P. Libby, The Forgotten Majority, Journal of the American College of Cardiology, vol.46, issue.7, pp.1225-1228, 2005.
DOI : 10.1016/j.jacc.2005.07.006

C. Baigent, A. Keech, P. Kearney, L. Blackwell, G. Buck et al., Cholesterol Treatment Trialists' (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins, Lancet, vol.366, pp.1267-1278, 2005.

M. Chapman, Therapeutic elevation of HDL-cholesterol to prevent atherosclerosis and coronary heart disease, Pharmacology & Therapeutics, vol.111, issue.3, pp.893-908, 2006.
DOI : 10.1016/j.pharmthera.2006.02.003

P. Ridker, E. Danielson, F. Fonseca, J. Genest, A. Gotto et al., Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein, New England Journal of Medicine, vol.359, issue.21, pp.2195-2207, 2008.
DOI : 10.1056/NEJMoa0807646

C. Cannon, E. Braunwald, C. Mccabe, D. Rader, J. Rouleau et al., Intensive versus Moderate Lipid Lowering with Statins after Acute Coronary Syndromes, New England Journal of Medicine, vol.350, issue.15, pp.1495-1504, 2004.
DOI : 10.1056/NEJMoa040583

J. Larosa, S. Grundy, D. Waters, C. Shear, P. Barter et al., Intensive Lipid Lowering with Atorvastatin in Patients with Stable Coronary Disease, New England Journal of Medicine, vol.352, issue.14, pp.1425-1435, 2005.
DOI : 10.1056/NEJMoa050461

I. Singh, M. Shishehbor, and B. Ansell, High-Density Lipoprotein as a Therapeutic Target, JAMA, vol.298, issue.7, pp.786-798, 2007.
DOI : 10.1001/jama.298.7.786

M. Miller, C. Cannon, S. Murphy, J. Qin, K. Ray et al., Impact of Triglyceride Levels Beyond Low-Density Lipoprotein Cholesterol After Acute Coronary Syndrome in the PROVE IT-TIMI 22 Trial, Journal of the American College of Cardiology, vol.51, issue.7, pp.724-730, 2008.
DOI : 10.1016/j.jacc.2007.10.038

R. Wolfram, H. Brewer, Z. Xue, L. Satler, A. Pichard et al., Impact of Low High-Density Lipoproteins on In-Hospital Events and One-Year Clinical Outcomes in Patients With Non???ST-Elevation Myocardial Infarction Acute Coronary Syndrome Treated With Drug-Eluting Stent Implantation, The American Journal of Cardiology, vol.98, issue.6, pp.711-717, 2006.
DOI : 10.1016/j.amjcard.2006.04.006

T. Gordon, W. Castelli, M. Hjortland, W. Kannel, and T. Dawber, High density lipoprotein as a protective factor against coronary heart disease, The American Journal of Medicine, vol.62, issue.5, pp.707-714, 1977.
DOI : 10.1016/0002-9343(77)90874-9

D. Gordon, J. Probstfield, R. Garrison, J. Neaton, W. Castelli et al., High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies, Circulation, vol.79, issue.1, pp.8-15, 1989.
DOI : 10.1161/01.CIR.79.1.8

G. Assmann, H. Schulte, A. Von-eckardstein, and Y. Huang, High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport, Atherosclerosis, vol.124, pp.11-20, 1996.
DOI : 10.1016/0021-9150(96)05852-2

A. Sharrett, C. Ballantyne, S. Coady, G. Heiss, P. Sorlie et al., Coronary Heart Disease Prediction From Lipoprotein Cholesterol Levels, Triglycerides, Lipoprotein(a), Apolipoproteins A-I and B, and HDL Density Subfractions: The Atherosclerosis Risk in Communities (ARIC) Study, Circulation, vol.104, issue.10, pp.1108-1113, 2001.
DOI : 10.1161/hc3501.095214

G. Luc, J. Bard, J. Ferrières, A. Evans, P. Amouyel et al., Value of HDL Cholesterol, Apolipoprotein A-I, Lipoprotein A-I, and Lipoprotein A-I/A-II in Prediction of Coronary Heart Disease: The PRIME Study, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.7, pp.1155-1161, 2002.
DOI : 10.1161/01.ATV.0000022850.59845.E0

R. Birjmohun, G. Dallinga-thie, J. Kuivenhoven, E. Stroes, J. Otvos et al., Apolipoprotein A-II Is Inversely Associated With Risk of Future Coronary Artery Disease, Circulation, vol.116, issue.18, pp.2029-2035, 2007.
DOI : 10.1161/CIRCULATIONAHA.107.704031

W. Van-der-steeg, I. Holme, S. Boekholdt, M. Larsen, C. Lindahl et al., High-Density Lipoprotein Cholesterol, High-Density Lipoprotein Particle Size, and Apolipoprotein A-I: Significance for Cardiovascular Risk, Journal of the American College of Cardiology, vol.51, issue.6, pp.634-642, 2008.
DOI : 10.1016/j.jacc.2007.09.060

M. Briel, I. Ferreira-gonzalez, J. You, P. Karanicolas, E. Akl et al., Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis, BMJ, vol.338, issue.feb16 1, p.92, 2009.
DOI : 10.1136/bmj.b92

I. Goldenberg, V. Boyko, A. Tennenbaum, D. Tanne, S. Behar et al., Long-term Benefit of High-Density Lipoprotein Cholesterol???Raising Therapy With Bezafibrate, Archives of Internal Medicine, vol.169, issue.5, pp.508-514, 2009.
DOI : 10.1001/archinternmed.2008.584

S. Nissen, S. Nicholls, I. Sipahi, P. Libby, J. Raichlen et al., Effect of very high-intensity M

A. Taylor, H. Lee, and L. Sullenberger, The effect of 24 months of combination statin and extended-release niacin on carotid intima???media thickness: ARBITER 3, Current Medical Research and Opinion, vol.22, issue.11, pp.2243-2250, 2006.
DOI : 10.1185/030079906X148508

S. Nicholls, E. Tuzcu, I. Sipahi, A. Grasso, P. Schoenhagen et al., Statins, High-Density Lipoprotein Cholesterol, and Regression of Coronary Atherosclerosis, JAMA, vol.297, issue.5, pp.499-508, 2007.
DOI : 10.1001/jama.297.5.499

B. Brown and X. Zhao, Nicotinic Acid, Alone and in Combinations, for Reduction of Cardiovascular Risk, The American Journal of Cardiology, vol.101, issue.8, pp.58-62, 2008.
DOI : 10.1016/j.amjcard.2008.02.039

S. Nissen, T. Tsunoda, E. Tuzcu, P. Schoenhagen, C. Cooper et al., Effect of Recombinant ApoA-I Milano on Coronary Atherosclerosis in Patients With Acute Coronary Syndromes, JAMA, vol.290, issue.17, pp.2292-2300, 2003.
DOI : 10.1001/jama.290.17.2292

J. Shaw, A. Bobik, A. Murphy, P. Kanellakis, P. Blombery et al., Infusion of Reconstituted High-Density Lipoprotein Leads to Acute Changes in Human Atherosclerotic Plaque, Circulation Research, vol.103, issue.10, pp.1084-1091, 2008.
DOI : 10.1161/CIRCRESAHA.108.182063

P. Barter, A. Gotto, J. Larosa, J. Maroni, M. Szarek et al., Treating to New Targets Investigators. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events, N Engl J Med, vol.57, pp.1301-1310, 2007.

A. Tall, Plasma high density lipoproteins. Metabolism and relationship to atherogenesis., Journal of Clinical Investigation, vol.86, issue.2, pp.379-384, 1990.
DOI : 10.1172/JCI114722

A. Kontush and M. Chapman, Functionally Defective High-Density Lipoprotein: A New Therapeutic Target at the Crossroads of Dyslipidemia, Inflammation, and Atherosclerosis, Pharmacological Reviews, vol.58, issue.3, pp.342-374, 2006.
DOI : 10.1124/pr.58.3.1

W. Davidson, R. Silva, S. Chantepie, W. Lagor, M. Chapman et al., Proteomic Analysis of Defined HDL Subpopulations Reveals Particle-Specific Protein Clusters: Relevance to Antioxidative Function, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.6, pp.870-876, 2009.
DOI : 10.1161/ATVBAHA.109.186031

T. Vaisar, S. Pennathur, P. Green, S. Gharib, A. Hoofnagle et al., Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL, Journal of Clinical Investigation, vol.117, issue.3, pp.746-756, 2007.
DOI : 10.1172/JCI26206DS1

G. Assmann and J. Nofer, Atheroprotective Effects of High-Density Lipoproteins, Annual Review of Medicine, vol.54, issue.1, pp.321-341, 2003.
DOI : 10.1146/annurev.med.54.101601.152409

A. Kontush and M. Chapman, Antiatherogenic small, dense HDL???guardian angel of the arterial wall?, Nature Clinical Practice Cardiovascular Medicine, vol.92, issue.3, pp.144-153, 2006.
DOI : 10.1038/ncpcardio0500

T. Joy and R. Hegele, Is raising HDL a futile strategy for atheroprotection?, Nature Reviews Drug Discovery, vol.96, issue.2, pp.143-155, 2008.
DOI : 10.1038/nrd2489

M. Chapman, G. Assmann, J. Fruchart, J. Shepherd, and C. Sirtori, Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid ??? a position paper developed by the European Consensus Panel on HDL-C*, Current Medical Research and Opinion, vol.20, issue.8, pp.1253-1268, 2004.
DOI : 10.1185/030079904125004402

M. Mcgovern, Niaspan(R): creating a new concept for raising HDL-cholesterol, European Heart Journal Supplements, vol.7, issue.Suppl F, pp.41-47, 2005.
DOI : 10.1093/eurheartj/sui042

A. Gille, E. Bodor, K. Ahmed, and S. Offermanns, Nicotinic Acid: Pharmacological Effects and Mechanisms of Action, Annual Review of Pharmacology and Toxicology, vol.48, issue.1, pp.79-106, 2008.
DOI : 10.1146/annurev.pharmtox.48.113006.094746

J. Paolini, Y. Mitchel, R. Reyes, U. Kher, E. Lai et al., Effects of Laropiprant on Nicotinic Acid-Induced Flushing in Patients With Dyslipidemia??????A list of study investigators appears in the Appendix., The American Journal of Cardiology, vol.101, issue.5, pp.625-630, 2008.
DOI : 10.1016/j.amjcard.2007.10.023

F. Mctaggart and P. Jones, Effects of Statins on High-Density Lipoproteins: A Potential Contribution to Cardiovascular Benefit, Cardiovascular Drugs and Therapy, vol.17, issue.4, pp.321-338, 2008.
DOI : 10.1007/s10557-008-6113-z

P. Barter, G. Brandrup-wognsen, M. Palmer, and S. Nicholls, Effects of statins on the concentration of high-density lipoprotein cholesterol and its relation to change in low-density lipoprotein cholesterol: results from the VOYAGER database, J Am Coll Cardiol, vol.53, pp.1021-1087, 2009.

R. Birjmohun, B. Hutten, J. Kastelein, and E. Stroes, Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds, Journal of the American College of Cardiology, vol.45, issue.2, pp.185-197, 2005.
DOI : 10.1016/j.jacc.2004.10.031

M. Chapman, Fibrates in 2003: therapeutic action in atherogenic dyslipidaemia and future perspectives, Atherosclerosis, vol.171, issue.1, pp.1-13, 2003.
DOI : 10.1016/S0021-9150(03)00156-4

S. Robins, D. Collins, J. Wittes, V. Papademetriou, P. Deedwania et al., Relation of Gemfibrozil Treatment and Lipid Levels With Major Coronary Events, JAMA, vol.285, issue.12, pp.1585-1591, 2001.
DOI : 10.1001/jama.285.12.1585

M. Caslake, G. Stewart, S. Day, E. Daly, F. Mctaggart et al., Phenotype-dependent and -independent actions of rosuvastatin on atherogenic lipoprotein subfractions in hyperlipidaemia, Atherosclerosis, vol.171, issue.2, pp.245-253, 2003.
DOI : 10.1016/j.atherosclerosis.2003.08.025

M. Guérin, T. Lassel, L. Goff, W. Farnier, M. Chapman et al., Action of Atorvastatin in Combined Hyperlipidemia : Preferential Reduction of Cholesteryl Ester Transfer From HDL to VLDL1 Particles, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.20, issue.1, pp.189-197, 2000.
DOI : 10.1161/01.ATV.20.1.189

A. Inazu, M. Brown, C. Hesler, L. Agellon, J. Koizumi et al., Increased High-Density Lipoprotein Levels Caused by a Common Cholesteryl-Ester Transfer Protein Gene Mutation, New England Journal of Medicine, vol.323, issue.18, pp.1234-1238, 1990.
DOI : 10.1056/NEJM199011013231803

L. Goff, W. Guerin, M. Chapman, and M. , Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia, Pharmacology & Therapeutics, vol.101, issue.1, pp.17-38, 2004.
DOI : 10.1016/j.pharmthera.2003.10.001

J. Curb, R. Abbott, B. Rodriguez, K. Masaki, R. Chen et al., A prospective study of HDL-C and cholesteryl ester transfer protein gene mutations and the risk of coronary heart disease in the elderly, The Journal of Lipid Research, vol.45, issue.5, pp.948-953, 2004.
DOI : 10.1194/jlr.M300520-JLR200

P. Barter and J. Kastelein, Targeting Cholesteryl Ester Transfer Protein for the Prevention and Management of Cardiovascular Disease, Journal of the American College of Cardiology, vol.47, issue.3, pp.492-499, 2006.
DOI : 10.1016/j.jacc.2005.09.042

E. Schaefer and B. Asztalos, Increasing High-Density Lipoprotein Cholesterol, Inhibition of Cholesteryl Ester Transfer Protein, and Heart Disease Risk Reduction, The American Journal of Cardiology, vol.100, issue.11
DOI : 10.1016/j.amjcard.2007.08.010

P. Barter, H. Brewer, . Jr, M. Chapman, C. Hennekens et al., Cholesteryl Ester Transfer Protein: A Novel Target for Raising HDL and Inhibiting Atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.23, issue.2, pp.160-167, 2003.
DOI : 10.1161/01.ATV.0000054658.91146.64

G. Lewis and D. Rader, New Insights Into the Regulation of HDL Metabolism and Reverse Cholesterol Transport, Circulation Research, vol.96, issue.12, pp.1221-1232, 2005.
DOI : 10.1161/01.RES.0000170946.56981.5c

C. Schwartz, J. Vandenbroek, and P. Cooper, Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans, The Journal of Lipid Research, vol.45, issue.9, pp.1594-1607, 2004.
DOI : 10.1194/jlr.M300511-JLR200

H. Brewer and . Jr, High-Density Lipoproteins: A New Potential Therapeutic Target for the Prevention of Cardiovascular Disease, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.3, pp.387-391, 2004.
DOI : 10.1161/01.ATV.0000121505.88326.d2

A. Tall, Plasma cholesteryl ester transfer protein, J Lipid Res, vol.34, pp.1255-1274, 1993.

K. Williams and I. Tabas, The Response-to-Retention Hypothesis of Early Atherogenesis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.15, issue.5, pp.551-561, 1995.
DOI : 10.1161/01.ATV.15.5.551

T. Lassel, M. Guérin, S. Auboiron, M. Chapman, and B. Guy-grand, Preferential Cholesteryl Ester Acceptors Among Triglyceride-Rich Lipoproteins During Alimentary Lipemia in Normolipidemic Subjects, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.18, issue.1, pp.65-74, 1998.
DOI : 10.1161/01.ATV.18.1.65

B. Lamarche, K. Uffelman, A. Carpentier, J. Cohn, G. Steiner et al., Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men, Journal of Clinical Investigation, vol.103, issue.8, pp.1191-1199, 1999.
DOI : 10.1172/JCI5286

H. Simpson, C. Williamson, T. Olivecrona, S. Pringle, J. Maclean et al., Postprandial lipemia, fenofibrate and coronary artery disease, Atherosclerosis, vol.85, issue.2-3, pp.193-202, 1990.
DOI : 10.1016/0021-9150(90)90111-U

M. Guérin, P. Egger, C. Soudant, L. Goff, W. Van-tol et al., Cholesteryl ester flux from HDL to VLDL-1 is preferentially enhanced in type IIB hyperlipidemia in the postprandial state, The Journal of Lipid Research, vol.43, issue.10, pp.1652-1660, 2002.
DOI : 10.1194/jlr.M200135-JLR200

B. Nordestgaard, M. Benn, P. Schnohr, and A. Tybjaerg-hansen, Nonfasting Triglycerides and Risk of Myocardial Infarction, Ischemic Heart Disease, and Death in Men and Women, JAMA, vol.298, issue.3, pp.299-308, 2007.
DOI : 10.1001/jama.298.3.299

S. Bansal, J. Buring, N. Rifai, S. Mora, F. Sacks et al., Fasting Compared With Nonfasting Triglycerides and Risk of Cardiovascular Events in Women, JAMA, vol.298, issue.3, pp.309-316, 2007.
DOI : 10.1001/jama.298.3.309

K. Williams, Molecular processes that handle ??? and mishandle ??? dietary lipids, Journal of Clinical Investigation, vol.118, issue.10, pp.3247-3259, 2008.
DOI : 10.1172/JCI35206

G. Castro and C. Fielding, Effects of postprandial lipemia on plasma cholesterol metabolism., Journal of Clinical Investigation, vol.75, issue.3, pp.874-882, 1985.
DOI : 10.1172/JCI111786

A. Tall, D. Sammett, and E. Granot, Mechanisms of enhanced cholesteryl ester transfer from high density lipoproteins to apolipoprotein B-containing lipoproteins during alimentary lipemia., Journal of Clinical Investigation, vol.77, issue.4, pp.1163-1172, 1986.
DOI : 10.1172/JCI112417

C. Contacos, P. Barter, L. Vrga, and D. Sullivan, Cholesteryl ester transfer in hypercholesterolaemia: fasting and postprandial studies with and without pravastatin, Atherosclerosis, vol.141, issue.1, pp.87-98, 1998.
DOI : 10.1016/S0021-9150(98)00151-8

S. Rashid, P. Barrett, K. Uffelman, T. Watanabe, K. Adeli et al., Lipolytically Modified Triglyceride-Enriched HDLs Are Rapidly Cleared From the Circulation, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.3, pp.483-487, 2002.
DOI : 10.1161/hq0302.105374

H. Brewer and . Jr, benefit-risk assessment of Rosuvastatin 10 to 40 milligrams, The American Journal of Cardiology, vol.92, issue.4, pp.23-29, 2003.
DOI : 10.1016/S0002-9149(03)00779-3

M. Guérin, P. Dolphin, C. Talussot, J. Gardette, F. Berthézène et al., Pravastatin Modulates Cholesteryl Ester Transfer From HDL to ApoB-Containing Lipoproteins and Lipoprotein Subspecies Profile in Familial Hypercholesterolemia, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.15, issue.9
DOI : 10.1161/01.ATV.15.9.1359

M. Guérin, E. Bruckert, P. Dolphin, G. Turpin, and M. Chapman, Fenofibrate Reduces Plasma Cholesteryl Ester Transfer From HDL to VLDL and Normalizes the Atherogenic, Dense LDL Profile in Combined Hyperlipidemia, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.16, issue.6, pp.763-772, 1996.
DOI : 10.1161/01.ATV.16.6.763

M. Guérin, L. Goff, W. Frisdal, E. Schneider, S. Milosavljevic et al., Action of Ciprofibrate in Type IIB Hyperlipoproteinemia: Modulation of the Atherogenic Lipoprotein Phenotype and Stimulation of High-Density Lipoprotein-Mediated Cellular Cholesterol Efflux, The Journal of Clinical Endocrinology & Metabolism, vol.88, issue.8, pp.3738-3746, 2003.
DOI : 10.1210/jc.2003-030191

M. Guérin, L. Goff, W. Lassel, T. , V. Tol et al., Proatherogenic Role of Elevated CE Transfer From HDL to VLDL1 and Dense LDL in Type 2 Diabetes : Impact of the Degree of Triglyceridemia, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.21, issue.2, pp.282-288, 2001.
DOI : 10.1161/01.ATV.21.2.282

J. Schaefer, H. Schweer, K. Ikewaki, H. Stracke, H. Seyberth et al., Metabolic basis of high density lipoproteins and apolipoprotein A-I increase by HMG-CoA reductase inhibition in healthy subjects and a patient with coronary artery disease, Atherosclerosis, vol.144, issue.1, pp.177-184, 1999.
DOI : 10.1016/S0021-9150(99)00053-2

H. Oliveira, R. Chouinard, L. Agellon, C. Bruce, L. Ma et al., Human Cholesteryl Ester Transfer Protein Gene Proximal Promoter Contains Dietary Cholesterol Positive Responsive Elements and Mediates Expression in Small Intestine and Periphery While Predominant Liver and Spleen Expression Is Controlled by 5'-distal Sequences: CIS-ACTING SEQUENCES MAPPED IN TRANSGENIC MICE, Journal of Biological Chemistry, vol.271, issue.50, pp.31831-31838, 1996.
DOI : 10.1074/jbc.271.50.31831

B. Gauthier, M. Robb, F. Gaudet, G. Ginsburg, and R. Mcpherson, Characterization of a cholesterol response element (CRE) in the promoter of the cholesteryl ester transfer protein gene: functional role of the transcription factors SREBP-1a, -2, and YY1, J Lipid Res, vol.40, pp.1284-1293, 1999.

G. Martin, H. Duez, C. Blanquart, V. Berezowski, P. Poulain et al., Statin-induced inhibition of the Rho-signaling pathway activates PPAR?? and induces HDL apoA-I, Journal of Clinical Investigation, vol.107, issue.11, pp.1423-1432, 2001.
DOI : 10.1172/JCI10852

B. Asztalos, K. Horvath, J. Mcnamara, P. Roheim, J. Rubinstein et al., Comparing the effects of five different statins on the HDL subpopulation profiles of coronary heart disease patients, Atherosclerosis, vol.164, issue.2, pp.361-369, 2002.
DOI : 10.1016/S0021-9150(02)00149-1

B. Asztalos, L. Maulf, F. Dallal, G. Stein, E. Jones et al., Comparison of the Effects of High Doses of Rosuvastatin Versus Atorvastatin on the Subpopulations of High-Density Lipoproteins, The American Journal of Cardiology, vol.99, issue.5, pp.681-685, 2007.
DOI : 10.1016/j.amjcard.2006.09.117

L. Streja, C. Packard, J. Shepherd, S. Cobbe, I. Ford et al., Factors affecting low-density lipoprotein and high-density lipoprotein cholesterol response to pravastatin in the West Of Scotland Coronary Prevention Study (WOSCOPS), The American Journal of Cardiology, vol.90, issue.7, pp.731-736, 2002.
DOI : 10.1016/S0002-9149(02)02599-7

M. Ashen and R. Blumenthal, Low HDL Cholesterol Levels, New England Journal of Medicine, vol.353, issue.12, pp.1252-1260, 2005.
DOI : 10.1056/NEJMcp044370

I. Berk-planken, N. Hoogerbrugge, R. Stolk, A. Bootsma, H. Jansen et al., Atorvastatin Dose-Dependently Decreases Hepatic Lipase Activity in Type 2 Diabetes: Effect of sex and the LIPC promoter variant, Diabetes Care, vol.26, issue.2, pp.427-432, 2003.
DOI : 10.2337/diacare.26.2.427

M. Frick, O. Elo, K. Haapa, O. Heinonen, P. Heinsalmi et al., Helsinki Heart Study: Primary-Prevention Trial with Gemfibrozil in Middle-Aged Men with Dyslipidemia, New England Journal of Medicine, vol.317, issue.20, pp.1237-1245, 1987.
DOI : 10.1056/NEJM198711123172001

H. Rubins, S. Robins, D. Collins, C. Fye, J. Anderson et al., Gemfibrozil for the Secondary Prevention of Coronary Heart Disease in Men with Low Levels of High-Density Lipoprotein Cholesterol, New England Journal of Medicine, vol.341, issue.6, pp.410-418, 1999.
DOI : 10.1056/NEJM199908053410604

H. Duez, B. Lefebvre, P. Poulain, I. Torra, F. Percevault et al., Regulation of Human ApoA-I by Gemfibrozil and Fenofibrate Through Selective Peroxisome Proliferator-Activated Receptor ?? Modulation, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.3, pp.585-591, 2005.
DOI : 10.1161/01.ATV.0000154140.73570.00

D. Hausenloy and D. Yellon, Targeting residual cardiovascular risk: raising high-density lipoprotein cholesterol levels, Heart, vol.94, issue.6, pp.706-714, 2008.
DOI : 10.1136/hrt.2007.125401

C. Packard and J. Shepherd, Lipoprotein Heterogeneity and Apolipoprotein B Metabolism, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.17, issue.12, pp.3542-3556, 1997.
DOI : 10.1161/01.ATV.17.12.3542

G. Schonfeld, The effects of fibrates on lipoprotein and hemostatic coronary risk factors, Atherosclerosis, vol.111, issue.2, pp.161-174, 1994.
DOI : 10.1016/0021-9150(94)90090-6

B. Staels, J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf et al., Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism, Circulation, vol.98, issue.19, pp.2088-2093, 1998.
DOI : 10.1161/01.CIR.98.19.2088

G. Watts, P. Barrett, J. J. Serone, A. Chan, D. Croft et al., Differential Regulation of Lipoprotein Kinetics by Atorvastatin and Fenofibrate in Subjects With the Metabolic Syndrome, Diabetes, vol.52, issue.3, pp.803-811, 2003.
DOI : 10.2337/diabetes.52.3.803

P. Barter and K. Rye, Is There a Role for Fibrates in the Management of Dyslipidemia in the Metabolic Syndrome?, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.1, pp.39-46, 2008.
DOI : 10.1161/ATVBAHA.107.148817

A. Zambon, P. Gervois, P. Pauletto, J. Fruchart, and B. Staels, Modulation of Hepatic Inflammatory Risk Markers of Cardiovascular Diseases by PPAR-?? Activators: Clinical and Experimental Evidence, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.5, pp.977-986, 2006.
DOI : 10.1161/01.ATV.0000204327.96431.9a

G. Chinetti, S. Lestavel, V. Bocher, A. Remaley, B. Neve et al., PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway, Nat Med, vol.7, pp.53-58, 2001.

N. Poulter, The impact of micronized fenofibrate on lipid subfractions and on reaching HDL-target levels in 7,098 patients with dyslipidaemia, Br J Cardiol, vol.6, pp.682-685, 1999.

J. Vakkilainen, G. Steiner, J. Ansquer, F. Aubin, S. Rattier et al., Relationships Between Low-Density Lipoprotein Particle Size, Plasma Lipoproteins, and Progression of Coronary Artery Disease: The Diabetes Atherosclerosis Intervention Study (DAIS), Circulation, vol.107, issue.13, pp.1733-1737, 2003.
DOI : 10.1161/01.CIR.0000057982.50167.6E

A. Keech, R. Simes, P. Barter, J. Best, R. Scott et al., We-S15:2 Effects of long-term fenofibrate therapy on cardiovascular events among 9795 people with type 2 diabetes mellitus: The field study, a randomised controlled trial, Atherosclerosis Supplements, vol.7, issue.3, pp.1849-18611415, 1420.
DOI : 10.1016/S1567-5688(06)81349-8

S. Saha, L. Kizhakepunnur, A. Bahekar, and R. Arora, The role of fibrates in the prevention of cardiovascular disease???a pooled meta-analysis of long-term randomized placebo-controlled clinical trials, American Heart Journal, vol.154, issue.5, pp.943-953, 2007.
DOI : 10.1016/j.ahj.2007.07.011

S. Fazio and M. Linton, The role of fibrates in managing hyperlipidemia: Mechanisms of action and clinical efficacy, Current Atherosclerosis Reports, vol.341, issue.suppl, pp.148-157, 2004.
DOI : 10.1007/s11883-004-0104-8

R. Scott, O. Brien, R. Fulcher, G. Pardy, C. et al., Effects of Fenofibrate Treatment on Cardiovascular Disease Risk in 9,795 Individuals With Type 2 Diabetes and Various Components of the Metabolic Syndrome: The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study, Diabetes Care, vol.32, issue.3, pp.493-498, 2009.
DOI : 10.2337/dc08-1543

L. Carlson, Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review, Journal of Internal Medicine, vol.26, issue.1, pp.94-114, 2005.
DOI : 10.1016/S0002-9149(03)00007-9

S. Lamon-fava, M. Diffenderfer, P. Barrett, A. Buchsbaum, M. Nyaku et al., Extended-Release Niacin Alters the Metabolism of Plasma Apolipoprotein (Apo) A-I and ApoB-Containing Lipoproteins, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.9, pp.1672-1678, 2008.
DOI : 10.1161/ATVBAHA.108.164541

W. Wang, A. Basinger, R. Neese, B. Shane, S. Myong et al., Effect of nicotinic acid administration on hepatic very low density lipoprotein-triglyceride production, Am J Physiol Endocrinol Metab, vol.280, pp.540-547, 2001.

G. Watts and D. Chan, Of Mice and Men: Blowing Away the Cobwebs From the Mechanism of Action of Niacin on HDL Metabolism, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.11, pp.1892-1895, 2008.
DOI : 10.1161/ATVBAHA.108.175224

J. Van-der-hoorn, W. De-haan, J. Berbée, L. Havekes, J. Jukema et al., Niacin Increases HDL by Reducing Hepatic Expression and Plasma Levels of Cholesteryl Ester Transfer Protein in APOE*3Leiden.CETP Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.11, pp.2016-2022, 2008.
DOI : 10.1161/ATVBAHA.108.171363

M. Hernandez, S. Wright, and T. Cai, Critical role of cholesterol ester transfer protein in nicotinic acid-mediated HDL elevation in mice, Biochemical and Biophysical Research Communications, vol.355, issue.4, pp.1075-1080, 2007.
DOI : 10.1016/j.bbrc.2007.02.079

L. Zhang, V. Kamanna, M. Zhang, and M. Kashyap, Niacin inhibits surface expression of ATP synthase ?? chain in HepG2 cells: implications for raising HDL, The Journal of Lipid Research, vol.49, issue.6, pp.1195-1201, 2008.
DOI : 10.1194/jlr.M700426-JLR200

V. Kamanna and M. Kashyap, Mechanism of Action of Niacin, The American Journal of Cardiology, vol.101, issue.8, pp.20-26, 2008.
DOI : 10.1016/j.amjcard.2008.02.029

P. Green, T. Vaisar, S. Pennathur, J. Kulstad, A. Moore et al., Combined Statin and Niacin Therapy Remodels the High-Density Lipoprotein Proteome, Circulation, vol.118, issue.12, pp.1259-1267, 2008.
DOI : 10.1161/CIRCULATIONAHA.108.770669

T. Rubic, M. Trottmann, and R. Lorenz, Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacin, Biochemical Pharmacology, vol.67, issue.3, pp.411-419, 2004.
DOI : 10.1016/j.bcp.2003.09.014

X. Qiu, A. Mistry, M. Ammirati, B. Chrunyk, R. Clark et al., Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules, Nature Structural & Molecular Biology, vol.50, issue.2, pp.106-113, 2007.
DOI : 10.1074/jbc.M500523200

R. Clark, R. Ruggeri, D. Cunningham, and M. Bamberger, Description of the torcetrapib series of cholesteryl ester transfer protein inhibitors, including mechanism of action, The Journal of Lipid Research, vol.47, issue.3, pp.537-552, 2006.
DOI : 10.1194/jlr.M500349-JLR200

J. Mckenney, M. Davidson, C. Shear, and J. Revkin, Efficacy and Safety of Torcetrapib, a Novel Cholesteryl Ester Transfer Protein Inhibitor, in Individuals With Below-Average High-Density LipoproteinCholesterolLevelsonaBackgroundofAtorvastatin, Journal of the American College of Cardiology, vol.48, issue.9, pp.1782-1790, 2006.
DOI : 10.1016/j.jacc.2006.06.066

J. Millar, M. Brousseau, M. Diffenderfer, P. Barrett, F. Welty et al., Effects of the Cholesteryl Ester Transfer Protein Inhibitor Torcetrapib on Apolipoprotein B100 Metabolism in Humans, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.6, pp.1350-1356, 2006.
DOI : 10.1161/01.ATV.0000219695.84644.56

M. Guérin, L. Goff, W. Duchene, E. , J. Z. Nguyen et al., Inhibition of CETP by Torcetrapib Attenuates the Atherogenicity of Postprandial TG-Rich Lipoproteins in Type IIB Hyperlipidemia, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.1, pp.148-154, 2008.
DOI : 10.1161/ATVBAHA.107.151688

P. Barter, M. Caulfield, M. Eriksson, S. Grundy, J. Kastelein et al., Effects of Torcetrapib in Patients at High Risk for Coronary Events, New England Journal of Medicine, vol.357, issue.21, pp.2109-2122, 2007.
DOI : 10.1056/NEJMoa0706628

M. Davidson, J. Mckenney, C. Shear, and J. Revkin, Efficacy and Safety of Torcetrapib, a Novel Cholesteryl Ester Transfer Protein Inhibitor, in Individuals With Below-Average High-Density Lipoprotein Cholesterol Levels, Journal of the American College of Cardiology, vol.48, issue.9, pp.1774-1781, 2006.
DOI : 10.1016/j.jacc.2006.06.067

E. Stroes, J. Kastelein, A. Benardeau, D. Blum, R. Clerc et al., Absence of effect of R1658/JTT-705 on blood pressure and tissue expression of renin-angiotensin system-related genes in rats, J Am Coll Cardiol, vol.10, p.322, 2008.

M. Depasquale, D. Knight, W. Loging, L. Morehouse, S. Winter et al., Mechanistic studies of hemodynamics with a series of cholesterol ester transfer protein inhibitors, Circ Res, vol.101, pp.1209-1210, 2007.

S. Nissen, J. Tardif, S. Nicholls, J. Revkin, C. Shear et al., Effect of Torcetrapib on the Progression of Coronary Atherosclerosis, New England Journal of Medicine, vol.356, issue.13, pp.1304-1316, 2007.
DOI : 10.1056/NEJMoa070635

J. Kastelein, S. Van-leuven, L. Burgess, G. Evans, J. Kuivenhoven et al., Effect of Torcetrapib on Carotid Atherosclerosis in Familial Hypercholesterolemia, New England Journal of Medicine, vol.356, issue.16, pp.1620-1630, 2007.
DOI : 10.1056/NEJMoa071359

M. Bots, F. Visseren, G. Evans, W. Riley, J. Revkin et al., Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial, RADIANCE 2 Investigators, pp.153-160, 2007.
DOI : 10.1016/S0140-6736(07)61088-5

M. Vergeer, M. Bots, S. Van-leuven, D. Basart, E. Sijbrands et al., Cholesteryl Ester Transfer Protein Inhibitor Torcetrapib and Off-Target Toxicity: A Pooled Analysis of the Rating Atherosclerotic Disease Change by Imaging With a New CETP Inhibitor (RADIANCE) Trials, Circulation, vol.118, issue.24, pp.2515-2522, 2008.
DOI : 10.1161/CIRCULATIONAHA.108.772665

S. Nicholls, E. Tuzcu, D. Brennan, J. Tardif, and S. Nissen, Cholesteryl Ester Transfer Protein Inhibition, High-Density Lipoprotein Raising, and Progression of Coronary Atherosclerosis: Insights From ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation), Circulation, vol.118, issue.24, pp.2506-2514, 2008.
DOI : 10.1161/CIRCULATIONAHA.108.790733

R. Clark, T. Sutfin, R. Ruggeri, A. Willauer, E. Sugarman et al., Raising High-Density Lipoprotein in Humans Through Inhibition of Cholesteryl Ester Transfer Protein: An Initial Multidose Study of Torcetrapib, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.3, pp.490-497, 2004.
DOI : 10.1161/01.ATV.0000118278.21719.17

A. Kontush, M. Guerin, and M. Chapman, Spotlight on HDL-raising therapies: insights from the torcetrapib trials, Nature Clinical Practice Cardiovascular Medicine, vol.34, issue.6, pp.329-336, 2008.
DOI : 10.1038/ncpcardio1191

G. Catalano, J. Z. Frisdal, E. Vedie, B. Fournier, N. et al., Torcetrapib Differentially Modulates the Biological Activities of HDL2 and HDL3 Particles in the Reverse Cholesterol Transport Pathway, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.2, pp.268-275, 2009.
DOI : 10.1161/ATVBAHA.108.179416

E. Niesor, V. Der-marck, E. Brousse, M. Maugeais, and C. , Inhibition of cholesteryl ester transfer protein (CETP): Different in vitro characteristics of RO4607381/JTT-705 and torcetrapib (TOR), Atherosclerosis, vol.199, issue.1, p.231, 2008.
DOI : 10.1016/j.atherosclerosis.2008.04.024

H. Okamoto, F. Yonemori, K. Wakitani, T. Minowa, K. Maeda et al., A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits, Nature, vol.406, issue.6792, pp.203-207, 2000.
DOI : 10.1038/35018119

Z. Huang, A. Inazu, A. Nohara, T. Higashikata, and H. Mabuchi, Cholesteryl ester transfer protein inhibitor (JTT-705) and the development of atherosclerosis in rabbits with severe hypercholesterolaemia, Clinical Science, vol.103, issue.6, pp.587-594, 2002.
DOI : 10.1042/cs1030587

G. De-grooth, J. Kuivenhoven, A. Stalenhoef, J. De-graaf, A. Zwinderman et al., Efficacy and Safety of a Novel Cholesteryl Ester Transfer Protein Inhibitor, JTT-705, in Humans: A Randomized Phase II Dose-Response Study, Circulation, vol.105, issue.18, pp.2159-2165, 2002.
DOI : 10.1161/01.CIR.0000015857.31889.7B

J. Kuivenhoven, G. De-grooth, H. Kawamura, A. Klerkx, F. Wilhelm et al., Effectiveness of Inhibition of Cholesteryl Ester Transfer Protein by JTT-705 in Combination With Pravastatin in Type II Dyslipidemia, The American Journal of Cardiology, vol.95, issue.9, pp.1085-1088, 2005.
DOI : 10.1016/j.amjcard.2004.12.064

E. Stein, E. Stroes, G. Steiner, B. Buckley, A. Capponi et al., Safety and Tolerability of Dalcetrapib??????Conflicts of interest: Dr. Stein has received grants for studies of lipid-modifying agents, has received consulting fees and honoraria for professional input regarding agents to modify lipid profile, and/or has delivered lectures for the American Association for Clinical Chemistry, Washington, District of Columbia; Abbott Laboratories, Abbott Park, Illinois; AstraZeneca, Wilmington, Delaware; the United States Food and Drug Administration, Washington, District of Columbia; F. Hoffmann-La Roche Ltd., Basel, Switzerland; Isis Pharmaceuticals, Inc., Carlsbad, California; Merck & Co., Whitehouse Station, New Jersey; the National Lipid Association, Jacksonville, Florida; Novartis International AG, Basel Switzerland; Reliant Pharmaceuticals, Inc., Liberty Corner, New Jersey; Daiichi Sankyo Co., Ltd., Tokyo, Japan; Schering-Plough Corporation, Kenilworth, New Jersey; Takeda Pharmaceutical Company Ltd., Osaka, Japan; and Wyeth, Madison, New Jersey. Dr. Stroes has received consulting fees and honoraria from F. Hoffmann-La Roche Ltd. and Novartis International AG. Dr. Steiner has received consulting fees and honoraria from F. Hoffmann-La Roche Ltd.; Solvay, Brussels, Belgium; Ethypharm S.A., Saint-Cloud, France; and Merck Frosst Canada Ltd. (Kirkland, Quebec, Canada)/Schering-Plough Corporation. Dr. Buckley has received research grants from AstraZeneca; Merck Sharp & Dohme, Dublin, Ireland; and Pfizer, Inc., New York, New York. Dr. Buckley has received honoraria and consulting fees and/or delivered lectures for AstraZeneca; Bristol-Myers Squibb, New York, New York; F. Hoffmann-La Roche Ltd.; Novartis International AG; Pfizer, Inc.; and Sanofi-Aventis, Paris, France. Dr. Capponi has received consulting fees and honoraria from F. Hoffmann-La Roche Ltd. Dr. Burgess is an employee of Hoffmann-La Roche Inc., Nutley, New Jersey. Drs. Niesor and Kallend are employees of F. Hoffmann-La Roche Ltd. Dr. Kastelein has received research grants, honoraria, or consulting fees for professional input and/or has delivered lectures for Pfizer, Inc.; Merck Sharp & Dohme; F. Hoffmann-La Roche Ltd.; Novartis International AG; Isis Pharmaceuticals, Inc.; Kowa Pharmaceutical Company Ltd., Nagoya, Japan; Schering-Plough Corporation; and AstraZeneca., The American Journal of Cardiology, vol.104, issue.1, pp.82-91, 2009.
DOI : 10.1016/j.amjcard.2009.02.061

F. Hermann, F. Enseleit, L. Spieker, D. Périat, I. Sudano et al., Cholesterylestertransfer protein inhibition and endothelial function in type II hyperlipidemia, Thrombosis Research, vol.123, issue.3, pp.460-465, 2009.
DOI : 10.1016/j.thromres.2008.06.022

O. Neill, E. Sparrow, C. Chen, Y. Eveland, S. Frantz-wattley et al., Identification and characterization of MK-0859, a novel cholesteryl ester transfer protein inhibitor, J Clin Lipidol, vol.1, p.367, 2007.

R. Krishna, M. Anderson, A. Bergman, J. B. Fallon, M. Cote et al., Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: two double-blind, randomised placebo-controlled phase I studies, The Lancet, vol.370, issue.9603, pp.1907-1914, 2007.
DOI : 10.1016/S0140-6736(07)61813-3

D. Bloomfield, G. Carlson, A. Sapre, D. Tribble, J. Mckenney et al., Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and coadministered with atorvastatin in dyslipidemic patients, American Heart Journal, vol.157, issue.2, pp.352-360, 2009.
DOI : 10.1016/j.ahj.2008.09.022

S. Kathiresan, O. Melander, C. Guiducci, A. Surti, N. Burtt et al., Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans, Nature Genetics, vol.81, issue.2, pp.189-197, 2008.
DOI : 10.1038/ng.75

B. Ansell, K. Watson, A. Fogelman, M. Navab, and G. Fonarow, High-Density Lipoprotein Function, Journal of the American College of Cardiology, vol.46, issue.10, pp.1792-1798, 2005.
DOI : 10.1016/j.jacc.2005.06.080

B. Staels, M. Maes, and A. Zambon, Fibrates and future PPAR?? agonists in the treatment of cardiovascular disease, Nature Clinical Practice Cardiovascular Medicine, vol.99, issue.9, pp.542-553, 2008.
DOI : 10.1038/ncpcardio1278

M. Brousseau, M. Diffenderfer, J. Millar, C. Nartsupha, B. Asztalos et al., Effects of Cholesteryl Ester Transfer Protein Inhibition on High-Density Lipoprotein Subspecies, Apolipoprotein A-I Metabolism, and Fecal Sterol Excretion, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.5, pp.1057-1064, 2005.
DOI : 10.1161/01.ATV.0000161928.16334.dd

L. Yvan-charvet, F. Matsuura, N. Wang, M. Bamberger, T. Nguyen et al., Inhibition of Cholesteryl Ester Transfer Protein by Torcetrapib Modestly Increases Macrophage Cholesterol Efflux to HDL, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.5, pp.1132-1138, 2007.
DOI : 10.1161/ATVBAHA.106.138347

C. Semenkovich, Insulin resistance and atherosclerosis, Journal of Clinical Investigation, vol.116, issue.7, pp.1813-1822, 2006.
DOI : 10.1172/JCI29024DS1

F. Sacks and E. Group, The role of high-density lipoprotein (HDL) cholesterol in the prevention and treatment of coronary heart disease: expert group recommendations, The American Journal of Cardiology, vol.90, issue.2, pp.139-143, 2002.
DOI : 10.1016/S0002-9149(02)02436-0

J. Genest, J. Mcnamara, D. Salem, and E. Schaefer, Prevalence of risk factors in men with premature coronary artery disease, The American Journal of Cardiology, vol.67, issue.15, pp.1185-1189, 1991.
DOI : 10.1016/0002-9149(91)90924-A

W. Kannel, High-density lipoproteins: Epidemiologic profile and risks of coronary artery disease, The American Journal of Cardiology, vol.52, issue.4, pp.9-12, 1983.
DOI : 10.1016/0002-9149(83)90649-5

E. Nobécourt, S. Jacqueminet, B. Hansel, S. Chantepie, A. Grimaldi et al., Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia, Diabetologia, vol.290, issue.3, pp.529-538, 2005.
DOI : 10.1007/s00125-004-1655-5

B. Hansel, P. Giral, E. Nobecourt, S. Chantepie, E. Bruckert et al., Metabolic Syndrome Is Associated with Elevated Oxidative Stress and Dysfunctional Dense High-Density Lipoprotein Particles Displaying Impaired Antioxidative Activity, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.10, pp.4963-4971, 2004.
DOI : 10.1210/jc.2004-0305