]. Rubinfeld, H. Seger, and R. , The ERK Cascade As a Prototype of MAPK Signaling Pathways, Methods Mol Biol, vol.2502, issue.1, pp.1-28, 2004.
DOI : 10.1385/1-59259-671-1:1

K. Cude, Y. Wang, and H. Choi, Regulation of the G2-M cell cycle progression by the ERK5-NFkappaB signaling pathway The MAP kinase ERK5 binds to and phosphorylates p90 RSK, J Cell Biol Arch Biochem Biophys, vol.1774494, issue.212, pp.253-2648, 2006.

S. Cameron, J. Abe, S. Malik, C. W. , Y. J. Roberts et al., Differential role of MEK5alpha and MEK5beta in BMK1/ERK5 activation ERK5 is required for VEGF-mediated survival and tubular morphogenesis of primary human microvascular endothelial cells ERK5 and the regulation of endothelial cell function, J Biol Chem J Cell Sci Biochem Soc Trans. Dec, vol.279123377, issue.2, pp.1506-15123189, 2004.

Y. Wang, F. Wang, and T. Sun, Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos. Dev Dyn MAP kinase becomes stably activated at metaphase and is associated with microtubuleorganizing centers during meiotic maturation of mouse oocytes, Dev Biol. Aug, vol.231158, issue.12, pp.72-87330, 1993.

L. Yan, J. Carr, P. Ashby, V. Murry-tait, C. Thompson et al., Knockout of ERK5 causes multiple defects in placental and embryonic development, BMC Developmental Biology, vol.3, issue.1, p.11, 2003.
DOI : 10.1186/1471-213X-3-11

C. Regan, W. Li, D. Boucher, S. Spatz, M. Su et al., Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects, Proceedings of the National Academy of Sciences, vol.99, issue.14, pp.9248-9253, 2002.
DOI : 10.1073/pnas.142293999

M. Hayashi, S. Kim, and K. Imanaka-yoshida, Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure, Journal of Clinical Investigation, vol.113, issue.8, pp.1138-1148, 2004.
DOI : 10.1172/JCI200419890

S. Sohn, B. Sarvis, D. Cado, and A. Winoto, ERK5 MAPK Regulates Embryonic Angiogenesis and Acts as a Hypoxia-sensitive Repressor of Vascular Endothelial Growth Factor Expression, Journal of Biological Chemistry, vol.277, issue.45, pp.43344-43351, 2002.
DOI : 10.1074/jbc.M207573200

M. Hayashi and J. Lee, Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice, Journal of Molecular Medicine, vol.2, issue.12, pp.800-808, 2004.
DOI : 10.1007/s00109-004-0602-8

A. Girio, J. Montero, A. Pandiella, and S. Chatterjee, Erk5 is activated and acts as a survival factor in mitosis. Cell Signal, pp.1964-1972, 2007.

F. Inesta-vaquera, D. Campbell, J. Arthur, and A. Cuenda, ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis, Biochemical and Biophysical Research Communications, vol.399, issue.1, pp.84-90, 2010.
DOI : 10.1016/j.bbrc.2010.07.046

F. Inesta-vaquera, D. Campbell, C. Tournier, N. Gomez, J. Lizcano et al., Alternative ERK5 regulation by phosphorylation during the cell cycle. Cell Signal, pp.1829-1837, 2010.

M. Verlhac, J. Kubiak, and M. Weber, Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse, Development. Mar, vol.122, issue.3, pp.815-822, 1996.

O. Haccard, B. Sarcevic, and A. Lewellyn, Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase, Science, vol.262, issue.5137, pp.1262-1265, 1993.
DOI : 10.1126/science.8235656

K. Araki, K. Naito, and S. Haraguchi, Meiotic Abnormalities of c-mos Knockout Mouse Oocytes: Activation after First Meiosis or Entrance into Third Meiotic Metaphase1, Biology of Reproduction, vol.55, issue.6, pp.1315-1324, 1996.
DOI : 10.1095/biolreprod55.6.1315

T. Choi, K. Fukasawa, and R. Zhou, The Mos/mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes., Proceedings of the National Academy of Sciences, vol.93, issue.14, pp.7032-7035, 91996-07.
DOI : 10.1073/pnas.93.14.7032

M. Verlhac, C. Lefebvre, and J. Kubiak, Mos activates MAP kinase in mouse oocytes through two opposite pathways, The EMBO Journal, vol.19, issue.22, pp.6065-6074, 2000.
DOI : 10.1093/emboj/19.22.6065

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC305841

H. Kosako, Y. Gotoh, and E. Nishida, Mitogen-activated protein kinase kinase is required for the mos-induced metaphase arrest, J Biol Chem. Nov, vol.11269, issue.45, pp.28354-28358, 1994.

T. Nishiyama, K. Ohsumi, and T. Kishimoto, Phosphorylation of Erp1 by p90rsk is required for cytostatic factor arrest in Xenopus laevis eggs, Nature, vol.19, issue.7139, 2007.
DOI : 10.1038/nature05696

D. Inoue, M. Ohe, Y. Kanemori, T. Nobui, and N. Sagata, A direct link of the Mos???MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs, Nature, vol.24, issue.7139, 2007.
DOI : 10.1038/nature05688

P. Kalab, J. Kubiak, M. Verlhac, W. Colledge, and B. Maro, Activation of p90rsk during meiotic maturation and first mitosis in mouse oocytes and eggs: MAP kinase-independent and -dependent activation. Development, pp.1957-1964, 1996.

C. Yan, H. Luo, J. Lee, J. Abe, and B. Berk, Molecular Cloning of Mouse ERK5/BMK1 Splice Variants and Characterization of ERK5 Functional Domains, Journal of Biological Chemistry, vol.276, issue.14, pp.10870-10878, 2001.
DOI : 10.1074/jbc.M009286200

S. Pelech, L. Jelinkova, and A. Susor, Antibody Microarray Analyses of Signal Transduction Protein Expression and Phosphorylation during Porcine Oocyte Maturation, Journal of Proteome Research, vol.7, issue.7, 2008.
DOI : 10.1021/pr800082a

B. Fulton and D. Whittingham, Activation of mammalian oocytes by intracellular injection of calcium, Nature, vol.5, issue.5658, pp.149-151, 1978.
DOI : 10.1038/262661a0

K. Cuthbertson, Parthenogenetic activation of mouse oocytes in vitro with ethanol and benzyl alcohol, Journal of Experimental Zoology, vol.2, issue.2, pp.311-314, 1983.
DOI : 10.1002/jez.1402260217

U. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, vol.244, issue.5259, pp.680-685, 1970.
DOI : 10.1038/227680a0

K. Zen, K. Yasui, and T. Nakajima, ERK5 is a target for gene amplification at 17p11 and promotes cell growth in hepatocellular carcinoma by regulating mitotic entry, Genes, Chromosomes and Cancer, vol.65, issue.2, pp.109-120, 2009.
DOI : 10.1002/gcc.20624

L. Yu, B. Xiong, and W. Gao, MEK1/2 Regulates Microtubule Organization, Spindle Pole Tethering and Asymmetric Division During Mouse Oocyte Meiotic Maturation, Cell Cycle, vol.6, issue.3, pp.330-338, 2007.
DOI : 10.4161/cc.6.3.3805

S. Sun, B. Xiong, S. Lu, and Q. Sun, MEK1/2 is a critical regulator of microtubule assembly and spindle organization during rat oocyte meiotic maturation, Molecular Reproduction and Development, vol.72, issue.10, pp.1542-1548, 2008.
DOI : 10.1002/mrd.20891

S. Li, X. Ou, and Z. Wang, ERK3 Is Required for Metaphase-Anaphase Transition in Mouse Oocyte Meiosis, PLoS ONE, vol.5, issue.9, 2010.
DOI : 10.1371/journal.pone.0013074.g005

M. Sikora-polaczek, A. Hupalowska, Z. Polanski, J. Kubiak, and M. Ciemerych, The First Mitosis of the Mouse Embryo Is Prolonged by Transitional Metaphase Arrest1, Biology of Reproduction, vol.74, issue.4, pp.734-743, 2006.
DOI : 10.1095/biolreprod.105.047092

M. Ciemerych, B. Maro, and J. Kubiak, Control of duration of the first two mitoses in a mouse embryo, Zygote, vol.7, issue.4, pp.293-300, 1999.
DOI : 10.1017/S0967199499000696

Z. Maciejewska, Z. Polanski, K. Kisiel, J. Kubiak, and M. Ciemerych, Spindle assembly checkpoint-related failure perturbs early embryonic divisions and reduces reproductive performance of LT/Sv mice. Reproduction, pp.931-942, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00368738

J. Kubiak, M. Ciemerych, A. Hupalowska, M. Sikora-polaczek, and Z. Polanski, On the transition from the meiotic to mitotic cell cycle during early mouse development, The International Journal of Developmental Biology, vol.52, issue.2-3, pp.2-3201, 2008.
DOI : 10.1387/ijdb.072337jk

URL : https://hal.archives-ouvertes.fr/hal-00277545

M. Teperek-tkacz, M. Meglicki, M. Pasternak, J. Kubiak, and E. Borsuk, Phosphorylation of histone H3 serine 10 in early mouse embryos: Active phosphorylation at late S phase and differential effects of ZM447439 on first two embryonic mitoses, Cell Cycle, vol.9, issue.23, pp.56-69, 2010.
DOI : 10.4161/cc.9.23.14023

URL : https://hal.archives-ouvertes.fr/inserm-00532970

J. Lee, R. Ulevitch, and J. Han, Primary Structure of BMK1: A New Mammalian MAP Kinase, Biochemical and Biophysical Research Communications, vol.213, issue.2, pp.715-724, 1995.
DOI : 10.1006/bbrc.1995.2189

J. Abe, M. Kusuhara, R. Ulevitch, B. Berk, and J. Lee, Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase, J Biol Chem, vol.271, issue.28, pp.16586-16590, 1996.

T. Chao, M. Hayashi, R. Tapping, Y. Kato, and J. Lee, MEKK3 Directly Regulates MEK5 Activity as Part of the Big Mitogen-activated Protein Kinase 1 (BMK1) Signaling Pathway, Journal of Biological Chemistry, vol.274, issue.51, pp.36035-36038, 1999.
DOI : 10.1074/jbc.274.51.36035

G. Zhou, Z. Bao, and J. Dixon, Components of a new human protein kinase signal transduction pathway, J Biol Chem. May, vol.26270, issue.21, pp.12665-12669, 1995.

Y. Kato, R. Tapping, S. Huang, M. Watson, R. Ulevitch et al., Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor, Nature. Oct, vol.15395, issue.6703, pp.713-716, 1998.

S. Kamakura, T. Moriguchi, and E. Nishida, Activation of the Protein Kinase ERK5/BMK1 by Receptor Tyrosine Kinases: IDENTIFICATION AND CHARACTERIZATION OF A SIGNALING PATHWAY TO THE NUCLEUS, Journal of Biological Chemistry, vol.274, issue.37, pp.26563-26571, 1999.
DOI : 10.1074/jbc.274.37.26563

S. Klinger, B. Turgeon, K. Levesque, G. Wood, K. Aagaard-tillery et al., Loss of Erk3 function in mice leads to intrauterine growth restriction, pulmonary immaturity, and neonatal lethality, Proceedings of the National Academy of Sciences, vol.106, issue.39, pp.16710-16715, 2009.
DOI : 10.1073/pnas.0900919106

P. Tanguay, G. Rodier, and S. Meloche, C-terminal domain phosphorylation of ERK3 controlled by Cdk1 and Cdc14 regulates its stability in mitosis, Biochemical Journal, vol.5, issue.1, pp.103-111, 2010.
DOI : 10.1016/j.cell.2006.01.040

J. Rousseau, S. Klinger, and A. Rachalski, Targeted Inactivation of Mapk4 in Mice Reveals Specific Non-Redundant Functions of Erk3, Erk4 Subfamily MAP Kinases. Mol Cell Biol, 2010.

N. Hashimoto, N. Watanabe, and Y. Furuta, Parthenogenetic activation of oocytes in c-mos-deficient mice, Nature, vol.370, issue.6484, pp.68-71, 1994.
DOI : 10.1038/370068a0

W. Colledge, M. Carlton, G. Udy, and M. Evans, Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs, Nature, vol.370, issue.6484, pp.65-68, 1994.
DOI : 10.1038/370065a0

N. Yamauchi, A. Kiessling, and G. Cooper, The Ras/Raf signaling pathway is required for progression of mouse embryos through the two-cell stage., Molecular and Cellular Biology, vol.14, issue.10, pp.6655-6662, 1994.
DOI : 10.1128/MCB.14.10.6655