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Subnormal plasma levels of high-density lipoprotein cholesterol (HDL-C) constitute a major cardiovascular risk factor; raising low HDL-C
levels may therefore reduce the residual cardiovascular risk that frequently presents in dyslipidaemic subjects despite statin therapy. Cho-
lesteryl ester transfer protein (CETP), a key modulator not only of the intravascular metabolism of HDL and apolipoprotein (apo) A-I but
also of triglyceride (TG)-rich particles and low-density lipoprotein (LDL), mediates the transfer of cholesteryl esters from HDL to pro-
atherogenic apoB-lipoproteins, with heterotransfer of TG mainly from very low-density lipoprotein to HDL. Cholesteryl ester transfer
protein activity is elevated in the dyslipidaemias of metabolic disease involving insulin resistance and moderate to marked hypertriglyceridae-
mia, and is intimately associated with premature atherosclerosis and high cardiovascular risk. Cholesteryl ester transfer protein inhibition
therefore presents a preferential target for elevation of HDL-C and reduction in atherosclerosis. This review appraises recent evidence
for a central role of CETP in the action of current lipid-modulating agents with HDL-raising potential, i.e. statins, fibrates, and niacin, and
compares their mechanisms of action with those of pharmacological agents under development which directly inhibit CETP. New CETP
inhibitors, such as dalcetrapib and anacetrapib, are targeted to normalize HDL/apoA-I levels and anti-atherogenic activities of HDL particles.
Further studies of these CETP inhibitors, in particular in long-term, large-scale outcome trials, will provide essential information on their
safety and efficacy in reducing residual cardiovascular risk.
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Introduction
Despite the widespread use of statin therapy, the incidence of
cardiovascular morbidity and mortality remains elevated in many
patients with dyslipidaemia, and particularly in those exhibiting
metabolic disease and insulin resistance.1 In large landmark trials,
reduction in low-density lipoprotein cholesterol (LDL-C) levels
with statins has been shown to decrease the incidence of major
cardiovascular events by 25–45%.2– 4 Nonetheless, considerable
residual cardiovascular risk, which includes a high frequency of

recurrent events, remains even with an aggressive statin treatment
regimen.5– 9 New therapeutic options are clearly needed to further
improve the treatment of atherogenic dyslipidaemia by reducing
residual cardiovascular risk, especially with a view to reduction in
lifetime risk.

Several cross-sectional and prospective epidemiological studies
have demonstrated that high-density lipoprotein cholesterol
(HDL-C) is a strong, independent, inverse predictor of risk of cor-
onary heart disease (CHD).10– 14 More recently, elevated circulat-
ing levels of the major apolipoproteins (apo) of HDL, apoA-I and
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A-II, have been shown to predict decreased risk of CHD.15,16

A recent meta-analysis17 suggested, however, that increasing
HDL-C does not reduce the risk of cardiovascular events, and
that such risk reduction is attributable to LDL-C raising alone.
This finding is inconsistent with the weight of epidemiological
and experimental evidence, and may reflect several major limit-
ations in both design and methodology, including (i) the use of
aggregated rather than individual subject data, (ii) lack of consider-
ation of baseline triglyceride (TG) levels, (iii) inclusion of a majority
of statin-driven studies in which differences between on-treatment
and control levels of HDL-C were ,3%, (iv) the risk of bias by
confounding as this analysis describes an observational association,
(v) insensitivity to measurement errors, and finally (vi) the combi-
nation of data from trials involving agents with significant distinc-
tions in their action on HDL. Some prudence should therefore
be applied when interpreting potentially spurious conclusions.17

In contrast, a 16-year follow-up of the Bezafibrate Infarction Pre-
vention Study demonstrated that HDL-C-raising therapy was
associated with a reduction in risk of long-term mortality.18 More-
over, large-scale prospective clinical studies have shown that thera-
peutic raising of HDL-C levels is associated with attenuated
progression of intima-media thickening in the carotid artery,
slowed progression of coronary artery atherosclerosis, and
reduced cardiovascular risk.3,19– 22

It is equally relevant that infusion of the HDL mimetic ETC-216,
a lipidated form of recombinant apoA-I Milano, induced regression
of coronary atherosclerosis in a small cohort of patients with acute
coronary syndromes as evaluated by intravascular ultrasound
(IVUS).23 More recently, a single infusion of reconstituted HDL
particles induced acute changes in plaque composition and struc-
ture in a placebo-controlled study in patients exhibiting sympto-
matic atherosclerotic vascular disease in the superficial femoral
artery.24 Specifically, a 20% increment in HDL-C was associated
with reduction in lipid content, macrophage size, and the intra-
plaque expression of vascular cell adhesion molecule (VCAM-1;
–22%), consistent with reduction in intra-plaque inflammation.
Finally, meta-analysis of statin-mediated lipid changes in IVUS
trials in patients with incident coronary disease revealed that
targets of LDL-C � 87.5 mg/dL, together with HDL-C elevation
�7.5%, are required in order to stop atherosclerosis progression,
induce plaque regression, or both.21

Significantly, a recent post hoc analysis of the ‘Treating to New
Targets’ trial demonstrated that low HDL-C is predictive of
major cardiovascular events in patients receiving aggressive statin
therapy.25 Even among patients with LDL-C , 70 mg/dL, those
in the lowest quintile of HDL-C displayed an increased risk of
major cardiovascular events compared with those in the highest
quintile (P ¼ 0.03).

Circulating HDL particles are highly heterogeneous in structure,
intravascular metabolism, and anti-atherogenic activity, consisting
primarily of two major subpopulations: large, light, cholesteryl
ester (CE)-rich HDL2; and small, dense, CE-poor, protein-rich
HDL3.26,27 Such subpopulations may however be further fractio-
nated into multiple particle species by several methodologies,
including bi-dimensional electrophoresis, isopycnic density gradient
ultracentrifugation, immunoaffinity chromatography, and isotacho-
phoresis; the structural, metabolic, and functional significance of

such particle species, which are defined principally by their phys-
icochemical properties and/or apo content, remains the subject
of ongoing research.27 Indeed, recent proteomic analyses of
HDL have revealed the presence of up to 75 distinct proteins.28,29

Moreover, all human HDL subpopulations display biological activi-
ties in which apoA-I is intimately involved; these include cellular
cholesterol efflux capacity, and anti-oxidative, anti-inflammatory,
anti-apoptotic, vasodilatory, anti-thrombotic, and anti-infectious
actions.27,30,31 It is as a result of this spectrum of anti-atherogenic,
cardioprotective activities that therapeutic elevation in plasma
HDL concentration has become a major pharmacological target
in patients with metabolic disease and subnormal HDL-C levels
who typically exhibit high cardiovascular risk. In addition, the
finding that the anti-atherogenic activities of HDL are defective
in metabolic disease27,32 has identified the normalization of HDL
functionality as a complementary therapeutic target.

The current options available for therapeutic elevation of
HDL-C include statins, fibrates, and niacin (nicotinic acid), with
development of cholesteryl ester transfer protein (CETP) inhibi-
tors ongoing. Of these, niacin is the most effective, raising
HDL-C by 20–30%.7,33 However, the therapeutic potential of
niacin has been limited by its adverse effects; flushing occurs in
70–80% of the patients, although this may be attenuated by the
use of extended-release niacin (ERN) formulations.33– 35 Flushing
may also be reduced by combining ERN with a new prostaglandin
D2 receptor 1 antagonist, laropiprant (MK-0524).36 Indeed, in a
recent Phase II study, significant reductions in flushing were
observed in patients with dyslipidaemia treated with ERN plus lar-
opiprant compared with ERN alone (P , 0.001), with no altera-
tions in the beneficial lipid effects of ERN.36 In early 2008, the
combination ERN/laropiprant formulation received approval for
marketing authorization from the European Medicines Agency,
but approval was delayed by the US Food and Drug Administration
until findings in the Heart Protection Study 2—Treatment of HDL
to Reduce the Incidence of Vascular Events (HPS2-THRIVE)
become available.

Although statins efficaciously reduce LDL-C levels, they are not
normally adequate as monotherapy to raise HDL-C, nor to correct
HDL-associated cardiovascular risk in low HDL-C subjects, due to
their modest effect on HDL-C levels (up to 16%).7,19,37,38 Fibric
acid derivatives (fibrates) may increase HDL-C by up to 20%,39

but their efficacy may depend upon several factors.37,40 Like
niacin, fibrates may be used in combination with statins, provided
creatine kinase levels are monitored.7 In the Veterans Affairs High-
Density Lipoprotein Intervention Trial (VA-HIT), which evaluated
gemfibrozil treatment on cardiovascular morbi-mortality, circulat-
ing levels of small dense HDL3 (but not the larger HDL2 subfrac-
tion) at baseline and percentage change during treatment were
significantly related to the incidence of CHD events.41 Moreover,
niacin, statins, and fibrates modify other components of the lipid
profile, often to a greater degree than their impact on HDL-C
but clinical benefit associated with changes in individual lipoprotein
classes is difficult to establish. For example, statins induce a marked
reduction in the entire cascade of apoB-containing lipopro-
teins;42,43 the contribution of the substantially smaller effect on
HDL-C towards cardiovascular risk reduction is therefore difficult
to assess. Furthermore, it is unclear as to whether large or small
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HDL subfractions are distinct with respect to the degree of ather-
oprotection potentially conferred, although small, CE-poor, dense
HDL3 are particularly active in vitro.31,33 Indeed, the hypothesis that
all subfractions of HDL particles exert atheroprotection through
one or more mechanisms appears both plausible and attractive
at the present time.

The clinical benefits of raising low HDL-C levels observed in
lipid intervention trials and the limitations of available therapies
have stimulated the search to identify new, more efficacious
HDL-raising agents. The marked increase in HDL-C associated
with human deficiency of CETP44 suggested CETP inhibition as a
novel and potentially effective approach to elevate HDL-C.
Indeed, we interpret available evidence from prospective and
cross-sectional epidemiological studies to support the overall con-
tention that reduction of CETP activity, particularly when supra-
normal as typically occurs in dyslipidaemic subjects at high
cardiovascular risk,45 constitutes a potential strategy for decreasing
atherosclerosis and cardiovascular disease.3,46 –49

This critical and timely review provides an integrated view of the
role of CETP in cholesterol homeostasis and metabolism in man,
identifies CETP as a central actor in the mechanisms of action of
the major anti-dyslipidaemic agents which are currently available,
and finally compares the principal features of pharmacological
agents in development that directly target CETP. To ensure
thorough identification of relevant publications, the PubMed data-
base was searched (2002–present) using pre-defined keywords:
cholesteryl ester transfer protein, CETP inhibitor, reverse choles-
terol transport, TGs, HDL, statins, and fibrates.

The role of high-density
lipoprotein and cholesteryl ester
transfer protein in cholesterol
metabolism
Although HDL exhibits a number of anti-atherosclerotic activities
that appear to contribute to the cardiovascular benefits afforded
by raising HDL levels, the major contribution is thought to be
due to the key role of HDL particles in the atheroprotective
reverse cholesterol transport (RCT) process. This anti-atherogenic
pathway has been reviewed extensively and is summarized schema-
tically in Figure 1;31,50 it involves the HDL-mediated efflux of
cholesterol from peripheral tissues, including cholesterol-loaded
monocyte-derived macrophages and foam cells in the arterial
wall, with subsequent transport to the liver either for excretion
as biliary cholesterol and bile acids, or for recycling.

A major quantitative route for delivery of cholesterol to the liver
is represented by the CETP-mediated transfer of CE from HDL to
apoB-containing particles, mainly very low-density lipoprotein
(VLDL) and LDL, with subsequent uptake primarily by hepatic
LDL receptors;26,45,49,51,52 this pathway is frequently referred to
as the indirect RCT pathway and accounts for some 70% of CE
delivery to the liver in man (Figure 1). Cholesteryl ester transfer
protein is secreted primarily by the liver and adipose tissue, and
circulates in plasma associated principally with HDL.45,53 It pro-
motes the transfer of CE from HDL to VLDL and LDL, in exchange

for TG which moves in the opposite direction (Figure 2); the
endogenous plasma activity of CETP is modulated to a major
degree by the magnitude of triglyceridaemia.49 Indeed the rapid
intravascular turnover of VLDL (half-life ,30 min) is consistent
with maintenance of a non-steady state in the plasma CE pool,
with net mass transfer of CE from HDL to VLDL by CETP.51

Critically, CETP may exert both pro-atherogenic and anti-
atherogenic actions.3 In its pro-atherogenic dimension, CETP-
mediated CE transfer may effectively reduce the flux of cholesterol
through HDL to hepatic scavenger receptor B1 (SR-B1) and HDL
receptors in the direct RCT pathway,51 concomitantly enhancing
the mass of cholesterol transported by atherogenic VLDL,
intermediate-density lipoprotein (IDL), remnants, and LDL. In
this way, the cholesterol burden of these particles is increased,
potentially resulting in enhanced deposition in peripheral tissues
and the arterial wall.54 As we and others have proposed, this
mechanism may be of special relevance in the post-prandial
state.45,55 In moderate to marked hypertriglyceridaemia, a
second major CETP-mediated, pro-atherogenic pathway is of criti-
cal importance. Thus, under such conditions, elevated levels of
apoB-containing acceptor particles for CETP drive enhanced trans-
fer of TG from VLDL to HDL, leading to TG enrichment of HDL
with abnormal intravascular metabolism involving reduction in par-
ticle size and fall in HDL-C and apoA-I levels due to accelerated
renal catabolism (see below).45,56

In contrast, however, CETP may exert anti-atherogenic impact
as it promotes the flux of CE to the liver via indirect RCT, with
hepatic CE uptake predominantly through the anti-atherogenic
LDL receptor pathway. Furthermore, CETP is critical to optimiz-
ation of LDL particle structure and apoB100 conformation for
high affinity binding to LDL receptors.45,57

As indicated above, CETP is centrally implicated in post-prandial
hypertriglyceridaemia, an independent risk factor for CHD.3,58 –61

The post-prandial state is characterized by the transient accumu-
lation of intestinally derived chylomicrons (CM) and hepatically
derived VLDL and their remnants, which may infiltrate and
undergo retention in the arterial wall.62 During the lipolytic
process, surface components (mainly phospholipids and free
cholesterol) of CM and VLDL are sequestered to HDL due in
part to the action of phospholipid transfer protein (PLTP). In post-
prandial hypertriglyceridaemia, CETP-mediated transfer of CE and
TG between plasma lipoprotein particles is accelerated as a direct
consequence both of increase in the absolute number of apoB-
containing acceptor particles for CE, and of major increase in
the cumulative surface area under the curve for these particles
during the 8 h post-prandial phase, thereby favouring CE
enrichment of TG-rich lipoproteins with concomitant transform-
ation of CE-enriched HDL into TG-rich HDL particles
(Figure 2).45,53,59,63 –65 Triglyceride enrichment of HDL is deleter-
ious, as it leads to a loss of apoA-I from the HDL particle; in
addition, hepatic lipase-mediated hydrolysis of HDL phospholipids
and TG leads to reduction in HDL particle size.56,66 Accelerated
catabolism of HDL and apoA-I ensues via the renal pathway,
with decrease in plasma levels of both HDL-C and apoA-I.56,66

The action of CETP during the post-prandial phase has been
shown to differ in normolipidaemic subjects when compared
with that in patients with the mixed dyslipidaemic phenotype
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typical of premature coronary artery disease, type 2 diabetes, and
the metabolic syndrome.45,59,65 In the post-prandial phase, CETP-
mediated net CE transfer flux from HDL to potentially atherogenic
TG-rich lipoproteins (especially large VLDL1) is markedly
enhanced in mixed (type IIB) dyslipidaemia compared with normo-
lipidaemic controls (Figure 2); such enhanced CE mass transfer
occurs concomitantly with elevated levels of TG-rich particles
which are maintained over the 8 h post-prandial phase and act as
preferential acceptors of CE. In contrast, the area under the
curve for triglyceridaemia is up to four-fold lower over the post-
prandial phase in normolipidaemic controls, who typically display
peak TG levels at 2–4 h of less than �150 mg/dL.59

The nature of the assay employed for evaluation of CETP activity
in plasma is of special relevance to the above discussion; indeed,
in vitro assays of CETP activity provide contrasting data depending
on whether endogenous or exogenous substrate(s) are employed.
Assays involving the addition of exogenous CE donors (HDL) or
acceptors (VLDL and/or LDL) are most frequently used.
Such assays reflect the maximal transfer capacity of CETP
protein present in a given plasma sample as substrate concen-
trations are not rate-limiting. Under these conditions, the biologi-
cal activity quantified is not the same as that occurring
endogenously in plasma. Thus endogenous assays of CETP activity
do not involve addition of exogenous CE acceptors or donors, and

Figure 1 Pathways of reverse cholesterol transport in man. The reverse cholesterol transport system involves lipoprotein-mediated trans-
port of cholesterol from peripheral, extra-hepatic tissues, and arterial tissue (potentially including cholesterol-loaded foam cell macrophages of
the atherosclerotic plaque) to the liver for excretion, either in the form of biliary cholesterol or bile acids. The ATP-binding cassette transpor-
ters, ABCA1 and ABCG1, and the scavenger receptor B1, are all implicated in cellular cholesterol efflux mechanisms to specific apoA-I/HDL
acceptors. The progressive action of lecithin:cholesterol acyl transferase on free cholesterol in lipid-poor, apolipoprotein A-I-containing nascent
high-density lipoproteins, including pre-b-HDL, gives rise to the formation of a spectrum of mature, spherical high-density lipoproteins with a
neutral lipid core of cholesteryl ester and triglyceride. Mature high-density lipoproteins consist of two major subclasses, large cholesteryl ester-
rich HDL2 and small cholesteryl ester-poor, protein-rich HDL3 particles; the latter represent the intravascular precursors of HDL2. The
reverse cholesterol transport system involves two key pathways: (a) the direct pathway (blue lines), in which the cholesteryl ester content
(and potentially some free cholesterol) of mature high-density lipoprotein particles is taken up primarily by a selective uptake process involving
the hepatic scavenger receptor B1, and: (b) an indirect pathway (red lines) in which cholesteryl ester originating in high-density lipoprotein is
deviated to potentially atherogenic very low-density lipoprotein, intermediate-density lipoprotein, and low-density lipoprotein particles by cho-
lesteryl ester transfer protein. Both the cholesteryl ester and free cholesterol content of these particles are taken up by the liver predominantly
via the low-density lipoprotein receptor which binds their apoB100 component. This latter pathway may represent up to 70% of cholesteryl
ester delivered to the liver per day.51 The hepatic low-density lipoprotein receptor is also responsible for the direct uptake of high-density
lipoprotein particles containing apoE; apoE may be present as a component of both HDL2 and HDL3 particles, and may be derived either
by transfer from triglyceride-rich lipoproteins, or from tissue sources (principally liver and monocyte-macrophages). Whereas high-density lipo-
protein uptake by the low-density lipoprotein receptor results primarily in lysosomal-mediated degradation of both lipids and apolipoproteins,
interaction of high-density lipoprotein with scavenger receptor B1 regenerates lipid-poor apoA-I and cholesterol-depleted high-density lipopro-
teins, both of which may re-enter the HDL/apoA-I cycle.27 LPL, lipoprotein lipase; PL, phospholipids; HDL-R, holo HDL receptor; HL, hepatic
lipase.
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measure the net mass transfer of CE from HDL to acceptor VLDL
and LDL particles at their plasma concentrations; such endogenous
activity is modulated primarily by the relative concentrations of CE
donor and acceptor particles, their lipid and protein composition,
circulating CETP protein levels, and finally, the plasma half-life of
the respective particles. For clinical studies of CETP activity,
when the status of the integrated CETP system in the plasma of
a given subject is to be evaluated, then the endogenous assay is
most appropriate, as it uniquely respects endogenous levels of all
the components of the CETP system in the sample.45

Lipid-modulating agents that act
to modify the atherogenic lipid
profile via indirect or direct action
on cholesteryl ester transfer
protein
Abundant evidence from in vivo and in vitro studies reveals that the
current pharmacological agents (i.e. statins, fibrates, and niacin)
commonly used in the treatment of atherogenic dyslipidaemia
share the characteristic that their mechanisms of action

involve—to varying degrees—direct and/or indirect reduction in
plasma CETP activity. Such pharmacologically mediated modu-
lation of CETP typically occurs either through reduction in
numbers of apoB-containing lipoprotein acceptor particles (CM,
VLDL, remnants, and LDL) for CETP-mediated CE transfer
during the fasting and/or post-prandial phases, or through effects
on CETP gene expression with resulting alteration in circulating
concentrations of CETP protein, or both. These effects are
especially relevant to the atherogenic lipid profile typical of type
2 diabetes and metabolic syndrome; such dysmetabolic states
not only feature the atherogenic lipid triad, i.e. elevated levels of
TG-rich lipoproteins and small dense LDL, together with subnor-
mal levels of HDL-C, but also elevated levels of endogenous CETP
activity, a key driver of this lipid phenotype.3,45 Indeed, supranor-
mal CETP activity equally favours the qualitative abnormalities in
HDL particles discussed above, which are intimately associated
with defective anti-atherogenic function.3,27

Statins
In all common forms of atherogenic dyslipidaemia, notably
hypercholesterolaemia and mixed dyslipidaemia, therapy to attenu-
ate atherosclerosis and cardiovascular risk is firmly focused on
marked reduction of circulating concentrations of atherogenic

Figure 2 Comparison of pathways of cholesteryl ester transfer protein-mediated heterotransfer of neutral core lipids between lipoprotein
particles in normotriglyceridaemia vs. mixed dyslipidaemia involving moderate to marked hypertriglyceridaemia and subnormal levels of
triglyceride-enriched high-density lipoprotein. In normotriglyceridaemia, net cholesteryl ester transfer from high-density lipoprotein to low-
density lipoprotein predominates, with minor transfer to triglyceride-rich lipoproteins. In hypertriglyceridaemic states, increased numbers of
very low-density lipoprotein particles constitute preferential cholesteryl ester acceptors giving rise to elevated acceptor capacity for cholesteryl
ester transfer protein; high net mass transfer rates of cholesteryl ester from high-density lipoprotein to triglyceride-rich lipoproteins and of
triglyceride from triglyceride-rich lipoproteins to both high- and low-density lipoproteins result. Triglyceride enrichment of both high- and low-
density lipoproteins by this mechanism gives rise to formation of small dense low-density lipoprotein and small dense high-density lipoprotein.45

Modified from Barter et al.49 (with permission from Lippincott Williams and Wilkins).
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lipoproteins (LDL, VLDL, and remnants) with inhibitors of
endogenous cholesterol synthesis, i.e. statins.37 A number of clini-
cal trials have however revealed that statins typically induce
modest and sustained elevation in HDL-C of up to 16%;37,67

most frequently, such elevations are in the range of 5–10% as
revealed in the recent VOYAGER meta-analysis.38 The mechan-
ism(s) underlying the statin-mediated increase in HDL-C is
unclear, but appears to be multiple. Significantly, both in vitro and
in vivo studies, in addition to post hoc analyses from large statin-
related outcomes studies, have identified key factors which may
contribute to the HDL response and facilitate deduction of puta-
tive mechanisms. In sum, these studies have revealed that statins
reduce supranormal rates of endogenous CETP-mediated CE
transfer from HDL to atherogenic particles in dyslipidaemic sub-
jects.3,42,43,45 This effect, whether in normolipidaemic or dyslipi-
daemic subjects, or in animal models, involves several
mechanisms which include reduction in the number of apoB-
containing lipoprotein particles available to accept CE from HDL,
and down-regulation of hepatic CETP mRNA expression with sub-
sequent reduction of circulating plasma CETP concentration. As
the absolute degree of reduction in baseline levels of apoB-
containing particles by statins is largely dose-dependent for each
statin, it is predictable that incremental statin-mediated reduction
in atherogenic lipoprotein acceptor levels drives concomitant
reduction in CETP activity (Table 1). Thus, the most potent
statin, rosuvastatin, at its highest dose (40 mg/day), induced decre-
ments of 12 and 59%, respectively, in CETP activity in hypercholes-
terolaemic and in mixed dyslipidaemic subjects, together with
reductions in plasma CETP mass of 33–37%.42 The superior
reduction in CETP activity seen in mixed dyslipidaemia reflects
potent reduction in TG-rich lipoproteins, notably the VLDL1 sub-
fraction (–46%), the most avid CE acceptor particle.42,43,71 Indeed,
earlier studies with atorvastatin (10 mg/day) in a similar mixed lipid
phenotype revealed that decrease in CETP activity was significantly
correlated with statin-mediated reduction in VLDL1 levels.43

Clearly then, the effects of statins on lipoprotein profile and
CETP activity are intimately related and are at least in part depen-
dent on baseline lipid phenotype. Statins equally appear to moder-
ately enhance hepatic apoA-I production (10–15%) and reduce
CETP gene expression by inhibiting cholesterol biosynthesis in
the liver;72 the cholesterol response element in the promoter of
the CETP gene presumably underlies this latter effect.73,74 Finally,
statin-induced increase in HDL-C may in part be attributable to
enhanced peroxisome proliferator-activated receptor (PPAR) a

activity, which may stimulate both hepatic apoA-I synthesis and
HDL formation.75

Further lines of evidence support an effect of statins on CETP
activity; first, the degree of change in HDL-C is directly related
to the degree of reduction in TG and LDL-C,37 and secondly, a
shift in the HDL particle distribution towards larger, relatively
cholesterol- and apoA-I-rich HDL particles typical of HDL2
observed in statin-treated populations, including patients displaying
heterozygous familial hypercholesterolaemia.43,68,72,76,77 Further-
more, lifestyle factors known to influence plasma CETP activity,
such as alcohol intake, body mass index, and reduction in plasma
TG, are also independent contributors to statin-induced change
in HDL-C.78,79

The activity of hepatic lipase, an enzyme which hydrolyses both
lipoprotein phospholipids and TG, may be moderately attenuated
(up to –22%) on a dose-dependent basis by statin treatment.80

This effect favours maintenance of HDL/apoA-I lipidation—and
thus prolonged apoA-I plasma residence time—and may indeed
amplify the effect of statins in up-regulating apoA-I production.
Further studies are needed, however, not only to determine
how the above mechanisms mutually interact to favour elevation
in circulating HDL-C and apoA-I levels, but also to establish
whether statin-mediated effects on CETP activity, HDL-C, and
apoA-I levels independently contribute to cardiovascular benefit
in dyslipidaemic patients.

Fibrates
Early prospective trials of fibrates and of niacin promoted the
concept that raising HDL-C levels by therapeutic means81– 83

would translate into clinical benefit in dyslipidaemic patients at
high cardiovascular risk.

Fibrates are a chemically heterogeneous class of agents, among
which the most widely clinically used, fenofibrate, is primarily a
PPARa-agonist of moderate affinity.84 Fibrates bind to PPARa by
mimicking the structure of free fatty acids85 and may increase
HDL-C by up to 20% as a function of baseline lipid phenotype.39,86

Fibrates appear to increase HDL-C levels in part by reducing
plasma CETP activity, an action associated primarily with the
potent ability of these agents to lower levels of TG-rich acceptor
lipoproteins for CE, mainly VLDL, in both the fasting and post-
prandial phases45,58,69,70 (Table 1). The capacity of fibrates to
reduce (endogenous) plasma CETP concentration by up to
226% in patients with mixed dyslipidaemia69 appears related at
least in part to CETP gene expression, suggesting that fibrates
may modulate CETP gene expression through activation of
PPARa.45 Reduction in VLDL, and specifically in the VLDL1 sub-
fraction, following treatment with fenofibrate or ciprofibrate in
patients with mixed dyslipidaemia was associated with a significant
decrease (up to –35%) in the CETP-mediated transfer and target-
ing of CE from HDL to these particles.69,70 Reduction in the CETP-
mediated flux of CE from HDL to VLDL therefore represents a
common feature of the impact of statins and fibrates on the per-
turbed intravascular cholesterol metabolism characteristic of
mixed dyslipidaemia.3,37,45

Fibrates also mediate modification in qualitative features of HDL
and LDL particles.40,87 Thus, fenofibrate induced increases in the
mass of light HDL subspecies at the expense of dense HDL3 par-
ticles in mixed dyslipidaemia, and equally shifted the dense LDL
profile to a normalized distribution in which particles of lower
density predominated; reduction in CETP activity is readily impli-
cated in each of these effects.69,70,87 Fibrates preferentially
enhance concentrations of apoA-I plus apoA-II-containing HDL
particles with physicochemical properties intermediate between
those of large HDL2 and small dense HDL3.88,89 Such action is
in contrast to that of statins, however, which induce increase in
the apoA-I-rich HDL subpopulation of largest size (a-1-HDL par-
ticles).48,76,77 The effect of fibrates on HDL particle subspecies
result in part from fibrate-mediated up-regulation of apoA-I and
apoA-II gene expression, although the increment in their plasma
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Table 1 Effect of statins and fibrates on endogenous plasma cholesteryl ester transfer protein activity, cholesteryl ester transfer protein mass, and the atherogenic
lipid profile in dyslipidaemic subjects

Lipid-lowering
agent

Lipid phenotype Patient
status

TG (mg/dL) VLDL-C
(mg/dL)

LDL-C
(mg/dL)

HDL-C
(mg/dL)

ApoB
(mg/dL)

ApoA-I
(mg/dL)

Reduction in CE transfer
rates from HDL to
apoB-lipoproteins
(mg CE/h/mL plasma)

CETP mass
(mg/mL)

Statins

Pravastatin
40 mg/day68

HFH Baseline 108 10 258 52 192 149 –18% ND
On-treatment 71 (–34%) 10 (0%) 167 (–35%) 52 (0%) 133 (–31%) 139 (–7%) ND

Atorvastatin
10 mg/day43

Mixed (combined)
hyperlipidaemia (IIb)

Baseline 197 46 175 46 144 132 221% ND
On-treatment 144 (–27%) 26 (–43%) 111 (–37%) 46 (0%) 99 (–31%) 135 (þ2%) ND

Rosuvastatin
40 mg/day42

Hypercholesterolaemia
(IIa)

Baseline 121 15 172 57 127 125 212% 1.8
On-treatment 89 (–26%) 10 (–36%) 68 (–60%) 62 (þ9%) 65 (–49%) 144 (þ15%) 1.2 (–33%)

Mixed (combined)
hyperlipidaemia (IIb)

Baseline 234 36 164 42 134 124 259% 1.9

On-treatment 157 (–33%) 18 (–50%) 72 (–56%) 46 (þ11%) 69 (–49%) 133 (þ7%) 1.2 (–37%)

Fibrates

Fenofibrate
200 mg/day69

Mixed (combined)
hyperlipidaemia (IIb)

Baseline 289 48 185 37 157 132 230% ND
On-treatment 161 (–44%) 23 (–52%) 159 (–14%) 44 (þ19%) 133 (–15%) 148 (þ12%) ND

Ciprofibrate
100 mg/day70

Mixed (combined)
hyperlipidaemia (IIb)

Baseline 198 43 186 37 147 150 225% ND
On-treatment 108 (–45%) 25 (–42%) 149 (–20%) 42 (þ14%) 109 (–26%) 156 (þ5%) ND

Mixed (combined) hyperlipidaemia is alternatively referred to as mixed or combined dyslipidaemia. Apo, apolipoprotein; CE, cholesteryl ester; CETP, cholesteryl ester transfer protein; HDL, high-density lipoprotein; HFH, heterozygous familial
hypercholesterolaemia; ND, not determined; TG, triglyceride; VLDL-C, very low-density lipoprotein cholesterol.
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levels of apoA-I is minor as their fractional catabolic rate in the
plasma compartment is accelerated.90

Other documented effects of fibrates on HDL metabolism
result from PPARa-mediated up-regulation of lipoprotein lipase
activity with enhanced lipolysis of CM and VLDL, resulting in
release of surface fragments containing phospholipid and free
cholesterol that sequester to the HDL pool under the action of
PLTP; this latter effect may be amplified by PPARa-mediated
attenuation of the hepatic synthesis and production of
apoC-III.89,91,92 The potent TG-lowering action of fibrates is of
course central to the attenuation of elevated basal levels of
CETP activity in dyslipidaemic subjects, as it effects marked
reduction in numbers of TG-rich particle acceptors with high
avidity for CETP. Finally, enhanced cholesterol efflux from macro-
phages to HDL/apoA-I acceptors subsequent to PPARa-mediated
up-regulation of SR-B1 and ABCA1 expression may impact on
plasma HDL-C levels to a minor degree.93

As emphasized earlier, the impact of fibrates is largely a function
of baseline lipid levels;40,91 the effects of both gemfibrozil and feno-
fibrate on plasma HDL-C levels are most pronounced when fasting
levels of TG and TG-rich lipoproteins are elevated, and when base-
line HDL-C levels are low.91,94 As with statins, the question can be
legitimately raised as to the relative contribution of HDL-raising to
cardiovascular benefit by fibrates, particularly given the wide range
of anti-inflammatory actions of these agents.91,92

In regard to the impact of fibrates on cardiovascular disease,
fenofibrate reduced angiographic progression of CHD in patients
with type 2 diabetes,95,96 whereas gemfibrozil significantly
reduced the frequency of non-fatal myocardial infarction or
death attributable to CHD by 22% relative to placebo in the
VA-HIT Trial.83 The FIELD trial, however, failed to show this in
type 2 diabetes patients in a primary prevention context.97 In
the Helsinki Heart Study, the observed reduction in major coron-
ary events in subjects without CHD, but with non-HDL-C .

200 mg/dL, was attributed in part to the gemfibrozil-induced
increase in HDL-C.82 Similarly, in men with known CHD and
low HDL-C in the VA-HIT study, cardiovascular event reduction
was shown to be inversely related to HDL-C level, and particularly
that of HDL3, but not to change in either TG or LDL-C.41,83 It is
noteworthy, however, that absolute increments in HDL-C in these
studies were 11 and 6%, respectively, and that reductions in TG
levels were at least three-fold greater (35 and 31%, respectively).

Importantly, a pooled meta-analysis of long-term randomized
placebo-controlled clinical trails with fibrates has revealed that
these agents significantly reduce the occurrence of non-fatal myo-
cardial infarction, but are without significant effect on other
adverse cardiovascular outcomes.98 Recent subgroup analyses
have however revealed that subjects displaying the lipid triad in
conjunction with a metabolic syndrome phenotype appear to
benefit significantly from fibrate therapy; the mechanistic basis of
such findings is indeterminate, but suggests that in addition to
their effects on the lipid profile, fibrates may beneficially attenuate
vascular and systemic inflammation due to PPARa-mediated down-
regulation of a wide spectrum of pro-inflammatory genes.91,92,99,100

In summary, statins and fibrates act in part by similar mechan-
isms to attenuate supranormal CETP activity in atherogenic dyslipi-
daemia by reducing acceptor particle numbers for HDL CE. Other

aspects of the actions of fibrates which influence the concen-
trations and qualitative aspects of HDL particles (notably those
focused on TG-rich particles involving the lipolytic pathway)
appear to be distinct from those not only of statins, but also of
niacin and CETP inhibitors (see below).

Niacin
The broad spectrum action and efficacy of niacin (nicotinic acid;
vitamin B3) in markedly lowering elevated concentrations of
TG-rich lipoproteins, IDL, LDL, and Lp(a), together with its
capacity to raise HDL-C, are especially notable. Indeed, niacin is
presently the most effective agent available for raising HDL-C, typi-
cally increasing levels by up to 30% on a dose-dependent
basis.3,7,24,33,101 The clinical benefits associated with niacin treat-
ment, both as monotherapy or in combination with a statin,
feature attenuation of atherosclerosis progression and/or induction
of plaque regression in addition to reduction in cardiovascular risk,
and have been reviewed elsewhere.22 The mechanisms underlying
the action of niacin in reducing plasma VLDL, LDL, and apoB levels
in vivo involve enhanced clearance of TG-rich lipoproteins contain-
ing either apoB100 or B48,102 although evidence is equally available
to support decreased rates of VLDL production; such discrepan-
cies may depend upon the metabolic background.103 Only recently
has attention been focused on delineating the mechanisms which
underlie the HDL-raising action of niacin.102,104,105 Four key pro-
cesses are considered to contribute to niacin-mediated elevation
in apoA-I and HDL-C levels: (i) up-regulation of apoA-I production
rate (þ24%) relative to placebo without change in fractional cata-
bolic rate,102 with no change in either the concentration of or
kinetic parameters for apoA-II; (ii) the ability of niacin to exert
transient inhibition of hormone-sensitive TG lipase in adipose
tissue and attenuate liberation of free fatty acids via TG lipolysis,
with consequent reduction in hepatic VLDL-TG production,
plasma VLDL levels, and thence in CETP-mediated depletion of
HDL-CE; (iii) reduction in plasma CETP activity as a result of the
combined effect of reduction in hepatic CETP gene expression,
plasma CETP mass, and numbers of apoB-containing acceptor par-
ticles available for HDL-CE (see below);104,106 and (iv) reduction in
the hepatic uptake of HDL, potentially by the holo-particle uptake
pathway.107,108 Considered together, these processes would feasi-
bly increase the plasma residence time of HDL and apoA-I and
thus increase HDL-C levels. Such action is entirely consistent
with recent findings in low HDL-C human subjects with established
CAD who were treated with a niacin/statin combination, and in
whom abnormalities in the HDL proteome were partially
reversed.109 Finally, the potential role of niacin in enhancing choles-
terol efflux via ABCA1 from macrophages to HDL acceptors, with
positive impact on HDL-C levels, cannot be excluded.110 The
above observations concur to place CETP firmly at the centre of
the processes mediated by niacin treatment which directly lead
to efficacious elevation of both HDL-C and apoA-I.

Cholesteryl ester transfer protein
inhibitors
Several efficacious chemical CETP inhibitors have been identified;
these include torcetrapib (Pfizer, New York, NY, USA), dalcetrapib
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(previously referred to as RO4607381/JTT-705, Roche/Japan
Tobacco, Basel, Switzerland), and anacetrapib (MK-0859, Merck
& Co., Whitehouse Station, NJ, USA). Molecular insight into the
mechanism of action of these inhibitors has become possible as
a result of the definition of the crystal structure of CETP.111

Thus, the identification of a hydrophobic substrate-binding tunnel
in the three-dimensional structure of CETP which can accommo-
date two molecules of neutral lipid (either CE or TG, or one of
each) is especially relevant to the mechanisms of action of these
inhibitors, and notably to that of torcetrapib.111,112

Torcetrapib
Torcetrapib is a potent inhibitor of CETP activity (IC50 value
�50 nM),112 enhancing the association between CETP and HDL
to form a complex that inhibits the transfer of lipids between
HDL and other lipoproteins.47 Data from a number of clinical
studies performed in dyslipidaemic patients indicate that torcetrapib
has beneficial effects on an atherogenic lipoprotein profile.113 – 115

However, in late 2006, The Investigation of Lipid Level Manage-
ment to Understand its Impact in Atherosclerotic Events (ILLUMI-
NATE) trial, which investigated the effects of atorvastatin (10 mg/
day) plus torcetrapib (60 mg/day) or placebo in patients at high risk
of CHD,116 was prematurely halted by the Data and Safety Moni-
toring Board. Despite the highly favourable changes in lipid profile
(HDL-C levels þ72%, LDL-C –25%), a significant increase in all-
cause mortality [hazard ratio (HR), 1.58; 95% confidence interval
(CI), 1.14–2.19; P ¼ 0.006] and cardiovascular events (HR, 1.25;
95% CI, 1.09–1.44; P ¼ 0.001) was seen for torcetrapib plus ator-
vastatin therapy for 12 months compared with atorvastatin plus
placebo. As in small clinical trials with torcetrapib,113,117 elevation
in blood pressure was observed in ILLUMINATE (mean systolic
blood pressure increment of 5.4 mmHg) along with changes in
electrolyte levels and elevated aldosterone levels, suggesting that
torcetrapib may have off-target effects unrelated to HDL-raising.
Studies in rats support a relationship between torcetrapib-
mediated changes in blood pressure and aldosterone level, reveal-
ing that torcetrapib raised blood pressure with concomitant
increase in expression of component genes of the renin–angioten-
sin–aldosterone system (RAAS) in adrenal tissue.118 Structure–
activity investigations have provided further evidence that the
hypertensive effects of torcetrapib are unrelated to CETP
inhibition.119

Three prospective clinical trials of torcetrapib120 –122 reported
increments in systolic blood pressure of 2.8–5.4 mmHg; a
pooled analysis of two of the trials121,122 reported elevation in
plasma sodium and bicarbonate levels and reduction in potassium
levels, supporting the contention that an off-target mineralocorti-
coid excess in patients administered torcetrapib contributed to
the adverse outcome in ILLUMINATE.123 These trials used
imaging modalities to evaluate atherosclerosis progression (ILLUS-
TRATE)120 and carotid intima-media thickening (CIMT; RADI-
ANCE 1, RADIANCE 2).121,122 Although substantial increases in
HDL-C (54–63%) and reductions in LDL-C (18–20%) from base-
line were observed, torcetrapib plus atorvastatin failed to diminish
maximum CIMT in patients with familial hypercholesterolaemia121

and in mixed dyslipidaemia;122 equally, this combination did not sig-
nificantly decrease IVUS-assessed atheroma volume in patients

with CHD.120,124 Although overall findings in the ILLUSTRATE
trial did not reveal a beneficial impact of torcetrapib treatment
on the progression of coronary atheroma, a post hoc analysis
showed that patients exhibiting the greatest HDL-raising response
(HDL-C . 87 mg/dL) displayed the lowest rate of progression of
per cent atheroma volume (–0.7 vs. þ0.7%, P ¼ 0.0003).124

It has nonetheless been hypothesized that HDL function may be
impaired by torcetrapib, either by a direct mechanism or indirectly
by CETP inhibition.32 Torcetrapib-associated HDL dysfunction
might result directly from the formation of non-productive com-
plexes in which torcetrapib binds to CETP in a 1:1 ratio, forming
a larger complex with HDL particles.112,125 However, calculation
shows that for plasma concentrations of HDL 6–10 mM, and
CETP 20–60 nM, only up to 1% of HDL particles could contain
a single molecule of torcetrapib bound to CETP—at this level
potential HDL particle dysfunction resulting from direct binding
of torcetrapib would be undetectable unless inactive complexes
were purified; in addition, any torcetrapib in excess of that
bound to CETP-HDL complexes appears to partition preferentially
into TG-rich lipoproteins (R. Clark, personal communication).

Equally, CETP inhibition could potentially result in the gener-
ation of HDL particles with deficient anti-atherogenic properties
despite absence of bound torcetrapib; for example, large HDL par-
ticles enriched in apoA-I and CE might exert deleterious effects on
the direct or indirect RCT pathways and on steroid metab-
olism.32,126 Further evidence for the functionality of HDL particles
formed under torcetrapib treatment has recently been reported127

in mixed dyslipidaemic subjects with low HDL-C and elevated TG
levels at baseline; CETP inhibition favoured modification towards
normalization of the abnormally low neutral core lipid ratio (CE/
TG) in all HDL particles including HDL2 and HDL3 subfractions.
These findings support the contention that selective CETP inhi-
bition favourably modulates the abnormal physicochemical proper-
ties of HDL2 and HDL3 particles in mixed dyslipidaemia,
concomitantly enhancing both cholesterol efflux and selective
hepatic uptake of HDL-CE (Figure 1).

In summary, available evidence indicates that torcetrapib-
mediated inhibition of CETP does not induce dysfunction in
HDL particles, but rather modifies their metabolism, structure,
and physicochemical properties favouring normalization of anti-
atherogenic functionality.

Dalcetrapib
Dalcetrapib is distinct from torcetrapib in the nature of its inter-
action with the CETP protein. Indeed, depending on the assay
used, IC50 values for CETP activity have been estimated to be
0.4–10 mM for dalcetrapib compared with 19–79 nM for torcetra-
pib, clearly suggesting that plasma concentrations reached in clini-
cal studies with dalcetrapib are unlikely to achieve complete
inhibition of CETP.128 Dalcetrapib interacts with cysteine 13
residue in CETP, with high specificity for CETP over other
SH-containing enzymes.129 Furthermore, unlike torcetrapib, dalce-
trapib does not appear to induce the formation of a CETP–HDL
complex at therapeutic plasma concentrations.128

The efficacy of dalcetrapib was initially demonstrated in
cholesterol-fed rabbits.129 After 6-month treatment, dalcetrapib
(mean dose 255 mg/kg/day) significantly increased HDL-C
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(þ90%), with elevation in HDL2-C (þ170%), HDL3-C (þ59%),
and apoA-I (þ78%) (P , 0.01 for comparison of on-treatment
levels vs. baseline). In addition, dalcetrapib treatment effected a
70% reduction in aortic arch lesions compared with controls.129

In a subsequent similar study, dalcetrapib elevated HDL-C levels
but atheromatous area was not correlated with HDL-C levels or
CETP activity.130

A Phase II, placebo-controlled, randomized study evaluated the
efficacy and safety of dalcetrapib in 198 healthy subjects with mild
hyperlipidaemia (HDL-C � 60 mg/dL and TG � 400 mg/dL).131

After 4 weeks, dalcetrapib (900 mg/day) significantly reduced
CETP activity (–37%, P , 0.0001), increased HDL-C (þ34%,
P , 0.0001), and decreased LDL-C (–7%, P ¼ 0.02), and in
addition exerted a non-significant effect on apoA-I (þ16%). Dalce-
trapib was well tolerated, with no clinically significant changes in
blood pressure. The efficacy and safety of dalcetrapib at doses of
300 and 600 mg/day were also assessed in a randomized, Phase
II study conducted in 155 patients with type II hypercholesterolae-
mia (LDL-C . 160 mg/dL, HDL-C , 60 mg/dL, and TG ,

400 mg/dL) receiving pravastatin (40 mg/day).132 After 4 weeks,
dalcetrapib (600 mg/day) significantly reduced CETP activity by
30%, compared with baseline (P , 0.001). Significant increases in
HDL-C were observed (up to 28%), reflecting significant elevations
in HDL2-C and HDL3-C relative to baseline (P , 0.001).132 The
combination of agents was well tolerated, with no clinically signifi-
cant changes in blood pressure. Furthermore, in a recent analysis
of four 4-week Phase IIa studies (including the two studies men-
tioned above) and one 12-week Phase IIb study in patients with
type II hyperlipidaemia, CHD, or CHD risk equivalents, dalcetrapib
was generally well tolerated and was not associated with clinically
relevant elevations in blood pressure or cardiovascular adverse

events at the doses studied.133 Finally, in a CETP-deficient rat
model, dalcetrapib did not increase blood pressure or expression
of RAAS-related genes.118

Several clinical trials are ongoing with the objective of evaluating
the clinical efficacy and safety of dalcetrapib. One of these, dal-
VESSEL, is focused on modulation of vascular function by CETP
inhibition and will shed further light on the mechanisms implicated
in the improved endothelial function which was recently observed
in hypercholesterolaemic subjects with low baseline HDL-C sub-
sequent to dalcetrapib treatment.134 The impact of dalcetrapib
on atherosclerotic plaque development (dal-PLAQUE) has been
initiated in some 100 patients with CHD using positron emission
tomography/computerized tomography and magnetic resonance
imaging.135 Finally, in order to evaluate the effects of dalcetrapib
on mortality and morbidity, .15 600 high-risk CHD patients con-
sidered to have stable disease after a recent acute coronary syn-
drome event will be recruited into the ongoing dal-OUTCOMES
trial.136 Patients will receive dalcetrapib on a background of opti-
mized therapy for LDL-C reduction; importantly, no inclusion cri-
terion for HDL-C level was set in this trial, thereby allowing
assessment of the potential clinical benefit of HDL raising via
CETP inhibition to be evaluated across a range of baseline
HDL-C levels (Table 2).

Anacetrapib
Anacetrapib, like torcetrapib, induces tight reversible binding of
CETP to HDL, with IC50 values for CETP of 15–57 nM.137

A Phase I randomized, placebo-controlled study assessed the
efficacy and safety of anacetrapib in 50 patients with dyslipidaemia
(LDL-C, 100–190 mg/dL).138 After 28-day treatment, anacetrapib
produced dose-dependent lipid-altering effects; at the maximal
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Table 2 Overview of the dal-OUTCOMES trial: a randomized, double-blind, placebo-controlled study assessing the
effect of RO4607381 (dalcetrapib) 600 mg/d on cardiovascular mortality and morbidity in clinically stable patients with a
recent acute coronary syndrome135

Design Criteria Main outcomes

Phase III Inclusion Primary

Treatment
(interventional)

Male/female adult patients �45 years of age Time to first occurrence of any component of the composite
cardiovascular event, cardiovascular mortality/morbidity (event driven)

Randomized Recently hospitalized for acute coronary
syndrome

Secondary

Double-blind (subject,
investigator)

Clinically stable Composite endpoint: all-cause mortality (event driven)

Placebo controlled Receiving evidence-based medical and dietary
management of dyslipidaemia

Change from baseline in blood lipids and lipoprotein levels (throughout
study)

Parallel assignment Exclusion Adverse events, laboratory safety, vital signs, ECG (throughout study)

International Uncontrolled diabetes

Clinically unstable

Severe anaemia

Uncontrolled hypertension

Concomitant treatment with any other
HDL-C-raising drug (e.g. niacin, fibrate)

Healthy volunteers

ECG, electrocardiogram; HDL-C, high-density lipoprotein cholesterol.
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dose tested, anacetrapib (300 mg/day) induced marked increments
in HDL-C and apoA-I levels (þ129 and þ47%, respectively), with
significant reduction in LDL-C (238%) compared with placebo. In
a second Phase I study of the effects of anacetrapib on 24 h ambu-
latory blood pressure over 10 days in 22 healthy individuals,138

similar profiles for systolic and diastolic blood pressure were
observed for anacetrapib and placebo. These Phase I studies
were short, involved a small number of patients, and were not
powered to detect a difference in blood pressure of ,6 mmHg.
More recently, the efficacy and safety of anacetrapib were evalu-
ated as monotherapy and in co-administration with atorvastatin
(20 mg/day) in patients (n ¼ 589) displaying either hypercholester-
olaemia or mixed dyslipidaemia over an 8-week period; some 54%
exhibited low HDL-C at baseline.139 For anacetrapib monotherapy,
a dose-titration design revealed incremental reduction in LDL-C
levels to –39% at the maximal 300 mg dose, with progressive
elevation in HDL-C to þ133% at this same dose.
Co-administration of the CETP inhibitor with background statin
therapy produced major incremental reductions in LDL-C attaining
a maximal value at –70%; moreover, HDL-C elevations mediated
by anacetrapib alone were maintained on co-administration of
the two agents. Triglyceride levels at baseline exerted little effect
on the dose-dependent reductions seen in LDL-C either in mono-
therapy or co-administration modes. The CETP inhibitor was well
tolerated, no changes in blood pressure were noted, and the inci-
dence of adverse effects was similar in placebo and active treat-
ment groups. Further studies are now required to evaluate the
long-term efficacy and safety of anacetrapib, both in monotherapy
and in association with a statin. Indeed, the DEFINE study is
ongoing and was designed to evaluate the lipid-lowering efficacy,
tolerability, and safety of anacetrapib (100 mg/day) in normotrigly-
ceridaemic subjects (n ¼ 1623) with LDL-C , 100 mg/dL and
HDL-C , 60 mg/dL on statin treatment over an 18-month
period; here, the combination of statin background plus CETP
inhibitor treatment is being compared with statin monotherapy.

Residual cardiovascular risk:
validity of cholesteryl ester
transfer protein as a therapeutic
target
Despite recent genome-wide association scans identifying genetic
variants influencing plasma lipid concentrations, and in the case
of HDL-C those concerning the CETP gene,140 the use of gene
therapy to improve the management of dyslipidaemia and reduce
cardiovascular risk remains elusive. In the meantime, residual car-
diovascular risk remains high even in patients treated with aggres-
sive statin therapy,5– 7 highlighting the need for add-on treatment
to reduce the considerable cardiovascular event rate (Figure 3).
Among risk factors other than LDL-C that are associated with
atherogenic dyslipidaemia, a low level of HDL-C is now most
recognized, especially as it is a key feature of common metabolic
diseases (Figure 3).3,32,52 Moreover, the defective anti-atherogenic
function of HDL particles in metabolic disease is now established
and has become recognized as a therapeutic target of similar

significance to that of HDL-C level.27,32,141 Such defective HDL
function is intimately linked to the abnormal metabolism of
TG-rich lipoproteins and is consistent with concomitant thera-
peutic correction of both these anomalies in order to reduce
residual risk.142

The critical appraisal presented herein of the mechanisms of
action implicated in the HDL-raising action of statins, fibrates,
and niacin not only highlights but equally validates the central
role of CETP in the modulation of perturbed lipid and cholesterol
metabolism in dyslipidaemic subjects by these agents, particularly
as it relates to HDL. Indeed, this evidence base substantiates the
argument that CETP constitutes a preferential pharmacological
target for HDL-raising therapies.

The direct and/or indirect actions of statins, fibrates, and niacin
on the CETP system impact, to a significant degree, both the quan-
titative and the qualitative features not only of the atherogenic
lipoproteins, but equally of their anti-atherogenic counterparts,
the high-density particles. As discussed, these agents favour nor-
malization of HDL and apoA-I levels to varying degrees as a func-
tion of baseline lipid phenotype, but may exert distinct structural,
metabolic, and functional effects on the heterogeneous population
of HDL particles. In addition to raising HDL levels, they equally
may potentiate at least partial normalization of defective HDL
function,27,127,144 but this question remains only partially resolved.

Who may benefit clinically from
treatment with cholesteryl ester transfer
protein inhibitors?
The pharmacological signature of CETP inhibitors and their impact
on dysmetabolism characteristic of mixed dyslipidaemia,

Figure 3 Cardiovascular risk remains high despite aggressive
statin therapy. Statin treatment across a wide range of lipid phe-
notypes in patients at high cardiovascular risk has been highly suc-
cessful in reducing relative risk by up to 45%. Nonetheless, major
residual cardiovascular risk remains, part of which is due to non-
modifiable risk factors but equally to modifiable risk factors.
Atherogenic mixed dyslipidaemia is a frequent component
of the latter, thereby suggesting that therapeutic attenuation of
risk in this phenotype, which involves elevated levels of
triglyceride-rich lipoproteins and small dense low-density lipo-
protein, with subnormal levels of high-density lipoprotein choles-
terol and apoA-I, would contribute to further reduction in
residual risk across a wide range of metabolic disease states.
ACS, acute coronary syndrome; CHD, coronary heart disease;
LDL-C, LDL cholesterol.
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hypertriglyceridaemia, and hypercholesterolaemia suggests poten-
tial utility in treating common forms of dyslipidaemia associated
with premature atherosclerosis.115,126,127,131,132,143,144 In particular,
metabolic syndrome and type 2 diabetes may be ideal targets for
intervention with CETP inhibitors, given the quantitative and quali-
tative anomalies of HDL particles in these insulin-resistant disease
states (Figure 3).31,32,145

From a quantitative viewpoint, it is established that the relation
of cardiovascular risk to HDL-C levels is especially steep in the
range of 20–40 mg/dL, clearly indicating that therapeutic
approaches targeted to HDL-C elevation may be critically impor-
tant in many low HDL-C patients.146 –148 Thus, the potent
HDL-raising action of the CETP inhibitors would allow the clinician
to efficaciously attain a potential HDL-C target of 40 mg/dL or
higher in such patients, potentially affording major clinical benefit.

Qualitatively, and as a consequence of hypertriglyceridaemia and
elevated CETP activity, functionally deficient HDL particles
enriched in core TG and depleted in CE and apoA-I are formed
intravascularly in both type 2 diabetic and metabolic syndrome
patients.24,31,149,150 Thus, therapeutic normalization of both the
quantity and the quality of HDL particles by CETP inhibitors con-
stitutes a key target to efficaciously attenuate atherosclerosis in
dyslipidaemic individuals with metabolic disease.

Statins, fibrates, and niacin attenuate plasma CETP activity prin-
cipally by indirect mechanisms, and such effects are associated with
favourable impact on both cholesterol homeostasis and the
atherogenic process. In contrast, we do not fully understand the
potential impact of partial, direct CETP inhibition on cholesterol
homeostasis and atherosclerosis. Indeed, the therapeutic impact
of such agents may vary as a function of individual metabolic phe-
notypes associated—or not—with insulin resistance. Long-term,
large-scale morbi-mortality outcome trials are therefore essential
to provide critical information on their efficacy, clinical benefit,
and safety. Such clinical investigations are eagerly awaited, as the
CETP inhibitors remain by far the most efficacious agents to
raise HDL-C levels above the risk threshold range of �40–
50 mg/dL across a wide range of lipid phenotypes.146
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A 21-year-old asymptomatic lady detected to have
heart disease at 12 years of age during a routine
medical examination referred to us for further
evaluation. The clinical examination was normal
except for a grade 3/6 continuous murmur over
the right sternal border. Echocardiogram showed
minimal dilatation of the right-sided chambers and
a fistulous tract originating from the left aortic
sinus and draining into right atrium (Panel A). To
define the anatomy precisely, a computed tomo-
graphic angiogram was done which showed a
dilated and elongated left aortic sinus with a fistu-
lous communication to the right atrium near the
superior vena cava–right atrial junction (Panels B
and C ). The left main coronary artery originated
just below the aortic origin of the fistula. Catheter-
ization revealed a 12% step-up of blood oxygen sat-
uration in the right atrium with a pulmonary to
systemic flow ratio of 1.67 : 1. The pulmonary
artery pressure was normal. An aortic root angio-
gram was done which demonstrated the fistulous
communication to the right atrium. Patient under-
went successful percutaneous closure of the fistula
using an 8/6 mm Amplatzer Duct Occluder (AGA medical corporation, USA) in the same sitting (Panel D).

Aorta–right atrial tunnel is an abnormal tubular extra cardiac communication between the ascending aorta and the right atrium.
Congenital deficiency of the elastic lamina in the aortic media is proposed as the probable cause for this anomaly. This abnormal com-
munication can arise from any of the three sinuses of Valsalva and the left sinus origin is more common. The preference for rupture
into the right atrium is unclear. Depending on the origin and course in relation to the ascending aorta, it is divided into anterior and
posterior types. Tunnels from the right sinus usually run anteriorly and tunnels from the left sinus follow a posterior course. This
differs from ruptured sinus of Valsalva by having an extra cardiac tunnel.

Aorta–right atrial communication behaves like a left to right shunt at the atrial level. Most of the patients are asymptomatic
and continuous murmur at the right parasternal border is the common finding. Diagnosis can be established non-invasively by echocardio-
graphy and more definitively by computed tomographic angiogram and cardiac magnetic resonance imaging or invasively by aortogram.

Surgical or percutaneous closure is indicated once the diagnosis is established as communication can result in volume overload of
both ventricles, bacterial endocarditis, aneurysm formation, or spontaneous rupture.

Panel A Echocardiogram in parasternal short-axis view at the aortic valve level demonstrating the left aortic sinus to right atrial
fistula.

Panels B and C Computed tomographic images revealing the fistulous tract originating from the left coronary sinus following a
posterior course behind aorta and draining into right atrium at its junction with superior vena cava.

Panel D Follow-up image showing device in situ. RA, right atrium; LA, left atrium; RV, right ventricle; LV, left ventricle; AO, aorta;
PA, pulmonary artery; SVC, superior vena cava; LAS, left aortic sinus; TUN, tunnel.
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