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Abstract 

 Purpose: Current state of the art algorithms for functional uptake volume 

segmentation in PET imaging consist of threshold-based approaches, whose 

parameters often require specific optimization for a given scanner and associated 

reconstruction algorithms. Different advanced image segmentation approaches 

previously proposed and extensively validated, such as among others the fuzzy C-

means (FCM) clustering, or the Fuzzy Locally Adaptive Bayesian (FLAB) have the 

potential to improve robustness of functional uptake volume measurements. The 

objective of this study was to investigate robustness and repeatability with respect to 

various scanner models, reconstruction algorithms and acquisition conditions. 

Methods and materials: Robustness was evaluated using a series of IEC phantom 

acquisitions carried out on different PET/CT scanners (Philips Gemini and Gemini 

Time-of-Flight, Siemens Biograph and GE Discovery LS) with their associated 

reconstruction algorithms (RAMLA, TF MLEM, OSEM). A range of acquisition 

(contrast, duration) and reconstruction (voxel size) parameters were considered for 

each scanner model. On the other hand, the repeatability of each method was 

evaluated on simulated and clinical tumors and compared to manual delineation.  

Results: For all the scanner models, acquisition parameters and reconstruction 

algorithms considered, FLAB demonstrated higher robustness in delineation of the 

spheres with low mean errors (10%) and variability (5%), with respect to threshold-

based methodologies and FCM. The repeatability provided by all segmentation 

algorithms considered was very high with a negligible variability of <5% in 

comparison to that associated with manual delineation (5-35%).  
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Conclusion: The use of advanced image segmentation algorithms may allow not 

only high accuracy as previously demonstrated, but also provide a robust and 

repeatable tool to aid physicians as an initial guess in determining functional volumes 

in PET. 
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1. Introduction 

Accurate, robust, reproducible and fast delineation of functional tumor uptake 

volumes in three dimensions using positron emission tomography (PET) has been 

identified as a pressing challenge for an increasing number of oncology applications, 

such as image-guided radiotherapy [1-3], diagnosis, prognosis and therapy response 

assessment [4,5]. On the one hand, manual delineation of functional uptake volumes 

using PET images is tedious and associated with very low repeatability due to high 

inter- and intra-observer variability [4], principally arising from the poor quality of PET 

images. On the other hand, current state-of-the-art algorithms for functional uptake 

volume segmentation using PET images consist of fixed [6] or adaptive thresholding 

approaches [7,8]. Regarding the use of fixed threshold, numerous studies have 

shown the need for variable threshold, depending on numerous factors, such as 

among them, lesion contrast, lesion size, and image noise [9]. As a solution, in the 

case of adaptive thresholding, the applied threshold depends on the measured 

contrast between the object to delineate and its surrounding background, as well as 

parameters requiring optimisation on phantom acquisitions. This optimisation has to 

be performed for each scanner model and associated reconstruction and correction 

algorithms, making these approaches system-dependent. In addition, recent studies 

show that even considering the same scanner model, a significant variation of the 

“ideal” threshold may exist due to differences in clinical acquisition and reconstruction 

protocols [10] underlying the possibility that such deterministic approaches may not 

be sufficiently robust and reproducible for functional uptake volume determination.  

Recently several advanced image segmentation algorithms have been 

proposed in the literature for PET volume delineation [11-16]. The physical accuracy 

of these algorithms in differentiating the uptake signal from its surrounding 
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background has, in most cases, already been assessed with respect to ground-truth, 

provided by a combination of realistic simulated or acquired phantom images as well 

as, in some cases, clinical tumors with associated histopathology measurements.  

However, apart from physical accuracy, different characteristics can be equally 

important in terms of assessing the performance of such advanced image 

segmentation algorithms, which in principle have the potential of being more robust 

and repeatable than “threshold-based” approaches. A robust and repeatable 

performance may facilitate their use with images acquired on different scanner 

models without any previous optimization to individual image quality, providing a less 

hardware dependent solution to the problem of 3D functional uptake segmentation. 

However none of these methodologies have been shown to be system independent, 

considering the potential variability that can be observed in PET image 

characteristics, depending on the scanner or associated reconstruction and 

correction algorithms used. Such an evaluation is essential for the efficient 

application of these approaches to the different clinical applications targeted, not 

simply within a given institution but also concerning their use within a multi-center trial 

context. Finally, such a robustness analysis could provide some insight regarding the 

potential behavior of a given segmentation algorithm considering the use of different 

tracers. On the one hand, the PET scanner properties in terms of spatial resolution 

will be similar for acquisitions performed with the same radioisotope, therefore 

resulting in similar magnitude partial volume effects. On the other hand, acquisitions 

performed using different radiotracers lead to different properties of uptake intensity 

and therefore subsequent different contrast and noise level characteristics for a given 

tumor uptake. For instance, 18F-FLT and 18F-FMISO images are usually 

characterized by higher noise levels and reduced tumor uptake contrast with respect 
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to what is usually observed in 18F-FDG images [17,18]. Therefore, by studying the 

behavior of automated algorithms dedicated to the delineation of elevated activity in 

18F-FDG images, considering variable contrast and noise levels, one could gain an 

insight on the potential behavior of such algorithms when applied to other 18F-

labeled PET tracers. 

The objectives of this study were to (i). provide a robustness and repeatability 

evaluation framework, and (ii). assess within this framework the performance of 

different advanced and threshold-based segmentation algorithms in delineating 

elevated activity distributions in a PET image. 

 

2. Materials and methods 

2.1 Segmentation algorithms  

 Threshold-based and more advanced approaches were considered in this 

work. Two different fixed thresholds were considered, at 42% (T42) and 50% (T50) of 

the maximum tumor value, using a region growing algorithm with the maximum 

intensity voxel as seed [4]. An adaptive thresholding approach (TSBR) [7] was also 

included:  

    
1

threshold
I a b

SBR
= +      (1) 

SBR is the tumor-to-background ratio determined by ROI analysis, and the couple of 

parameters (a,b) is optimized for each scanner using phantom acquisitions of 

spheres. 

 In terms of more advanced image segmentation approaches, the Fuzzy C-

Means (FCM) [16] clustering, previously used for functional volume segmentation 
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tasks in both brain and oncology applications [14,15,19,20], was considered. This 

algorithm iteratively estimates clusters’ “centroids” (centers of mass) in the image, 

computing a voxel’s membership between 0 and 1 to a given cluster depending on 

the distance between the voxel’s value and the clusters’ centroids. However, FCM 

lacks explicit noise and spatial correlation modeling. The second advanced algorithm 

considered was an unsupervised Bayesian segmentation, known as Fuzzy Locally 

Adaptive Bayesian (FLAB) [14,15]. It computes, for each voxel, a probability of 

belonging to a given “class” (for instance, tumor, background or a given uptake level 

within a tumor). This probability takes into account the voxel intensity, spatial 

correlation with surrounding voxels (the assumption being that voxels of similar 

intensities and close to each other have higher probability belonging to the same 

class) as well as the overall statistical distributions in the regions of the image by 

estimating the mean and variance for each class. FLAB automatically estimates the 

parameters of interest (number of classes, classes’ mean and variance, spatial 

correlation of each voxel) within a Stochastic Expectation Maximization (SEM) 

framework [21]. In order to deal with the inherent blurry properties of PET images due 

to the limited spatial resolution of the scanners, the algorithm considers that each 

voxel may contain a mixture of classes by modeling both spatial correlation and 

statistical distributions with a combination of Dirac “hard” and Lebesgue “fuzzy” 

measures. This enables a classification of voxels as belonging to what we denote as 

“hard classes” or “fuzzy transitions”, the first referring to fairly homogeneous regions, 

the second to blurred areas occurring at the frontier between two homogeneous 

regions. FLAB is therefore able to accurately differentiate if necessary both the 

overall tumor spatial extent from its surrounding background as well as tumor sub-

volumes with different uptakes. The accuracy of FLAB has been previously 
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extensively investigated for both homogeneous [14] and heterogeneous non 

spherical tumors [15] and demonstrated satisfactory accuracy even for small (<2 cm 

in diameter) volumes of interest (both overall tumors or tumor sub-volumes), short 

acquisition durations (associated with higher noise levels) or low (<4:1) contrast (both 

for overall tumors with respect to their surrounding background or between a tumor 

and its smaller sub-volumes).  

 

2.2 Accuracy, robustness, repeatability: definitions  

 For a given segmentation algorithm we define accuracy as the precision of 

retrieving the true 3D object spatial extent, shape and volume based on the 

reconstructed activity distribution in a PET image, irrespectively of the correlation 

between this distribution and the underlying physiological process. Thus an image 

segmentation algorithm is not expected to differentiate specific from non-specific 

tracer uptake (for example inflammation and tumor in the case of FDG) if they are of 

the same intensity. The defined accuracy of each of the methodologies considered, 

has been determined as in previous studies [14,15] by calculating the classification 

errors (CE, see section 2.4). 

 We define as robustness the ability of a given methodology to generate 

accurate segmented volumes under varying acquisition and image reconstruction 

conditions. This robustness is determined as the variability of the segmentation 

results when a method is applied without prior optimization on images acquired using 

various scanners, and for each scanner under various contrast and noise conditions, 

using different reconstruction and associated correction algorithms. A dataset 

consisting of multiple phantom acquisitions performed on various scanner models 

(see section 2.3) was used for this task. These phantom studies were used to assess 
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robustness as they are consistently employed for optimization purposes with most of 

the functional volume segmentation algorithms. 

 Within the context of this study, repeatability is defined as the ability of a given 

algorithm to reach the same result when applied multiple times on a single image. In 

such a task, deterministic fixed threshold approaches will always give the same 

result. On the other hand, more advanced methods are susceptible to give different 

results when applied multiple times on the same image. For example, the adaptive 

thresholding segmentation may depend on a manually drawn background ROI and 

may thus result in variable delineations depending on the choice of this ROI. Finally, 

manual delineation may be considered as the least repeatable, even when 

considering a single operator (intra-operator variability). In order to compare the 

performance of the different segmentation algorithms considered in terms of 

repeatability, we used a series of simulated tumor images [22], as well as fifteen 

different clinical cases (see section 2.3).  

 

2.3 Validation studies 

 Four different PET/CT scanners currently used in clinical practice were 

considered for the robustness study; namely the Philips Gemini and Gemini TF 

(Philips Medical Systems, Cleveland, OH USA), the Siemens Biograph (SIEMENS 

Medical Solutions, Knoxville, USA) and the GE Discovery LS (GE Healthcare, 

Milwaukee, USA). In each case, acquisitions of the IEC phantom containing spheres 

of various diameters (10, 13, 17, 22, 28, 37 mm) filled with 18F and placed on a hot 

uniform background were carried out. A standard protocol was designed to generate 

the following acquisitions for each scanner model: (a). two different SBR (4:1 and 

8:1), (b). three different acquisition durations (1, 2 and 5 min) to study the effect of 
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noise, and (c). two different voxel volumes used in the reconstruction (between 

2x2x2mm3 and 4.3x4.3x4.25mm3). All acquisitions were performed in 3D mode and 

listmode format facilitating the generation of 1, 2 and 5 minutes realizations from one 

single five minutes acquisition. In addition to the standard CT acquisition used for 

attenuation correction, a CT scan at high resolution was acquired for each PET/CT 

acquisition in order to generate (after registration) a ground-truth defining the true 

spatial extent (the interior of the sphere) of the tracer uptake at the voxel-by-voxel 

level [14]. This is subsequently used to compute the accuracy of each algorithm 

through classification errors (see section 2.4). 

 Routine clinical image reconstruction protocols were used for all scanners. For 

the Philips GEMINI and GEMINI TF, data were reconstructed using the RAMLA 3D (2 

iterations, relaxation parameter of 0.05 and a 5mm FWHM 3D Gaussian post-

filtering) and the TF ML-EM algorithm respectively. In the case of the Siemens 

Biograph and GE Discovery LS, images were reconstructed with Fourier rebinning 

(FORE) followed by OSEM (4 iterations, 8 subsets (4i/8s) with a 5mm FWHM 3D 

Gaussian post-filtering and 2i/8s for the Biograph and Discovery systems 

respectively). All acquisitions were corrected for attenuation (using the corresponding 

CT image), as well as for scattered and random coincidences. Table I contains a 

summary of the parameters for each of the datasets obtained using the different 

scanners considered. Figures 1 and 2 illustrate the various images obtained. Note 

that in the case of the Philips GEMINI acquisitions, the 37mm sphere was not in the 

same plane as the others, thus appears visually smaller in the selected slice, while 

the 28mm sphere was missing in the phantom used for the GE Discovery LS 

acquisitions. 
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 Regarding the repeatability study, two different datasets were used. The first 

one consisted of ten tumors extracted from a database of realistically simulated PET 

scans based on clinical whole body images using the NCAT (NURBS cardiac-torso) 

phantom, a model of the Philips GEMINI scanner and GATE (Geant4 Application for 

Tomography Emission). The procedure for the generation of these images, 

reconstructed using OPL-EM (7i/1s) with 4x4x4mm3 voxels, has been previously 

described in detail [22]. In the second part of the repeatability study a number of 

clinical cases were selected from datasets acquired on various scanner models: 4 

esophagus and 4 follicular lymphoma patients were acquired on the Philips GEMINI 

PET/CT scanner with 2min acquisition per bed position, 60min after FDG injection of 

6MBq/kg. 3 Non-Small Cell Lung Cancer (NSCLC) were acquired on the Siemens 

Biograph (5min per bed position, 45min after 5MBq/kg of FDG injection) and the GE 

Discovery LS (3min per bed position, 60min after 5MBq/kg of FDG injection) 

respectively. 

 

2.4 Analysis  

 For the phantom images used in the robustness study each sphere was 

processed separately. The images corresponding to the region containing each 

sphere were segmented in two classes (sphere and background), using each of the 

methods under evaluation (FCM, FLAB, T42 and T50). A voxel-to-voxel ground-truth 

based on the corresponding CT datasets as described previously [14], was used in 

the robustness evaluation of the different methodologies considered, through the 

determination of the segmentation accuracy with the computation of classification 

errors (CE): 
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 where, 
t

c  is the class assigned by the classification of voxel t , and 
t

x  is its true 

class ( 1
t

x =  for the sphere and 0
t

x =  for the background) and card{} is the cardinal. 

The errors are computed based on all misclassified voxels, either background voxels 

classified as the sphere or vice versa, divided by the total number of voxels defining 

the sphere volume. 

 Mean CE and associated standard deviation (SD) were obtained for each 

sphere and for each segmentation approach, thus providing a measure of the 

robustness of the different segmentation algorithms, when applied without specific 

optimization for a given scanner model or associated reconstruction algorithm under 

different imaging conditions (contrast and noise). The 10 mm sphere was not 

included in the analysis because it was not clearly visible in several of the phantom 

acquisitions and therefore not possible to segment particularly when using 4x4x4mm3 

and 5x5x5mm3 reconstruction voxel size by any of the segmentation algorithms 

considered. Adaptive thresholding could not be compared directly with the other 

methodologies since it is optimized on each of the individual scanner datasets, with 

the parameters (a,b) optimized for each imaging device shown in table II. However, in 

order to assess the robustness of such approaches depending on the imaging 

system used we applied the adaptive thresholding using the parameters optimized on 

other scanners to the image datasets acquired with the Siemens Biograph. 

 For the repeatability evaluation, the simulated and clinical tumors were 

segmented ten times each with FCM, FLAB, and TSBR (fixed thresholding was not 

included since it always gives the same volume). In addition, manual delineation was 

carried out by two nuclear medicine experts with similar experience (more than 10 

years) and training. More specifically the two experts were instructed to delineate the 

elevated uptakes in the images by performing ten different slice-by-slice manual 
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delineations for the different lesions considered in a randomised fashion, ensuring a 

minimum of a week between two consecutive segmentations of the same lesion. All 

these manual segmentations were carried out under the same conditions of full range 

contrast display. The mean percentage variability and associated standard deviation 

with respect to the mean segmented volume was computed for each of the lesions 

and segmentation approaches across the ten executions and across the ten manual 

delineations, in order to assess the repeatability of the approaches for each of the 

images. The repeatability of the manual delineations from the two experts were 

compared separately (intra-observer variability) and to each other (inter-observer 

variability). 

 

3. Results 

 Classification errors representing segmentation accuracy, computed for each 

sphere are shown in figure 4(a), considering the entire range of systems used for 

acquisition and the different parameters in terms of contrast, acquisition duration and 

voxel size. For all the systems considered the relative impact of the different 

acquisition (contrast, duration) and reconstruction (voxel size) parameters is 

demonstrated in figures 4(b), 4(c) and 4(d) respectively. Table III contains the mean 

errors and standard deviations computed across the different spheres taken 

separately (as shown in figure 4(a)) and all together for the different imaging devices 

and acquisition configurations considered.  

 For the entire range of sphere sizes (37 to 13 mm), better accuracy and 

variability through smaller overall mean errors and SD can be seen for the FLAB 

algorithm (8.7±4.5%) relative to the other advanced segmentation algorithm 
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(27.8±25.6% for FCM) as well as relative to the fixed threshold approaches 

(20.3±18.5% and 42.6±51.6% for T50 and T42 respectively). These latter were also 

more sensitive to variations of the parameters as shown in figure 4(a). The results 

suggest that T50 is clearly more robust than T42 (SD of 19% compared to 52%). This 

is explained by the fact that the 50% threshold is more restrictive and hence leads to 

smaller over-estimation for the smallest spheres volumes, that the 42% threshold 

may grossly over-estimate (>100% errors for the most challenging imaging 

conditions). On the other hand, T50 leads to larger CE for the two larger spheres, as 

it tends to under-estimate their volumes by only including the central high intensity 

voxels of the sphere. Considering the FCM algorithm, the results demonstrate that it 

is unable to accurately segment spheres smaller than 2cm in diameter, leading to 

large overall mean errors when considering the performance over all of the sphere 

sizes, although it exhibits lower variability than the fixed threshold approaches for the 

majority of the spheres with a size >2cm. As Figure 4(b) demonstrates, whereas 

FLAB exhibits small variability with respect to contrast changes, all other 

methodologies, especially T42 and FCM exhibit higher sensitivity to such changes. 

T50 on the other hand, is less sensitive to contrast changes with respect to the mean 

error but exhibits larger variability for lower contrast. Figure 4(c) illustrates the 

resilience to shorter acquisition (hence higher noise levels) for each methodology. 

FLAB demonstrates very low variability with shorter acquisitions, whereas all other 

methodologies show higher variability with significantly larger mean errors and 

standard deviations. Finally, only small improvements were found for each 

methodology (except for T50) when using smaller voxels (see figure 4(d)).  

 The optimized (a,b) parameters of the TSBR for each scanner model are 

shown in table II. The mean classification error across the 13-37mm spheres range, 
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associated to each scanner was between 9.7 and 13.1% with associated standard 

deviations from 2.8 to 5.2%. When applying the (a,b) parameters of the Philips 

GEMINI, Philips GEMINI TF and Discovery LS datasets to the Siemens Biograph 

dataset, this mean error rose from 13.1±5.2% to 21.7±7.1%, 23.4±7.6% and 

19.1±6.4% respectively. 

 Concerning the repeatability results, table IV contains the mean variability and 

SD around the mean segmented volume across the ten manual delineations 

performed from each of the two nuclear medicine experts, and 10 repeated 

executions of the FLAB, FCM and TSBR algorithms. FLAB demonstrated highly 

repeatable results in all of the studied cases, with negligible variability (<1%) around 

the mean segmented 3D volume across the different repeated executions for both 

the simulated and the clinical datasets. FCM also lead to satisfactory repeatability 

results (0.8±0.6% on simulated tumors and 1.7±1.9% on clinical cases). In 

comparison, the use of the TSBR led to more than twice as high variability (3.4±2.8% 

and 3.8±3.1% for the simulated tumors and clinical cases respectively) which is most 

certainly due to the background ROI manual definition. By contrast manual 

segmentation performed by the two experts showed high intra-observer variability on 

simulated tumors (13.4±17.3% and 11.7±18.4% for expert 1 and 2 respectively), and 

even larger variability on clinical images (19.6±15.2% and 22.1±13.6% for expert 1 

and 2 respectively). Inter-observer variability (variability of observer 2 with respect to 

mean volume of observer 1) was 16.4±21.8% and 24.7±17.6% for the simulated 

tumors and clinical cases respectively. Figure 4 illustrates one example of some of 

the delineations obtained by the manual segmentation and automatic approaches. 
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4. Discussion 

 Functional tumor uptake volumes delineation represents today an area of 

interest for multiple clinical (routine and research) applications of PET imaging, such 

as response to therapy studies and radiotherapy treatment planning. In all of these 

applications, the robustness and repeatability with which functional uptake volumes 

can be determined under different imaging conditions plays a predominant role, 

allowing a level of confidence to be established in the use of such tumor volume 

measurements in clinical practice [18]. Although several promising advanced 

algorithms have been recently proposed [11-15,20], methodologies currently used in 

clinical practice are based on the use of manual delineation or fixed and adaptive 

thresholding [6-8]. The major drawback of manual delineation is its high inter- and 

intra-observer variability in addition to being time consuming. On the other hand, the 

currently considered state of the art adaptive threshold based algorithms have been 

shown to accurately define functional volumes under certain imaging conditions of 

spherical and homogeneous activity distribution lesions. However, they require 

specific parameters optimization and are thus system-dependent. In addition, the 

adaptive thresholding approaches usually involve some user interaction to select 

background regions of interest, which can potentially lead to user introduced 

variability. In the present study we have focused on the evaluation under different 

imaging conditions of the level of robustness and repeatability of different functional 

volume segmentation algorithms, including current state-of-the-art in clinical practice.   

In terms of robustness, the use of images from different commercial PET/CT 

systems acquired under typical clinical acquisition conditions resulted in large 

variability in the performance of the different segmentation algorithms evaluated. 

Across all of the images and spheres considered, a fixed threshold of 42% of the 
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maximum resulted in the largest variability of the segmented functional volumes (±15-

60%) across the different images considered for spheres <3cm in diameter. On the 

other hand, a fixed threshold of 50% was closer in terms of variability (±20%) with 

that of one of the advanced segmentation algorithms included in this work (FCM). 

Finally, the FLAB algorithm was the most robust of all evaluated algorithms leading to 

the smallest variability (±5%), with no particular dependence on acquisition (duration, 

contrast) and processing parameters (reconstructed voxel size). The 42% fixed 

threshold and the FCM algorithm were the most sensitive to contrast and the 

acquisition duration, across the different scanners used. In terms of variability across 

the different images used, the 50% fixed threshold demonstrated the most significant 

variability dependence on lesion contrast. Finally, regarding the use of adaptive 

thresholding (TSBR), applying this approach to acquisitions performed on a different 

scanner than the one used to optimize its parameters led to higher mean errors of 

<25%.  

In terms of repeatability, all algorithms considered exhibited mean differences of 

<5%, although only FLAB came close to the perfect repeatability that can be 

achieved by a deterministic approach such as a fixed threshold. Finally, the 

repeatability of both threshold and automatic segmentation approaches was superior 

to that of manual delineation (variability >15-20% for both the clinical and simulated 

tumors).  

The overall better accuracy (lower mean errors) and smaller variability (lower 

standard deviation) associated with the FLAB algorithm across the different images 

considered demonstrates its ability, without the need of any scanner-specific 

optimization, to robustly deal with the different image quality resulting from the use of 

different reconstruction and correction algorithms as well as sensitivities associated 
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with different systems. This of course should be considered within the context of the 

limited absolute accuracy of binary threshold-based approaches shown in this and 

previous studies. The accuracy of threshold-based approaches is particularly limited 

for non-homogeneous in form and activity distribution lesions resulting, as previously 

shown [15], in large under or over-estimation of the overall tumor spatial extent.  

The present study also demonstrated that the use of any of the segmentation 

algorithms significantly reduces intra- and inter-observer variability associated with 

manual delineation. However, one should keep in mind that automated segmentation 

algorithms are not able to differentiate between similar levels of physiological and 

pathological elevated tracer uptakes. Therefore physician involvement is still 

imperative and desirable, especially regarding the detection and selection of elevated 

tracer uptakes corresponding to pathological findings that are to be subsequently 

accurately delineated. 

 

5. Conclusion 

 This study has demonstrated significant differences in the robustness and 

reproducibility of functional volume measurements depending on the segmentation 

algorithm used. The advantage of employing advanced segmentation algorithms is 

an improvement in overall elevated activity delineation across the different range of 

image quality that can be encountered today in clinical practice, without the need for 

system-dependent optimization procedures. In addition, their high level of 

repeatability allows achieving similar performance to that of deterministic threshold 

based approaches. Therefore such advanced image segmentation algorithms may 

provide robust and reliable tools to aid physicians as an initial guess in determining 

functional volumes in PET. 
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PET/CT scanner models and acquisition parameters 

PET/CT system Contrast Voxel size 
Duration 

(min) 
Recon 

Philips Gemini 
4:1  

8:1 

2 x 2 x 2 

4 x 4 x 4 
1, 2, 5 RAMLA 3D  

Philips Gemini TF 
4:1  

8:1 

2 x 2 x 2 

4 x 4 x 4 
1, 2, 5 TF ML-EM 

Siemens Biograph 
4:1  

8:1 

2 x 2 x 2 

5.33 x 5.33 x 2 
1, 2, 5 FORE-OSEM 

GE Discovery LS 
4:1  

8:1 

1.95 x 1.95 x 4.25 

4.3 x 4.3 x 4.25 
1, 2, 5 FORE-OSEM 

 

      Table I  

 

 

 

Adaptive thresholding parameters for each scanner 

PET/CT system 
TSBR a 
param 

TSBR b 
param 

Minimum 
mean 

associated 
classification 

error (%) 

Standard 
deviation of 

classification 
error 

 
Philips Gemini 

 
40.1 59.7 10.8 3.3 

 
Philips Gemini TF 

 
38.6 61.4 9.7 2.8 

 
Siemens Biograph 

 
41.7 57.6 13.1 5.2 

 
GE Discovery LS 

 
42.0 56.8 11.1 3.7 

 

Table II 
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Robustness results obtained across the 
entire range of scanner models and 

acquisition parameters for each method 

 
T42 

 
T50 FCM FLAB 

 
 

All spheres (37-13 mm) 

 
Mean CE (%) 

 
42.6 20.3 27.8 8.7 

 
Standard dev 

. 
51.6 18.5 25.6 4.5 

F
ig

u
re

 4
(a

) 

 
 

37 mm 

 
Mean CE (%) 

 
10.5 16 11.4 8.4 

 
Standard dev. 

 
5.3 7.9 5.3 2.8 

 
 

28 mm 

 
Mean CE (%) 

 
17 15.9 11.7 8.4 

 
Standard dev. 

 
13.8 7.5 5.7 3.6 

 
 

22 mm 

 
Mean CE (%) 

 
23 15.6 13.4 7.9 

 
Standard dev. 

 
20.7 9.8 7.1 3.3 

 
 

17 mm 

 
Mean CE (%) 

 
49.1 21.5 31.6 7.2 

 
Standard dev. 

 
35 13.8 12.7 4.9 

 
 

13 mm 

 
Mean CE (%) 

 
113.6 32.7 70.9 11.6 

 
Standard dev. 

 
62.1 33.1 20.9 5.9 

 

Table III 
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Repeatability results for each methodology and manual observers 

Method 
Simulated cases Clinical cases 

Mean 
variability (%) 

Standard 
deviation 

Mean 
variability (%) 

Standard 
deviation 

 
FLAB 

 
0.5 0.3 0.9 0.5 

 
FCM 

 
0.8 0.6 1.7 1.9 

 
Fixed thresholding 

 
0 0 0 0 

 
Adaptive 

thresholding 
 

3.4 2.8 3.8 3.1 

 
Manual delineation 

(expert 1) 
 

13.4 17.3 19.6 15.2 

 
Manual delineation 

(expert 2) 
 

11.7 18.4 22.1 13.6 

 
Manual delineation 
(expert 2 w/r to 1) 

 

16.4 21.8 24.7 17.5 

 

Table IV 
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Table captions 

 

Table I: Overview of all the parameters considered for each scanner model. 

 

Table II: Optimized parameters a and b of the adaptive thresholding for each scanner 

model, with the minimum mean classification errors and their associated standard 

deviations across the entire range of configurations. 

 

Table III: Robustness evaluation: mean classification error and associated standard 

deviation computed for each methodology across the entire range of sphere phantom 

acquisitions 

 

Table IV: Repeatability evaluation: variability and standard deviation around the 

mean segmented volume for repeated (10 times) delineations of simulated and 

clinical tumors.  
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 Philips Gemini Philips Gemini TF 

(A) 

  
  

(B) 

  
  

 GE Discovery LS Siemens Biograph 

(A) 

    

(B) 

    

 (a) (b) (a) (b) 

 

 

 

Figure 1 
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 (A) (B) (C) (D) 

(a) 

    

(b) 

    

 

Figure 2 
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Figure 3(a) 
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Figure 3(b) 
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Figure 3(c) 
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Figure 3(d) 
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(a) (b) 

  
(c) (d) 

 
 

 Figure 4 
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Figure Captions 

 

Figure 1: 2D phantom slices, through the centre of the spheres, for the different 

systems and imaging conditions. Contrast ratios: rows (A) 4:1 and (B) 8:1. Voxel 

sizes: columns (a) small voxels and (b) large voxels (see table I). 

 

Figure 2: Illustration of the variability considering the 17mm sphere across all four 

scanner models for two different opposing configurations: (a): 4:1 contrast, small 

voxels and 1min acquisition. (b): 8:1 contrast, large voxels and 5min acquisition. (A) 

Philips Gemini, (B) Philips Gemini TF, (C) Siemens Biograph, and (D) GE Discovery 

LS. 

 

Figure 3: Mean classification errors and standard deviation (error bars) for each 

methodology with respect to (a) sphere diameter, (b) contrast, (c) acquisition 

duration, and (d) voxel size, computed across the different scanner models. 

 

Figure 4: Illustration on one image slice of tumor delineations obtained using: (a) 

adaptive thresholding with two different background ROIs (6% difference), (b) FLAB 

delineation, (c) two fairly consistent manual delineations (9% difference) from the 

same observer and (d) two highly different (37% difference) manual delineations from 

two different observers. 


