R. Raju and C. Hampe, Immunobiology of Stiff-Person Syndrome, International Reviews of Immunology, vol.79, issue.1-2, pp.79-92, 2008.
DOI : 10.1001/archneur.61.6.938

J. Honnorat, A. Saiz, B. Giometto, A. Vincent, L. Brieva et al., Cerebellar Ataxia With Anti???Glutamic Acid Decarboxylase Antibodies, Archives of Neurology, vol.58, issue.2, pp.225-255, 2001.
DOI : 10.1001/archneur.58.2.225

M. Vianello, B. Tavolato, M. Armani, and B. Giometto, Cerebellar ataxia associated with anti-glutamic acid decarboxylase autoantibodies, The Cerebellum, vol.2, issue.1, pp.77-86, 2003.
DOI : 10.1080/14734220309432

S. Baekkeskov, H. Aanstoot, S. Christgau, A. Reetz, M. Solimena et al., Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase, Nature, vol.250, issue.6289, pp.347151-347157, 1990.
DOI : 10.1021/bi00648a026

K. Dinkel, H. Meinck, K. Jury, W. Karges, and W. Richter, Inhibition of ?-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome, Annals of Neurology, vol.2, issue.2, pp.194-201, 1998.
DOI : 10.1002/ana.410440209

E. Bjork, L. Velloso, O. Kampe, and F. Karlsson, GAD Autoantibodies in IDDM, Stiff-Man Syndrome, and Autoimmune Polyendocrine Syndrome Type I Recognize Different Epitopes, Diabetes, vol.43, issue.1, pp.161-166, 1994.
DOI : 10.2337/diab.43.1.161

J. Kanaani, M. Diacovo, E. Ael, D. Bredt, D. Baekkeskov et al., Palmitoylation controls trafficking of GAD65 from Golgi membranes to axon-specific endosomes and a Rab5a-dependent pathway to presynaptic clusters, Journal of Cell Science, vol.117, issue.10, pp.1172001-1172014, 2004.
DOI : 10.1242/jcs.01030

J. Kanaani, G. Patterson, F. Schaufele, J. Lippincott-schwartz, and S. Baekkeskov, A palmitoylation cycle dynamically regulates partitioning of the GABA-synthesizing enzyme GAD65 between ER-Golgi and post-Golgi membranes, Journal of Cell Science, vol.121, issue.4, pp.437-486, 2008.
DOI : 10.1242/jcs.011916

L. Levy, M. Dalakas, and M. Floeter, The Stiff-Person Syndrome: An Autoimmune Disorder Affecting Neurotransmission of ??-Aminobutyric Acid, Annals of Internal Medicine, vol.131, issue.7, pp.522-552, 1999.
DOI : 10.7326/0003-4819-131-7-199910050-00008

K. Hill, S. Clawson, J. Rose, N. Carlson, and J. Greenlee, Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics, Journal of Neuroinflammation, vol.6, issue.1, p.31, 2009.
DOI : 10.1186/1742-2094-6-31

P. Meneses, A. Zupa-fernandez, M. Maronski, M. Dichter, J. Dalmau et al., Onconeuronal and control antibodies are internalized by hippocampal neurons resulting in cell death, Neurology, issue.suppl1, pp.64-52, 2005.

M. Manto, M. Laute, M. Aguera, V. Rogemond, M. Pandolfo et al., Effects of anti???glutamic acid decarboxylase antibodies associated with neurological diseases, Annals of Neurology, vol.267, issue.6, pp.61544-51, 2007.
DOI : 10.1002/ana.21123

URL : https://hal.archives-ouvertes.fr/inserm-00141558

N. Oulad-ben-taib, M. Manto, M. Laute, and J. Brotchi, The Cerebellum Modulates Rodent Cortical Motor Output after Repetitive Somatosensory Stimulation, Neurosurgery, vol.56, issue.4, pp.811-831, 2005.
DOI : 10.1227/01.NEU.0000156616.94446.00

A. Luft, A. Kaelin-lang, T. Hauser, M. Buitrago, N. Thakor et al., Modulation of rodent cortical motor excitability by somatosensory input, Experimental Brain Research, vol.142, issue.4, pp.562-571, 2002.
DOI : 10.1007/s00221-001-0952-1

N. Oulad-ben-taib, M. Laute, M. Pandolfo, and M. Manto, Interaction between repetitive stimulation of the sciatic nerve and functional ablation of cerebellar nucleus interpositus in the rat, The Cerebellum, vol.3, issue.1, pp.21-27, 2004.
DOI : 10.1080/14734220410028660

C. Sommer, A. Weishaupt, J. Brinkhoff, L. Biko, C. Wessig et al., Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin, The Lancet, vol.365, issue.9468, pp.3651406-3651417, 2005.
DOI : 10.1016/S0140-6736(05)66376-3

C. Geis, A. Weishaupt, S. Hallermann, B. Grunewald, C. Wessig et al., Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition, Brain, vol.133, issue.11, pp.1333166-80, 2010.
DOI : 10.1093/brain/awq253

S. Kono, H. Miyajima, M. Sugimoto, Y. Suzuki, Y. Takahashi et al., Stiff-person Syndrome Associated with Cerebellar Ataxia and High Glutamic Acid Decarboxylase Antibody Titer., Internal Medicine, vol.40, issue.9, pp.968-71, 2001.
DOI : 10.2169/internalmedicine.40.968

K. Ishida, H. Mitoma, Y. Wada, T. Oka, J. Shibahara et al., Selective loss of Purkinje cells in a patient with anti-glutamic acid decarboxylase antibody-associated cerebellar ataxia, Journal of Neurology, Neurosurgery & Psychiatry, vol.78, issue.2, pp.190-192, 2007.
DOI : 10.1136/jnnp.2006.091116

G. Rakocevic, R. Raju, C. Semino-mora, and M. Dalakas, Stiff person syndrome with cerebellar disease and high-titer anti-GAD antibodies, Neurology, vol.67, issue.6, pp.1068-70, 2006.
DOI : 10.1212/01.wnl.0000237558.83349.d0

M. Abele, M. Weller, S. Mescheriakov, K. Burk, J. Dichgans et al., Cerebellar ataxia with glutamic acid decarboxylase autoantibodies, Neurology, vol.52, issue.4, pp.857-866, 1999.
DOI : 10.1212/WNL.52.4.857

G. Lauria, D. Pareyson, M. Pitzolu, and E. Bazzigaluppi, Excellent response to steroid treatment in anti-GAD cerebellar ataxia, The Lancet Neurology, vol.2, issue.10, pp.634-639, 2003.
DOI : 10.1016/S1474-4422(03)00534-9

A. Scheuber, R. Rudge, L. Danglot, G. Raposo, T. Binz et al., Loss of AP-3 function affects spontaneous and evoked release at hippocampal mossy fiber synapses, Proceedings of the National Academy of Sciences, vol.103, issue.44, pp.16562-16569, 2006.
DOI : 10.1073/pnas.0603511103

URL : https://hal.archives-ouvertes.fr/hal-00110532

A. Radulescu, A. Siddhanta, and D. Shields, A Role for Clathrin in Reassembly of the Golgi Apparatus, Molecular Biology of the Cell, vol.18, issue.1, pp.94-105, 2007.
DOI : 10.1091/mbc.E06-06-0532

R. Raju, J. Foote, J. Banga, T. Hall, C. Padoa et al., Analysis of GAD65 Autoantibodies in Stiff-Person Syndrome Patients, The Journal of Immunology, vol.175, issue.11, pp.1757755-62, 2005.
DOI : 10.4049/jimmunol.175.11.7755

J. Tremble, N. Morgenthaler, A. Vlug, A. Powers, M. Christie et al., Human B Cells Secreting Immunoglobulin G to Glutamic Acid Decarboxylase-65 from a Nondiabetic Patient with Multiple Autoantibodies and Graves' Disease: A Comparison with Those Present in Type 1 Diabetes, Journal of Clinical Endocrinology & Metabolism, vol.82, issue.8, pp.822664-70, 1997.
DOI : 10.1210/jc.82.8.2664

C. Padoa, J. Banga, A. Madec, M. Ziegler, M. Schlosser et al., Recombinant Fabs of Human Monoclonal Antibodies Specific to the Middle Epitope of GAD65 Inhibit Type 1 Diabetes-Specific GAD65Abs, Diabetes, vol.52, issue.11, pp.522689-95, 2003.
DOI : 10.2337/diabetes.52.11.2689

C. Grubin, T. Daniels, B. Toivola, M. Landin-olsson, W. Hagopian et al., A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM, Diabetologia, vol.34, issue.4, pp.344-350, 1994.
DOI : 10.1007/BF00408469

C. Hampe, L. Hammerle, A. Falorni, J. Robertson, and A. Lernmark, Site-directed mutagenesis of K396R of the 65 kDa glutamic acid decarboxylase active site obliterates enzyme activity but not antibody binding, FEBS Letters, vol.86, issue.3, pp.185-194, 2001.
DOI : 10.1016/S0014-5793(00)02429-7

M. Manto and M. Laute, A possible mechanism for the beneficial effect of ethanol in essential tremor, European Journal of Neurology, vol.5, issue.Pt 12, pp.697-705, 2008.
DOI : 10.1111/j.1468-1331.2008.02150.x

B. Taib, N. Manto, and M. , Trains of transcranial direct current stimulation antagonize motor cortex hypoexcitability induced by acute hemicerebellectomy, Journal of Neurosurgery, vol.111, issue.4, pp.796-806, 2009.
DOI : 10.3171/2008.2.17679

K. Molina-luna, M. Buitrago, B. Hertler, M. Schubring, F. Haiss et al., Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays, Journal of Neuroscience Methods, vol.161, issue.1, pp.118-143, 2007.
DOI : 10.1016/j.jneumeth.2006.10.025

N. Oulad-ben-taib and M. Manto, Effects of trains of high-frequency stimulation of the premotor/supplementary motor area on conditioned corticomotor responses in hemicerebellectomized rats, Experimental Neurology, vol.212, issue.1, pp.157-65, 2008.
DOI : 10.1016/j.expneurol.2008.03.016

F. Fregni, D. Liebetanz, M. -. Silva, K. Oliveira, M. Santos et al., Effects of transcranial direct current stimulation coupled with repetitive electrical stimulation on cortical spreading depression, Experimental Neurology, vol.204, issue.1, pp.462-468, 2007.
DOI : 10.1016/j.expneurol.2006.09.019

P. Boggio, F. Bermpohl, A. Vergara, A. Muniz, F. Nahas et al., Go-no-go task performance improvement after anodal transcranial DC stimulation of the left dorsolateral prefrontal cortex in major depression, Journal of Affective Disorders, vol.101, issue.1-3, pp.91-99, 2007.
DOI : 10.1016/j.jad.2006.10.026

Y. Ugawa, K. Genba-shimizu, J. Rothwell, M. Iwata, and I. Kanazawa, Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia, Annals of Neurology, vol.158, issue.1, pp.90-96, 1994.
DOI : 10.1002/ana.410360117

M. Gozariu, V. Roth, F. Keime, L. Bars, D. Willer et al., An electrophysiological investigation into the monosynaptic H-reflex in the rat, Brain Research, vol.782, issue.1-2, pp.343-350, 1998.
DOI : 10.1016/S0006-8993(97)01402-9

B. Taib, N. Manto, M. Pandolfo, M. Brotchi, and J. , Hemicerebellectomy blocks the enhancement of cortical motor output associated with repetitive somatosensory stimulation in the rat, J Physiol, vol.567, pp.293-300, 2005.

K. Ishida, H. Mitoma, S. Song, T. Uchihara, A. Inaba et al., Selective suppression of cerebellar GABAergic transmission by an autoantibody to glutamic acid decarboxylase, Annals of Neurology, vol.205, issue.2, pp.263-270, 1999.
DOI : 10.1002/1531-8249(199908)46:2<263::AID-ANA19>3.0.CO;2-0

H. Mitoma, S. Song, K. Ishida, T. Yamakuni, T. Kobayashi et al., Presynaptic impairment of cerebellar inhibitory synapses by an autoantibody to glutamate decarboxylase, Journal of the Neurological Sciences, vol.175, issue.1, pp.40-44, 2000.
DOI : 10.1016/S0022-510X(00)00272-0

N. Tian, C. Petersen, S. Kash, S. Baekkeskov, D. Copenhagen et al., The role of the synthetic enzyme GAD65 in the control of neuronal gammaaminobutyric acid release, Proc Natl Acad Sci, issue.22, pp.9612911-9612917, 1999.

H. Wu, Y. Jin, C. Buddhala, G. Osterhaus, E. Cohen et al., Role of glutamate decarboxylase (GAD) isoform, GAD65, in GABA synthesis and transport into synaptic vesicles???Evidence from GAD65-knockout mice studies, Brain Research, vol.1154, pp.80-83, 2007.
DOI : 10.1016/j.brainres.2007.04.008

C. Buddhala, C. Hsu, and J. Wu, A novel mechanism for GABA synthesis and packaging into synaptic vesicles, Neurochemistry International, vol.55, issue.1-3, pp.9-12, 2009.
DOI : 10.1016/j.neuint.2009.01.020

A. Yarlagadda, B. Helvink, C. Chou, and A. Clayton, Blood Brain Barrier: The Role of GAD Antibodies in Psychiatry, Psychiatry, vol.4, issue.6, pp.57-66, 2007.

R. Raju, G. Rakocevic, Z. Chen, G. Hoehn, C. Semino-mora et al., Autoimmunity to GABAA-receptor-associated protein in stiff-person syndrome, Brain, vol.129, issue.12, pp.3270-3276, 2006.
DOI : 10.1093/brain/awl245

M. Nitsche and W. Paulus, Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans, Neurology, vol.57, issue.10, pp.1899-901, 2001.
DOI : 10.1212/WNL.57.10.1899

J. Sanes and J. Donoghue, Plasticity and Primary Motor Cortex, Annual Review of Neuroscience, vol.23, issue.1, pp.393-415, 2000.
DOI : 10.1146/annurev.neuro.23.1.393

. Manto, Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia, Orphanet Journal of Rare Diseases, vol.6, issue.1, p.3, 2011.
DOI : 10.1186/1750-1172-6-3

URL : https://hal.archives-ouvertes.fr/inserm-00569924