P. Mackenzie, Identification of Uridine Diphosphate Glucuronosyltransferases Involved in the Metabolism and Clearance of Mycophenolic Acid, Therapeutic Drug Monitoring, vol.22, issue.1, 2000.
DOI : 10.1097/00007691-200002000-00002

N. Picard, D. Ratanasavanh, and A. Premaud, IDENTIFICATION OF THE UDP-GLUCURONOSYLTRANSFERASE ISOFORMS INVOLVED IN MYCOPHENOLIC ACID PHASE II METABOLISM, Drug Metabolism and Disposition, vol.33, issue.1, pp.139-185, 2005.
DOI : 10.1124/dmd.104.001651

B. Mojarrabi and P. Mackenzie, The Human UDP Glucuronosyltransferase, UGT1A10, Glucuronidates Mycophenolic Acid, Biochemical and Biophysical Research Communications, vol.238, issue.3, pp.238-775, 1997.
DOI : 10.1006/bbrc.1997.7388

C. Albert, M. Vallee, and G. Beaudry, The Monkey and Human Uridine Diphosphate-Glucuronosyltransferase UGT1A9, Expressed in Steroid Target Tissues, Are Estrogen-Conjugating Enzymes, Endocrinology, vol.140, issue.7, pp.3292-302, 1999.
DOI : 10.1210/en.140.7.3292

O. Bernard, J. Tojcic, and K. Journault, Influence of Nonsynonymous Polymorphisms of UGT1A8 and UGT2B7 Metabolizing Enzymes on the Formation of Phenolic and Acyl Glucuronides of Mycophenolic Acid, Drug Metabolism and Disposition, vol.34, issue.9, pp.1539-1584, 2006.
DOI : 10.1124/dmd.106.010553

O. Gensburger, N. Picard, and P. Marquet, Effect of Mycophenolate Acyl-Glucuronide on Human Recombinant Type 2 Inosine Monophosphate Dehydrogenase, Clinical Chemistry, vol.55, issue.5, pp.986-93, 2009.
DOI : 10.1373/clinchem.2008.113936

M. Shipkova, E. Wieland, and E. Schutz, The acyl glucuronide metabolite of mycophenolic acid inhibits the proliferation of human mononuclear leukocytes, Transplantation Proceedings, vol.33, issue.1-2, pp.1080-1081, 1933.
DOI : 10.1016/S0041-1345(00)02424-6

M. Shipkova, V. Armstrong, and L. Weber, Pharmacokinetics and Protein Adduct Formation of the Pharmacologically Active Acyl Glucuronide Metabolite of Mycophenolic Acid in Pediatric Renal Transplant Recipients, Therapeutic Drug Monitoring, vol.24, issue.3, pp.390-399, 2002.
DOI : 10.1097/00007691-200206000-00011

I. Westley, L. Brogan, and R. Morris, ROLE OF MRP2 IN THE HEPATIC DISPOSITION OF MYCOPHENOLIC ACID AND ITS GLUCURONIDE METABOLITES: EFFECT OF CYCLOSPORINE, Drug Metabolism and Disposition, vol.34, issue.2, pp.261-267, 2006.
DOI : 10.1124/dmd.105.006122

N. Picard, S. Yee, and J. Woillard, The Role of Organic Anion???Transporting Polypeptides and Their Common Genetic Variants in Mycophenolic Acid Pharmacokinetics, Clinical Pharmacology & Therapeutics, vol.87, issue.1, pp.100-108, 2010.
DOI : 10.1086/379378

URL : https://hal.archives-ouvertes.fr/inserm-00415314

D. Ducloux, Y. Ottignon, and S. Semhoun-ducloux, MYCOPHENOLATE MOFETIL-INDUCED VILLOUS ATROPHY, Transplantation, vol.66, issue.8, pp.66-1115, 1998.
DOI : 10.1097/00007890-199810270-00027

N. Kamar, P. Faure, and E. Dupuis, Villous atrophy induced by mycophenolate mofetil in renal-transplant patients, Transplant International, vol.24, issue.8, pp.463-470, 2004.
DOI : 10.1056/NEJMra010852

B. Maes, I. Dalle, and K. Geboes, Erosive enterocolitis in mycophenolate mofetil-treated renal-transplant recipients with persistent afebrile diarrhea, Transplantation, vol.75, issue.5, 2003.
DOI : 10.1097/01.TP.0000053753.43268.F0

R. Borrows, G. Chusney, and A. James, Determinants of Mycophenolic Acid Levels After Renal Transplantation, Therapeutic Drug Monitoring, vol.27, issue.4, pp.442-50, 2005.
DOI : 10.1097/01.ftd.0000167885.17280.6f

T. Heller, T. Van-gelder, and K. Budde, Plasma Concentrations of Mycophenolic Acid Acyl Glucuronide Are Not Associated with Diarrhea in Renal Transplant Recipients, American Journal of Transplantation, vol.44, issue.7, pp.1822-1853, 2007.
DOI : 10.1097/01.tp.0000235533.29300.e7

D. Hesselink, R. Van-hest, and R. Mathot, Cyclosporine Interacts with Mycophenolic Acid by Inhibiting the Multidrug Resistance-Associated Protein 2, American Journal of Transplantation, vol.41, issue.1, pp.987-94, 2005.
DOI : 10.1046/j.1523-1755.2001.00782.x

M. Shipkova, H. Beck, and A. Voland, Identification of protein targets for mycophenolic acid acyl glucuronide in rat liver and colon tissue, PROTEOMICS, vol.4, issue.9, pp.2728-2766, 2004.
DOI : 10.1002/pmic.200300836

S. Haenisch, U. Zimmermann, and E. Dazert, Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex

M. Zu-schwabedissen, H. Jedlitschky, and G. , VARIABLE EXPRESSION OF MRP2 (ABCC2) IN HUMAN PLACENTA: INFLUENCE OF GESTATIONAL AGE AND CELLULAR DIFFERENTIATION, Drug Metabolism and Disposition, vol.33, issue.7, pp.896-904, 2005.
DOI : 10.1124/dmd.104.003335

M. Hirouchi, H. Suzuki, and M. Itoda, Characterization of the Cellular Localization, Expression Level, and Function of SNP Variants of MRP2/ABCC2, Pharmaceutical Research, vol.21, issue.5, pp.742-750, 2004.
DOI : 10.1023/B:PHAM.0000026422.06207.33

S. Baldelli, S. Merlini, and N. Perico, gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation, Pharmacogenomics, vol.8, issue.9
DOI : 10.2217/14622416.8.9.1127

M. Miura, S. Satoh, and K. Inoue, Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients, European Journal of Clinical Pharmacology, vol.28, issue.12, pp.1161-1170, 2007.
DOI : 10.1007/s00228-007-0380-7

M. Naesens, D. Kuypers, and K. Verbeke, Multidrug Resistance Protein 2 Genetic Polymorphisms Influence Mycophenolic Acid Exposure in Renal Allograft Recipients, Transplantation, vol.82, issue.8
DOI : 10.1097/01.tp.0000235533.29300.e7

R. Van-schaik, M. Van-agteren, and J. De-fijter, UGT1A9 275T>A/ 2152C>T polymorphisms correlate with low MPA exposure and acute rejection in ? ?

W. Zhang, B. Chen, and J. Z. , Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients, Xenobiotica, vol.2, issue.11, pp.1422-1458, 2008.
DOI : 10.1097/00008571-200405000-00008

J. Woillard, J. Rerolle, and N. Picard, Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: the significant role of the UGT1A8*2 variant allele, British Journal of Clinical Pharmacology, vol.34, issue.6, pp.675-83, 2010.
DOI : 10.1111/j.1365-2125.2010.03625.x

URL : https://hal.archives-ouvertes.fr/inserm-00446912

J. Yang, P. Lee, and I. Hutchinson, Genetic Polymorphisms of MRP2 and UGT2B7 and Gastrointestinal Symptoms in Renal Transplant Recipients Taking Mycophenolic Acid, Therapeutic Drug Monitoring, vol.31, issue.5, pp.542-550, 2009.
DOI : 10.1097/FTD.0b013e3181b1dd5e

Y. Duguay, C. Baar, and F. Skorpen, A novel functional polymorphism in the uridine diphosphate???glucuronosyltransferase 2B7 promoter with significant impact on promoter activity, Clinical Pharmacology & Therapeutics, vol.75, issue.3, pp.223-256, 2004.
DOI : 10.1016/j.clpt.2003.10.006

N. Djebli, N. Picard, and J. Rerolle, Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients, Pharmacogenetics and Genomics, vol.17, issue.5, pp.321-351, 2007.
DOI : 10.1097/FPC.0b013e32801430f8

M. Van-agteren, V. Armstrong, and R. Van-schaik, AcylMPAG Plasma Concentrations and Mycophenolic Acid-Related Side Effects in Patients Undergoing Renal Transplantation Are Not Related to the UGT2B7-840G>A Gene Polymorphism, Therapeutic Drug Monitoring, vol.PAP, issue.4, pp.439-483, 2008.
DOI : 10.1097/FTD.0b013e318180c709

Y. Huang, A. Galijatovic, and N. Nguyen, Identification and functional characterization of UDP

K. Barraclough, K. Lee, and C. Staatz, Pharmacogenetic influences on mycophenolate therapy, Pharmacogenomics, vol.11, issue.3, pp.369-90, 2010.
DOI : 10.2217/pgs.10.9

H. Girard, M. Court, and O. Bernard, Identification of common polymorphisms in the promoter of the UGT1A9 gene, Pharmacogenetics, vol.14, issue.8, pp.501-516, 2004.
DOI : 10.1097/01.fpc.0000114754.08559.27

D. Kuypers, M. Naesens, and S. Vermeire, The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients, Clin Pharmacol Ther, issue.4, pp.351-61, 2005.

O. Gensburger, V. Schaik, R. Picard, and N. , Polymorphisms in type I and II inosine monophosphate dehydrogenase genes and association with clinical outcome in patients on mycophenolate mofetil, Pharmacogenetics and Genomics, vol.20, issue.9, pp.537-580, 2010.
DOI : 10.1097/FPC.0b013e32833d8cf5

URL : https://hal.archives-ouvertes.fr/inserm-00494526

T. Wu, Y. Peng, and L. Pelleymonter, Pharmacogenetics of the mycophenolic acid targets inosine monophosphate dehydrogenases IMPDH1 and IMPDH2: gene sequence variation and functional genomics, British Journal of Pharmacology, vol.272, issue.7, 2010.
DOI : 10.1111/j.1476-5381.2010.00987.x

J. Grinyo, Y. Vanrenterghem, and B. Nashan, Association of four DNA polymorphisms with acute rejection after kidney transplantation, Transplant International, vol.96, issue.9, pp.879-91, 2008.
DOI : 10.1111/j.1432-2277.2008.00679.x

J. Wang, J. Yang, and A. Zeevi, IMPDH1 Gene Polymorphisms and Association With Acute Rejection in Renal Transplant Patients, Clinical Pharmacology & Therapeutics, vol.10, issue.5, pp.711-718, 2008.
DOI : 10.1038/sj.clpt.6100347

H. Kagaya, M. Miura, and M. Saito, Correlation of IMPDH1 Gene Polymorphisms with Subclinical Acute Rejection and Mycophenolic Acid Exposure Parameters on Day 28 after Renal Transplantation, Basic & Clinical Pharmacology & Toxicology, vol.29, issue.2, pp.631-637, 2010.
DOI : 10.1111/j.1742-7843.2010.00542.x

T. Kronbach, V. Fischer, and U. Meyer, Cyclosporine metabolism in human liver: Identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs, Clinical Pharmacology and Therapeutics, vol.43, issue.6, pp.630-635, 1988.
DOI : 10.1038/clpt.1988.87

P. Kelly and B. Kahan, Review: Metabolism of Immunosuppressant Drugs, Current Drug Metabolism, vol.3, issue.3, pp.275-87, 2002.
DOI : 10.2174/1389200023337630

R. Kato, M. Nishide, and C. Kozu, Is cyclosporine A transport inhibited by pravastatin via multidrug resistant protein 2?, European Journal of Clinical Pharmacology, vol.17, issue.2, pp.153-161, 2010.
DOI : 10.1007/s00228-009-0740-6

R. Venkataramanan, A. Swaminathan, and T. Prasad, Clinical Pharmacokinetics of Tacrolimus, Clinical Pharmacokinetics, vol.29, issue.6, pp.404-434, 1995.
DOI : 10.2165/00003088-199529060-00003

A. Moller, K. Iwasaki, and A. Kawamura, The disposition of 14C-labeled tacrolimus after intravenous and oral administration in healthy human subjects, Drug Metab Dispos, issue.6, pp.633-639, 1999.

Y. Dai, M. Hebert, and N. Isoherranen, EFFECT OF CYP3A5 POLYMORPHISM ON TACROLIMUS METABOLIC CLEARANCE IN VITRO, Drug Metabolism and Disposition, vol.34, issue.5, pp.836-883, 2006.
DOI : 10.1124/dmd.105.008680

C. Wu and L. Benet, DISPOSITION OF TACROLIMUS IN ISOLATED PERFUSED RAT LIVER: INFLUENCE OF TROLEANDOMYCIN, CYCLOSPORINE, AND GG918, Drug Metabolism and Disposition, vol.31, issue.11, pp.1292-1297, 2003.
DOI : 10.1124/dmd.31.11.1292

H. Jeong and W. Chiou, Role of P-glycoprotein in the hepatic metabolism of tacrolimus, Xenobiotica, vol.16, issue.1, pp.1-13, 2006.
DOI : 10.3109/00498250500485115

M. Kobayashi, H. Saitoh, and M. Kobayashi, Cyclosporin A, but Not Tacrolimus, Inhibits the Biliary Excretion of Mycophenolic Acid Glucuronide Possibly Mediated by Multidrug Resistance-Associated Protein 2 in Rats, Journal of Pharmacology and Experimental Therapeutics, vol.309, issue.3, pp.1029-1064, 2004.
DOI : 10.1124/jpet.103.063073

P. Kuehl, J. Zhang, and Y. Lin, Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression, Nat Genet, issue.4, pp.383-91, 2001.

J. Warrington and L. Shaw, Pharmacogenetic differences and drug???drug interactions in immunosuppressive therapy, Expert Opinion on Drug Metabolism & Toxicology, vol.74, issue.8, pp.487-503, 2005.
DOI : 10.1016/S0006-2952(01)00911-X

H. Tang, L. Ma, and H. Xie, Effects of the CYP3A5*3 variant on cyclosporine exposure and acute rejection rate in renal transplant patients: a meta-analysis, Pharmacogenetics and Genomics, vol.20, issue.9
DOI : 10.1097/FPC.0b013e32833ccd56

H. Zhu, S. Yuan, and Y. Fang, The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients: a meta-analysis, The Pharmacogenomics Journal, vol.11, issue.3
DOI : 10.2165/11313380-000000000-00000

V. Haufroid, M. Mourad, and V. Van-kerckhove, The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients, Pharmacogenetics, vol.14, issue.3, pp.147-54, 2004.
DOI : 10.1097/00008571-200403000-00002

I. Macphee, S. Fredericks, and M. M. , Tacrolimus Pharmacogenetics: The CYP3A5*1 Allele Predicts Low Dose-Normalized Tacrolimus Blood Concentrations in Whites and South Asians, Transplantation, vol.79, issue.4, pp.79-499, 2005.
DOI : 10.1097/01.TP.0000151766.73249.12

M. Mourad, G. Mourad, and P. Wallemacq, Sirolimus and Tacrolimus Trough Concentrations and Dose Requirements after Kidney Transplantation in Relation to CYP3A5 and MDR1 Polymorphisms and Steroids, Transplantation, vol.80, issue.7, pp.80-977, 2005.
DOI : 10.1097/01.TP.0000174131.47469.D2

N. Tsuchiya, S. Satoh, and H. Tada, Influence of CYP3A5 and MDR1 (ABCB1) Polymorphisms on the Pharmacokinetics of Tacrolimus in Renal Transplant Recipients, Transplantation, vol.78, issue.8
DOI : 10.1097/01.TP.0000137789.58694.B4

P. Wallemacq, V. Armstrong, and M. Brunet, Opportunities to optimize tacrolimus therapy in solid organ transplantation

E. Thervet, M. Loriot, and S. Barbier, Optimization of Initial Tacrolimus Dose Using Pharmacogenetic Testing, Clinical Pharmacology & Therapeutics, vol.87, issue.6, pp.721-727, 2010.
DOI : 10.1097/00007890-200212150-00002

T. Van-gelder and D. Hesselink, Dosing Tacrolimus Based on CYP3A5 Genotype: Will It Improve Clinical Outcome?, Clinical Pharmacology & Therapeutics, vol.87, issue.6, pp.640-641, 2010.
DOI : 10.1681/ASN.2009020192

D. Kuypers, Pharmacogenetic vs. Concentration-Controlled Optimization of Tacrolimus Dosing in Renal Allograft Recipients, Clinical Pharmacology & Therapeutics, vol.82, issue.5, pp.595-601, 2010.
DOI : 10.1038/clpt.2010.129

C. Staatz, L. Goodman, and S. Tett, Effect of CYP3A and ABCB1 Single Nucleotide Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Calcineurin Inhibitors: Part II, Clinical Pharmacokinetics, vol.14, issue.11, pp.49-207, 2010.
DOI : 10.2165/11317550-000000000-00000

S. Crettol, J. Venetz, and M. Fontana, Influence of ABCB1 genetic polymorphisms on cyclosporine intracellular concentration in transplant recipients, Pharmacogenetics and Genomics, vol.18, issue.4, pp.307-322, 2008.
DOI : 10.1097/FPC.0b013e3282f7046f

A. Johne, K. Kopke, and T. Gerloff, Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene, Clinical Pharmacology & Therapeutics, vol.72, issue.5, pp.584-94, 2002.
DOI : 10.1067/mcp.2002.129196

S. Bandur, J. Petrasek, and P. Hribova, Haplotypic Structure of ABCB1/MDR1 Gene Modifies the Risk of the Acute Allograft Rejection in Renal Transplant Recipients, Transplantation, vol.86, issue.9
DOI : 10.1097/TP.0b013e318187c4d1

I. Hauser, E. Schaeffeler, and S. Gauer, ABCB1 Genotype of the Donor but Not of the Recipient Is a Major Risk Factor for Cyclosporine-Related Nephrotoxicity after Renal Transplantation, Journal of the American Society of Nephrology, vol.16, issue.5, pp.1501-1512, 2005.
DOI : 10.1681/ASN.2004100882

J. Woillard, J. Rerolle, and N. Picard, Donor P-gp Polymorphisms Strongly Influence Renal Function and Graft Loss in a Cohort of Renal Transplant Recipients on Cyclosporine Therapy in a Long-Term Follow-Up, Clinical Pharmacology & Therapeutics, vol.50, issue.1, pp.95-100, 2010.
DOI : 10.1086/379378

URL : https://hal.archives-ouvertes.fr/inserm-00462541

M. Naesens, E. Lerut, and H. De-jonge, Donor Age and Renal P-Glycoprotein Expression Associate with Chronic Histological Damage in Renal Allografts, Journal of the American Society of Nephrology, vol.20, issue.11, pp.2468-80, 2009.
DOI : 10.1681/ASN.2009020192

D. Hesselink, R. Bouamar, and T. Van-gelder, The Pharmacogenetics of Calcineurin Inhibitor???Related Nephrotoxicity, Therapeutic Drug Monitoring, vol.32, issue.4, pp.387-93, 2010.
DOI : 10.1097/FTD.0b013e3181e44244

D. Zhu, M. Cardenas, and J. Heitman, Calcineurin mutants render T lymphocytes resistant to cyclosporin A, Mol Pharmacol, issue.3, pp.506-517, 1996.

G. Moscoso-solorzano, F. Ortega, and I. Rodriguez, A search for cyclophilin-A gene variants in cyclosporine A-treated renal transplanted patients, Clinical Transplantation, vol.3, issue.6, 2008.
DOI : 10.1111/j.1399-0012.2008.00867.x

J. Ruiz, A. Sanchez, and M. Rengel, Use of the New Proliferation Signal Inhibitor Everolimus in Renal Transplant Patients in Spain: Preliminary Results of the EVERODATA Registry, Transplantation Proceedings, vol.39, issue.7, pp.2157-2166, 2007.
DOI : 10.1016/j.transproceed.2007.07.071

B. Kahan, Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group, Lancet, vol.15, issue.9225, pp.356-194, 2000.

P. Cravedi, P. Ruggenenti, and G. Remuzzi, Sirolimus to replace calcineurin inhibitors? Too early yet, The Lancet, vol.373, issue.9671, pp.373-1235, 2009.
DOI : 10.1016/S0140-6736(09)60709-1

A. Lampen, Y. Zhang, and I. Hackbarth, Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine, J Pharmacol Exp Ther, issue.3, pp.1104-1116, 1998.

M. Sattler, F. Guengerich, and C. Yun, Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat, Drug Metab Dispos, issue.5, pp.753-61, 1992.

N. Picard, N. Djebli, and F. Sauvage, Metabolism of Sirolimus in the Presence or Absence of Cyclosporine by Genotyped Human Liver Microsomes and Recombinant Cytochromes P450 3A4 and 3A5, Drug Metabolism and Disposition, vol.35, issue.3, pp.350-355, 2007.
DOI : 10.1124/dmd.106.012161

S. Oswald, A. Nassif, and C. Modess, Pharmacokinetic and Pharmacodynamic Interactions Between the Immunosuppressant Sirolimus and the Lipid-Lowering Drug Ezetimibe in Healthy Volunteers, Clinical Pharmacology & Therapeutics, vol.60, issue.6, pp.663-670, 2010.
DOI : 10.1177/0091270006289851

D. Anglicheau, N. Pallet, and M. Rabant, Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine???sirolimus interaction, Kidney International, vol.70, issue.6, pp.1019-1044, 2006.
DOI : 10.1038/sj.ki.5001649

D. Anglicheau, L. Corre, D. Lechaton, and S. , Consequences of Genetic Polymorphisms for Sirolimus Requirements After Renal Transplant in Patients on Primary Sirolimus Therapy, American Journal of Transplantation, vol.8, issue.3, pp.595-603, 2005.
DOI : 10.1177/0091270003043006001

L. Meur, Y. Djebli, N. Szelag, and J. , CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients, Clinical Pharmacology & Therapeutics, vol.80, issue.1, pp.51-60, 2006.
DOI : 10.1016/j.clpt.2006.03.012

L. Miao, C. Huang, and J. Hou, Association study of ABCB1 and CYP3A5 gene polymorphisms with sirolimus trough concentration and dose requirements in Chinese renal transplant recipients, Biopharmaceutics & Drug Disposition, vol.14, issue.1, pp.1-5, 2008.
DOI : 10.1002/bdd.577

C. Kimchi-sarfaty, J. Oh, and I. Kim, A "Silent" Polymorphism in the MDR1 Gene Changes Substrate Specificity, Science, vol.315, issue.5811, pp.315-525, 2007.
DOI : 10.1126/science.1135308

S. Huang, M. Bjornsti, and P. Houghton, Rapamycins: Mechanisms of Action and Cellular Resistance, Cancer Biology & Therapy, vol.2, issue.3, pp.222-254, 2002.
DOI : 10.4161/cbt.2.3.360

S. Masuda, T. Terada, and A. Yonezawa, Identification and Functional Characterization of a New Human Kidney-Specific H+/Organic Cation Antiporter, Kidney-Specific Multidrug and Toxin Extrusion 2, Journal of the American Society of Nephrology, vol.17, issue.8, pp.2127-2162, 2006.
DOI : 10.1681/ASN.2006030205

M. Otsuka, T. Matsumoto, and R. Morimoto, A human transporter protein that mediates the final excretion step for toxic organic cations, Proceedings of the National Academy of Sciences, vol.102, issue.50, 2005.
DOI : 10.1073/pnas.0506483102