Additional file 1: The hazards ratio function inverts for a given time.

The purpose is to show that, under certain conditions, the hazards ratio (HR) in equation (2),

$$HR(t) = \frac{\lambda(t|Z_i^{(1)} = 1)}{\lambda(t|Z_i^{(1)} = 0)} = \left(\frac{p_{11}e^{\alpha + \gamma}S_0(t)e^{\alpha + \gamma} + p_{10}S_0(t)}{p_{11}S_0(t)e^{\alpha + \gamma} + p_{10}S_0(t)}\right) \times \left(\frac{p_{01}S_0(t)e^{\gamma} + p_{00}S_0(t)}{p_{01}e^{\gamma}S_0(t)e^{\gamma} + p_{00}S_0(t)}\right)$$

equals one at a given time t_0 in $(0; +\infty)$, being greater than one for $t < t_0$ and lesser than or equal to one for $t > t_0$.

In the sequel, it is assumed that $p_{11} = p_{10} = p_{01} = p_{00}$ and that $\alpha > 0$, and $\gamma > 0$. The following notations will be used: $k = \alpha/\gamma$, $a = \exp(\gamma)$ with a > 1, and $X = S_0(t)$ where X increases in (0, 1] as t decreases from $+\infty$ to 0. For X > 0, HR becomes:

$$HR(X) = \left(\frac{a^{k+1}X^{(a^{k+1}-1)}+1}{X^{(a^{k+1}-1)}+1}\right) \left(\frac{X^{a-1}+1}{aX^{a-1}+1}\right)$$
$$= \frac{a^{k+1}X^{(a^{k+1}+a-2)}+a^{k+1}X^{(a^{k+1}-1)}+X^{a-1}+1}{aX^{(a^{k+1}+a-2)}+X^{(a^{k+1}-1)}+aX^{a-1}+1} = \frac{N(X)}{D(X)}$$

Note that if X tends towards zero (i.e. if t tends towards infinity), HR(X) tends towards 1 (as does HR(t)). In order to prove the existence and uniqueness of $0 < X_0 < 1$ such that $HR(X_0) = 1$, it is useful to consider the difference (N(X) - D(X)). More precisely, noting :

$$N(X) - D(X) = f(X)X^{a-1}$$
(8)
with $f(X) = (a^{k+1} - a)X^{(a^{k+1}-1)} + (a^{k+1} - 1)X^{a^{k+1}-a} + (1 - a) = 0.$

It is obvious that the searched X_0 is the solution, if any, of the equation f(X) = 0.

The first derivative of f relative to X is equal to

$$\frac{\partial f(X)}{\partial X} = (a^{k+1} - a)(a^{k+1} - 1) \left[X^{(a^{k+1} - 2)} + X^{a^{k+1} - a - 1} \right]$$

It is positive on (0;1) since a > 1 and k > 0, so that f is increasing on (0;1). As f(0) < 0 and f(1) > 0, the equation f(X) = 0 has a unique solution X_0 on (0;1). Moreover, it follows that, for $0 < X < X_0$ $(X > X_0, respectively)$, the function f(X) is negative (positive, respectively) so that (N(X) - D(X)) is negative (positive, respectively) as shown by formula (8) above. Noting that (N(X) - D(X)) negative (positive, respectively) is equivalent to HR(X) < 1 (> 1, respectively), the above results can be summarized as follows (See also Table 1).

As expected, it exists an unique time value $t_0 = S_0^{-1}(X_0)$ with $0 < t_0 < +\infty$ such that HR(t) is greater than one for $t < t_0$, and lesser than one for $t > t_0$. Note that the function HR(t) is not monotone, since HR(t) tends towards one as t tends towards $+\infty$, as already remarked.

X	0		X_0		1
f(X)	1 - a < 0	_	 0 	+	$2a^{k+1} - 2a > 0$
t	0		t_0		$+\infty$
HR(t)	$\frac{e^{\gamma(k+1)}+1}{e^{\gamma}+1} > 1$	> 1	1	< 1	1-

Table 1: Summary of the signs of f and HR