C. A. Damianou, K. Hynynen, and X. Fan, Evaluation of accuracy of a theoretical model for predicting the necrosed tissue volume during focused ultrasound surgery, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.42, issue.2, pp.182-187, 1995.
DOI : 10.1109/58.365232

L. Curiel, F. Chavrier, B. Gignoux, S. Pichardo, S. Chesnais et al., Experimental evaluation of lesion prediction modelling in the presence of cavitation bubbles: Intended for high-intensity focused ultrasound prostate treatment, Medical & Biological Engineering & Computing, vol.27, issue.1, pp.44-54, 2004.
DOI : 10.1007/BF02351010

R. G. Aarnink, R. J. Giesen, A. L. Huynen, J. J. De-la-rosette, F. M. Debruyne et al., A practical clinical method for contour determination in ultrasonographic prostate images, Ultrasound in Medicine & Biology, vol.20, issue.8, pp.705-717, 1994.
DOI : 10.1016/0301-5629(94)90028-0

R. G. Aarnink, S. D. Pathak, J. J. De-la-rosette, F. M. Debruyne, Y. Kim et al., Edge detection in prostatic ultrasound images using integrated edge maps, Ultrasonics, vol.36, issue.1-5, pp.1-5, 1998.
DOI : 10.1016/S0041-624X(97)00126-1

Y. J. Liu, W. S. Ng, M. Y. Teo, and H. C. Lim, Computerised prostate boundary estimation of ultrasound images using radial bas-relief method, Medical & Biological Engineering & Computing, vol.29, issue.5, pp.445-454, 1997.
DOI : 10.1007/BF02525522

C. K. Kwoh, M. Y. Teo, W. S. Ng, S. N. Tan, and L. M. Jones, Outlining the prostate boundary using the harmonics method, Medical & Biological Engineering & Computing, vol.14, issue.11, pp.768-771, 1998.
DOI : 10.1007/BF02518882

S. D. Pathak, V. Chalana, D. R. Haynor, and Y. Kim, Edge-guided boundary delineation in prostate ultrasound images, IEEE Transactions on Medical Imaging, vol.19, issue.12, pp.1211-1219, 2000.
DOI : 10.1109/42.897813

W. D. Richard and C. G. Keen, Automated texture-based segmentation of ultrasound images of the prostate, Computerized Medical Imaging and Graphics, vol.20, issue.3, pp.131-140, 1996.
DOI : 10.1016/0895-6111(96)00048-1

P. Abolmaesumi and M. R. Sirouspour, An Interacting Multiple Model Probabilistic Data Association Filter for Cavity Boundary Extraction From Ultrasound Images, IEEE Transactions on Medical Imaging, vol.23, issue.6, pp.772-784, 2004.
DOI : 10.1109/TMI.2004.826954

S. S. Mahdavi, W. J. Morris, I. Spadinger, N. Chng, O. Goksel et al., 3D Prostate Segmentation in Ultrasound Images Based on Tapered and Deformed Ellipsoids, Proc. MICCAI, pp.960-967, 2009.
DOI : 10.1007/978-3-642-04271-3_116

S. Lobregt and M. A. Viergever, A discrete dynamic contour model, IEEE Transactions on Medical Imaging, vol.14, issue.1, pp.12-24, 1995.
DOI : 10.1109/42.370398

H. M. Ladak, F. Mao, Y. Wang, D. B. Downey, D. A. Steinman et al., Prostate boundary segmentation from 2D ultrasound images, Medical Physics, vol.16, issue.8, pp.1777-1788, 2000.
DOI : 10.1118/1.1286722

B. Chiu, G. H. Freeman, M. M. Salama, and A. Fenster, Prostate segmentation algorithm using dyadic wavelet transform and discrete dynamic contour, Physics in Medicine and Biology, vol.49, issue.21, pp.4943-4960, 2004.
DOI : 10.1088/0031-9155/49/21/007

N. D. Nanayakkara, J. Samarabandu, and A. Fenster, Prostate segmentation by feature enhancement using domain knowledge and adaptive region based operations, Physics in Medicine and Biology, vol.51, issue.7, pp.1831-1848, 2006.
DOI : 10.1088/0031-9155/51/7/014

Y. Wang, H. N. Cardinal, D. B. Downey, and A. Fenster, Semiautomatic three-dimensional segmentation of the prostate using two-dimensional ultrasound images, Medical Physics, vol.45, issue.5, pp.887-897, 2003.
DOI : 10.1118/1.1568975

M. Ding, B. Chiu, I. Gyacskov, X. Yuan, M. Drangova et al., Fast prostate segmentation in 3D TRUS images based on continuity constraint using an autoregressive model, Medical Physics, vol.30, issue.11, pp.4109-4125, 2007.
DOI : 10.1118/1.1586451

K. Diaz and B. Castaneda, Semi-automated segmentation of the prostate gland boundary in ultrasound images using a machine learning approach, Medical Imaging 2008: Image Processing, pp.69144-69144, 2008.
DOI : 10.1117/12.770965

L. Wei, R. Narayanan, D. Kumar, A. Fenster, A. Barqawi et al., Bidirectional segmentation of prostate capsule from ultrasound volumes: an improved strategy, Medical Imaging 2008: Image Processing, pp.69143-69143, 2008.
DOI : 10.1117/12.770569

A. Ghanei, H. Soltanian-zadeh, A. Ratkewicz, and F. Yin, A three-dimensional deformable model for segmentation of human prostate from ultrasound images, Medical Physics, vol.3, issue.10, pp.2147-2153, 2001.
DOI : 10.1118/1.1388221

N. Hu, D. B. Downey, A. Fenster, and H. M. Ladak, Prostate boundary segmentation from 3D ultrasound images, Medical Physics, vol.11, issue.7, pp.1648-1659, 2003.
DOI : 10.1118/1.1586267

Y. Yu, J. A. Molloy, and S. T. Acton, Segmentation of the prostate from suprapubic ultrasound images, Medical Physics, vol.69, issue.12, pp.3474-3484, 2004.
DOI : 10.1109/83.661186

B. Li and S. T. Acton, Automatic active model initialization via poisson inverse gradient, IEEE Trans. Imag. Process, vol.17, issue.8, pp.1406-1420, 2008.

Y. Zhang, R. Sankar, and W. Qian, Boundary delineation in transrectal ultrasound image for prostate cancer, Computers in Biology and Medicine, vol.37, issue.11, pp.1591-1599, 2007.
DOI : 10.1016/j.compbiomed.2007.02.008

A. Zaim and J. Jankun, An energy-based segmentation of prostate from ultrasound images using dot-pattern select cells, Proc. IEEE ICASSP, pp.297-300, 2007.

F. Shao, K. V. Ling, and W. S. Ng, 3-D prostate surface detection from ultrasound images based on level set method, Proc. MICCAI, pp.389-396, 2002.

A. Barqawi, L. Lu, E. D. Crawford, and S. S. Jasjit, Semi-automated versus automated prostate boundary estimation from 3-D transrectal ultrasound images, Int. J. CARS, vol.2, pp.134-137, 2007.

A. C. Hodge, A. Fenster, D. B. Downey, and H. M. Ladak, Prostate boundary segmentation from ultrasound images using 2D active shape models: Optimisation and extension to 3D, Computer Methods and Programs in Biomedicine, vol.84, issue.2-3, pp.99-113, 2006.
DOI : 10.1016/j.cmpb.2006.07.001

N. Betrouni, M. Vermandel, D. Pasquier, S. Maouche, and J. Rousseau, Segmentation of abdominal ultrasound images of the prostate using a priori information and an adapted noise filter, Computerized Medical Imaging and Graphics, vol.29, issue.1, pp.43-51, 2005.
DOI : 10.1016/j.compmedimag.2004.07.007

F. A. Cosío and B. L. Davies, Automated prostate recognition: a key process for clinically effective robotic prostatectomy, Medical & Biological Engineering & Computing, vol.14, issue.suppl. 1, pp.236-243, 1999.
DOI : 10.1007/BF02513292

F. A. Cosío, Automatic initialization of an active shape model of the prostate, Medical Image Analysis, vol.12, issue.4, pp.469-483, 2008.
DOI : 10.1016/j.media.2008.02.001

R. Y. Wu, K. V. Ling, and W. S. Ng, Automatic prostate boundary recognition in sonographic images using feature model and genetic algorithm., Journal of Ultrasound in Medicine, vol.19, issue.11, pp.771-782, 2000.
DOI : 10.7863/jum.2000.19.11.771

L. Gong, S. D. Pathak, D. R. Haynor, P. S. Cho, and Y. Kim, Parametric Shape Modeling Using Deformable Superellipses for Prostate Segmentation, IEEE Transactions on Medical Imaging, vol.23, issue.3, pp.340-349, 2004.
DOI : 10.1109/TMI.2004.824237

L. Gong, L. Ng, S. D. Pathak, I. Tutar, P. S. Cho et al., Prostate ultrasound image segmentation using level set-based region flow with shape guidance, Medical Imaging 2005: Image Processing, pp.1648-1657, 2005.
DOI : 10.1117/12.594403

I. B. Tutar, S. D. Pathak, L. Gong, P. S. Cho, K. Wallner et al., Semiautomatic 3-D Prostate Segmentation from TRUS Images Using Spherical Harmonics, IEEE Transactions on Medical Imaging, vol.25, issue.12, pp.1645-1654, 2006.
DOI : 10.1109/TMI.2006.884630

C. Knoll, M. Alcaniz, V. Grau, C. Monserrat, and M. C. Juan, Outlining of the prostate using snakes with shape restrictions based on the wavelet transform (Doctoral Thesis: Dissertation), Pattern Recognition, vol.32, issue.10, pp.1767-1781, 1999.
DOI : 10.1016/S0031-3203(98)00177-0

D. Shen, Y. Zhan, and C. Davatzikos, Segmentation of prostate boundaries from ultrasound images using statistical shape model, IEEE Transactions on Medical Imaging, vol.22, issue.4, pp.539-551, 2003.
DOI : 10.1109/TMI.2003.809057

Y. Zhan, D. Shen, M. Baumhauer, T. Simpfendörfer, H. Meinzer et al., Deformable segmentation of 3-D ultrasound prostate images using statistical texture matching method, Proc. SPIE, pp.256-272, 2006.
DOI : 10.1109/TMI.2005.862744

K. Li, X. Wu, D. Z. Chen, and M. Sonka, Efficient optimal surface detection: theory, implementation, and experimental validation, Medical Imaging 2004: Image Processing, pp.620-627, 2004.
DOI : 10.1117/12.537048

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Q. Song, X. Wu, Y. Liu, M. Smith, M. Buatti et al., Optimal Graph Search Segmentation Using Arc-Weighted Graph for Simultaneous Surface Detection of Bladder and Prostate, Proc. MICCAI, pp.27-835, 2009.
DOI : 10.1007/978-3-642-04271-3_100

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.9, pp.1124-1137, 2004.
DOI : 10.1109/TPAMI.2004.60

E. Demidenko, Mixed Models?Theory and Applications, 2004.

R. Littell, G. Milliken, W. Stroup, R. Wolfinger, and O. Schabenberger, SAS for Mixed Models, 2006.

G. Verbeke and G. Molenbreghs, Linear Mixed Models for Longitudinal Data, 2009.
DOI : 10.1007/978-1-4612-2294-1_3

M. Sonka, V. Hlavac, and R. Boyle, Segmentation II Analysis and Machine Vision, Image Processing, pp.306-319, 2007.

K. Wu, C. Garnier, J. Coatrieux, and H. Shu, A preliminary study of moment-based texture analysis for medical images, Proc. IEEE EMBC, Buenos Aires, pp.5581-5584, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00580193