol.13, issue.3, pp.291-295, 1997.
DOI : 10.1093/bioinformatics/13.3.291

N. Colloc-'h, C. Etchebest, E. Thoreau, B. Henrissat, and J. Mornon, Comparison of three algorithms for the assignment of secondary structure in proteins: the advantages of a consensus assignment, "Protein Engineering, Design and Selection", vol.6, issue.4, pp.377-382, 1993.
DOI : 10.1093/protein/6.4.377

URL : https://hal.archives-ouvertes.fr/hal-00310605

M. Tyagi, A. Bornot, B. Offmann, and A. De-brevern, Protein short loop prediction in terms of a structural alphabet, Computational Biology and Chemistry, vol.33, issue.4, pp.329-333, 2009.
DOI : 10.1016/j.compbiolchem.2009.06.002

URL : https://hal.archives-ouvertes.fr/inserm-00396485

M. Tyagi, A. De-brevern, N. Srinivasan, and B. Offmann, Protein structure mining using a structural alphabet, Proteins: Structure, Function, and Bioinformatics, vol.5, issue.2, pp.920-937, 2008.
DOI : 10.1002/prot.21776

URL : https://hal.archives-ouvertes.fr/inserm-00176443

M. Tyagi, V. Gowri, N. Srinivasan, A. De-brevern, and B. Offmann, A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications, Proteins: Structure, Function, and Bioinformatics, vol.272, issue.1, pp.32-39, 2006.
DOI : 10.1002/prot.21087

URL : https://hal.archives-ouvertes.fr/inserm-00133760

M. Tyagi, P. Sharma, C. Swamy, F. Cadet, and N. Srinivasan, Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet, Nucleic Acids Research, vol.34, issue.Web Server, pp.119-123, 2006.
DOI : 10.1093/nar/gkl199

URL : https://hal.archives-ouvertes.fr/inserm-00133751

A. De-brevern, A. Joseph, and H. Valadié, Species specific amino acid sequence???protein local structure relationships: An analysis in the light of a structural alphabet, Journal of Theoretical Biology, vol.276, issue.1, 2011.
DOI : 10.1016/j.jtbi.2011.01.047

URL : https://hal.archives-ouvertes.fr/hal-00682413

M. Dudev and C. Lim, Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites, BMC Bioinformatics, vol.8, issue.1, p.106, 2007.
DOI : 10.1186/1471-2105-8-106

C. Wu, Y. Chen, and C. Lim, A structural-alphabet-based strategy for finding structural motifs across protein families, Nucleic Acids Research, vol.38, issue.14, p.150, 2010.
DOI : 10.1093/nar/gkq478

A. De-brevern, H. Valadie, S. Hazout, and C. Etchebest, Extension of a local backbone description using a structural alphabet: A new approach to the sequence-structure relationship, Protein Science, vol.40, issue.(1/2), pp.2871-2886, 2002.
DOI : 10.1110/ps.0220502

URL : https://hal.archives-ouvertes.fr/inserm-00143374

G. Faure, A. Bornot, and A. De-brevern, Protein contacts, inter-residue interactions and side-chain modelling, Biochimie, vol.90, issue.4, pp.626-639, 2008.
DOI : 10.1016/j.biochi.2007.11.007

URL : https://hal.archives-ouvertes.fr/inserm-00189828

G. Faure, A. Bornot, and A. De-brevern, Analysis of protein contacts into Protein Units, Biochimie, vol.91, issue.7, pp.876-887, 2009.
DOI : 10.1016/j.biochi.2009.04.008

URL : https://hal.archives-ouvertes.fr/inserm-00375095

J. Esque, C. Oguey, and A. De-brevern, Comparative Analysis of Threshold and Tessellation Methods for Determining Protein Contacts, Journal of Chemical Information and Modeling, vol.51, issue.2, 2011.
DOI : 10.1021/ci100195t

URL : https://hal.archives-ouvertes.fr/inserm-00568174

B. Zagrovic, J. Lipfert, E. Sorin, I. Millett, and W. Van-gunsteren, Unusual compactness of a polyproline type II structure, Proceedings of the National Academy of Sciences, vol.102, issue.33, pp.11698-11703, 2005.
DOI : 10.1073/pnas.0409693102

S. Kutter, M. Weiss, G. Wille, R. Golbik, and M. Spinka, Covalently Bound Substrate at the Regulatory Site of Yeast Pyruvate Decarboxylases Triggers Allosteric Enzyme Activation, Journal of Biological Chemistry, vol.284, issue.18, pp.12136-12144, 2009.
DOI : 10.1074/jbc.M806228200

E. Lindahl, B. Hess, and D. Van-der-spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis, Journal of Molecular Modeling, vol.7, issue.8, pp.306-317, 2001.
DOI : 10.1007/s008940100045

B. Hess, C. Kutzner, D. Van-der-spoel, and E. Lindahl, GROMACS 4:?? Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation, vol.4, issue.3, pp.435-447, 2008.
DOI : 10.1021/ct700301q

D. Van-der-spoel, E. Lindahl, B. Hess, G. Groenhof, and A. Mark, GROMACS: Fast, flexible, and free, Journal of Computational Chemistry, vol.26, issue.16, pp.1701-1718, 2005.
DOI : 10.1002/jcc.20291

H. Berendsen, D. Van-der-spoel, and R. Van-drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Computer Physics Communications, vol.91, issue.1-3, pp.43-56, 2005.
DOI : 10.1016/0010-4655(95)00042-E

W. Jorgensen, D. Maxwell, and J. Tirado-rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, Journal of the American Chemical Society, vol.118, issue.45, pp.11225-11236, 1996.
DOI : 10.1021/ja9621760

T. Kameda and S. Takada, Secondary structure provides a template for the folding of nearby polypeptides, Proceedings of the National Academy of Sciences, vol.103, issue.47, pp.17765-17770, 2006.
DOI : 10.1073/pnas.0602632103

E. Thompson, A. Depaul, S. Patel, and E. Sorin, Evaluating Molecular Mechanical Potentials for Helical Peptides and Proteins, PLoS ONE, vol.90, issue.4, p.10056, 2010.
DOI : 10.1371/journal.pone.0010056.t003

Z. Shi, K. Chen, Z. Liu, A. Ng, and W. Bracken, Polyproline II propensities from GGXGG peptides reveal an anticorrelation with ??-sheet scales, Proceedings of the National Academy of Sciences, vol.102, issue.50, pp.17964-17968, 2005.
DOI : 10.1073/pnas.0507124102

J. Horng and R. Raines, Stereoelectronic effects on polyproline conformation, Protein Science, vol.15, issue.1, pp.74-83, 2006.
DOI : 10.1110/ps.051779806

A. Adzhubei and M. Sternberg, Conservation of polyproline II helices in homologous proteins: Implications for structure prediction by model building, Protein Science, vol.76, issue.12, pp.2395-2410, 1994.
DOI : 10.1002/pro.5560031223

B. Kay, M. Williamson, and M. Sudol, The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains, FASEB J, vol.14, pp.231-241, 2000.

F. Peterson and B. Volkman, Diversity of polyproline recognition by EVH1 domains, Frontiers in Bioscience, vol.Volume, issue.14, pp.833-846, 2009.
DOI : 10.2741/3281

Y. Watanabe, H. Tsuboi, M. Koyama, M. Kubo, D. Carpio et al., Molecular dynamics study on the ligand recognition by tandem SH3 domains of p47phox, regulating NADPH oxidase activity, Computational Biology and Chemistry, vol.30, issue.4, pp.303-312, 2006.
DOI : 10.1016/j.compbiolchem.2006.04.004

P. Obuchowski and C. Jacobs-wagner, PflI, a Protein Involved in Flagellar Positioning in Caulobacter crescentus, Journal of Bacteriology, vol.190, issue.5, pp.1718-1729, 2008.
DOI : 10.1128/JB.01706-07

A. Rath, A. Davidson, and C. Deber, The structure of ?unstructured? regions in peptides and proteins: Role of the polyproline II helix in protein folding and recognition, Biopolymers, vol.11, issue.2-3, pp.179-185, 2005.
DOI : 10.1002/bip.20227

J. Martin, G. Letellier, A. Marin, J. Taly, and A. De-brevern, Protein secondary structure assignment revisited: a detailed analysis of different assignment methods, BMC Structural Biology, vol.5, issue.1, p.17, 2005.
DOI : 10.1186/1472-6807-5-17

URL : https://hal.archives-ouvertes.fr/inserm-00090199

F. Richards and C. Kundrot, Identification of structural motifs from protein coordinate data: Secondary structure and first-level supersecondary structure, Proteins: Structure, Function, and Genetics, vol.72, issue.2, pp.71-84, 1988.
DOI : 10.1002/prot.340030202

D. Beck, D. Alonso, D. Inoyama, and V. Daggett, The intrinsic conformational propensities of the 20 naturally occurring amino acids and reflection of these propensities in proteins, Proceedings of the National Academy of Sciences, vol.105, issue.34, pp.12259-12264, 2008.
DOI : 10.1073/pnas.0706527105

M. Swindells, M. Macarthur, and J. Thornton, Intrinsic ??,?? propensities of amino acids, derived from the coil regions of known structures, Nature Structural Biology, vol.3, issue.7, pp.596-603, 1995.
DOI : 10.1107/S0021889891004399

M. Tiffany and S. Krimm, New chain conformations of poly(glutamic acid) and polylysine, Biopolymers, vol.4, issue.9, pp.1379-1382, 1968.
DOI : 10.1002/bip.1968.360060911

Z. Shi and N. Kallenbach, Ramachandran redux, Proceedings of the National Academy of Sciences, vol.108, issue.1, pp.3-4, 2011.
DOI : 10.1073/pnas.1017021108

L. Porter and G. Rose, Redrawing the Ramachandran plot after inclusion of hydrogen-bonding constraints, Proceedings of the National Academy of Sciences, vol.108, issue.1, pp.109-113, 2011.
DOI : 10.1073/pnas.1014674107

D. Frishman and P. Argos, Knowledge-based protein secondary structure assignment, Proteins: Structure, Function, and Genetics, vol.206, issue.4, pp.566-579, 1995.
DOI : 10.1002/prot.340230412

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.59-69, 1982.
DOI : 10.1007/BF00337288

L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, vol.77, issue.2, pp.257-286, 1989.
DOI : 10.1109/5.18626

A. De-brevern, C. Benros, R. Gautier, H. Valadie, and S. Hazout, Local backbone structure prediction of proteins, In Silico Biol, vol.4, pp.381-386, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00132872

A. De-brevern and S. Hazout, 'Hybrid Protein Model' for optimally defining 3D protein structure fragments, Bioinformatics, vol.19, issue.3, pp.345-353, 2003.
DOI : 10.1093/bioinformatics/btf859

URL : https://hal.archives-ouvertes.fr/inserm-00133632

C. Etchebest, C. Benros, S. Hazout, and A. De-brevern, A structural alphabet for local protein structures: Improved prediction methods, Proteins: Structure, Function, and Bioinformatics, vol.20, issue.4, pp.810-827, 2005.
DOI : 10.1002/prot.20458

URL : https://hal.archives-ouvertes.fr/inserm-00143564