Additional file 1: The hazards ratio function inverts for a given time.

The purpose is to show that, under certain conditions, the hazards ratio (HR) in equation (2),

$$
H R(t)=\frac{\lambda\left(t \mid Z_{i}^{(1)}=1\right)}{\lambda\left(t \mid Z_{i}^{(1)}=0\right)}=\left(\frac{p_{11} e^{\alpha+\gamma} S_{0}(t)^{e^{\alpha+\gamma}}+p_{10} S_{0}(t)}{p_{11} S_{0}(t)^{e^{\alpha+\gamma}}+p_{10} S_{0}(t)}\right) \times\left(\frac{p_{01} S_{0}(t)^{e^{\gamma}}+p_{00} S_{0}(t)}{p_{01} e^{\gamma} S_{0}(t)^{e^{\gamma}}+p_{00} S_{0}(t)}\right)
$$

equals one at a given time t_{0} in $(0 ;+\infty)$, being greater than one for $t<t_{0}$ and lesser than or equal to one for $t>t_{0}$.

In the sequel, it is assumed that $p_{11}=p_{10}=p_{01}=p_{00}$ and that $\alpha>0$, and $\gamma>0$. The following notations will be used: $k=\alpha / \gamma, a=\exp (\gamma)$ with $a>1$, and $X=S_{0}(t)$ where X increases in $(0,1]$ as t decreases from $+\infty$ to 0 . For $X>0, H R$ becomes:

$$
\begin{aligned}
H R(X) & =\left(\frac{a^{k+1} X^{\left(a^{k+1}-1\right)}+1}{X^{\left(a^{k+1}-1\right)}+1}\right)\left(\frac{X^{a-1}+1}{a X^{a-1}+1}\right) \\
& =\frac{a^{k+1} X^{\left(a^{k+1}+a-2\right)}+a^{k+1} X^{\left(a^{k+1}-1\right)}+X^{a-1}+1}{a X^{\left(a^{k+1}+a-2\right)}+X^{\left(a^{k+1}-1\right)}+a X^{a-1}+1}=\frac{N(X)}{D(X)}
\end{aligned}
$$

Note that if X tends towards zero (i.e. if t tends towards infinity), $\operatorname{HR}(X)$ tends towards 1 (as does $H R(t))$. In order to prove the existence and uniqueness of $0<X_{0}<1$ such that $\operatorname{HR}\left(X_{0}\right)=1$, it is useful to consider the difference $(N(X)-D(X))$. More precisely, noting :

$$
\begin{equation*}
N(X)-D(X)=f(X) X^{a-1} \tag{8}
\end{equation*}
$$

$$
\text { with } f(X)=\left(a^{k+1}-a\right) X^{\left(a^{k+1}-1\right)}+\left(a^{k+1}-1\right) X^{a^{k+1}-a}+(1-a)=0 .
$$

It is obvious that the searched X_{0} is the solution, if any, of the equation $f(X)=0$.
The first derivative of f relative to X is equal to

$$
\frac{\partial f(X)}{\partial X}=\left(a^{k+1}-a\right)\left(a^{k+1}-1\right)\left[X^{\left(a^{k+1}-2\right)}+X^{a^{k+1}-a-1}\right]
$$

It is positive on $(0 ; 1)$ since $a>1$ and $k>0$, so that f is increasing on $(0 ; 1)$. As $f(0)<0$ and $f(1)>0$, the equation $f(X)=0$ has a unique solution X_{0} on ($0 ; 1$). Moreover, it follows that, for $0<X<X_{0}$ ($X>X_{0}$, respectively), the function $f(X)$ is negative (positive, respectively) so that $(N(X)-D(X))$ is negative (positive, respectively) as shown by formula (8) above. Noting that $(N(X)-D(X))$ negative (positive, respectively) is equivalent to $H R(X)<1$ (>1, respectively), the above results can be summarized as follows (See also Table (1).

As expected, it exists an unique time value $t_{0}=S_{0}^{-1}\left(X_{0}\right)$ with $0<t_{0}<+\infty$ such that $H R(t)$ is greater than one for $t<t_{0}$, and lesser than one for $t>t_{0}$. Note that the function $H R(t)$ is not monotone, since $H R(t)$ tends towards one as t tends towards $+\infty$, as already remarked.

Table 1: Summary of the signs of f and $H R$

X	0	X_{0}		1
$f(X)$	$1-a<0$	-	$\left.\right\|^{0}$	+
t	0	\mid	$2 a^{k+1}-2 a>0$	
$H R(t)$	$\frac{e^{\gamma(k+1)}+1}{e^{\gamma}+1}>1$	>1	t_{0}	
			1	<1

