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Abstract. In this paper, we present a Bayesian maximum a posteriori (MAP)
method for multi-slice helical CT reconstruction based on a LO-norm prior.
It makes use of a very low number of projections. A set of surrogate
potential functions is used to successively approximate the LO-norm function while
generating the prior and to accelerate the convergence speed. Simulation results
show that the proposed method provides high quality reconstructions with highly
sparse sampled noise free projections. In presence of noise, the reconstruction
quality is still significantly better than the reconstructions obtained with L1-norm
or L2-norm priors.

1. Introduction

In recent years, multi-slice helical computed tomographic devices have become world-
wide marketed. They offer high spatial and temporal resolutions capable for instance
to image the beating heart in 3D and to provide access to small structures like the
coronary arteries and veins (Ropers et al.; 2003; Becker et al.; 2002; Nieman et al.;
2001). In spite of the remarkable advantages of multi-slice helical CT, the X-ray
dose exposure remains a major concern in clinical practice (Rogers; 2002; Slovis;
2002; Rusinek et al.; 1998; Naidich et al.; 1990; Pouliot et al.; 2005). Irradiation
can be decreased by reducing the X-ray intensity. However this inevitably degrades
the signal to noise ratio in measurements and subsequently the reconstructed image
quality (Hsieh; 1997; JUNG et al.; 2000). Several sinogram smoothing approaches
have been proposed to reduce the noise (Li et al.; 2004; La Riviere; 2005; Wang
et al.; 2006). In the present study, instead of lowering X-ray intensity, we address this
problem by limiting the number of scan projections. Statistical image reconstruction,
although requiring high storage capacity and large computation resources, is a sound
way to deal with such situation. These iterative methods have been widely exploited
for tomographic reconstruction and are today well established (Manglos et al.; 1995;
Knaup et al.; 2006; Thibault et al.; 2003; Nielsen et al.; 2005; Sukovic and Clinthorne;
2000; Iatrou et al.; 2006). They allow introducing constraints such as non-negativity,



Figure 1. Scanning configuration.

image bounds, object sparsity, etc. The approach reported for instance by Sidky and
Pan for circular cone-beam configuration (Sidky and Pan; 2008) shows that limited
angle and under-sampled projections can be dealt with. It combines Projection Onto
Convex Set (POCS) search and total variation (TV) prior.

Our objective here is to point out that a LO-norm prior with a MAP model
(section 2) can offer a suitable solution for sparse projection systems. In section 3,
we describe the optimization method based on the separable paraboloidal surrogates
(SPS) algorithm used for improving the convergence speed (Fessler and Erdogan;
1998). The performance of the proposed method, LO-SPS, is evaluated in section 4
on the 3D Shepp-Logan phantom, with and without noise and by varying the number
of projections per rotation from 8 to 24. The results are then discussed in section 5
before concluding.

2. Theory

2.1. Image Model

The scanning configuration is shown in Fig. 1 where the helical trajectory is depicted
in blue. For practical reasons, the X-ray source and detector plane follow a circular
trajectory while the bed (i.e the patient) is simultaneously translated along the
rotation axis, with the rotation and translation speeds being constant. S is the x-
ray source and O is the center of rotation axis. SD is perpendicular to the detector
plane (i.e., the z-axis). L@\ = r indicates the distance between the x-ray source and
the rotation axis. With a fixed-coordinate system, the trajectory of X-ray source can
be expressed as:

S(9) = (rcos(@),rsin(ﬂ),h%) (1)

where 6 denotes the rotation angle of the x-ray source, and h is the pitch.
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Although (1) is continues, in real CT scans, both image function and
measurements are sampled. If the sampling count for the rotation angle 6 is L, we
have:

06{91a027"'7911} (2)
and consequently, the source positions are described by:
S €{8(61),5(02),---,5(0L)} (3)

Suppose there are B(rows)xC/(columns) detectors evenly placed on detector
plane, then, when S = S, the coordinate of detector center at row b column c is
Dy p, and the ideal measurements are given by a set of line integrals through the
continuous function:

“+oo
9(01,b,¢) = / F(SI+tWp,c)dt (4)
0

where W) p . is the unit vector in the direction of S} Dy ., f is the unknown 3D object
density function to be reconstructed. This integral, when discretized, can be expressed
in matrix form:

g=Af (5)
with f, the image vector, and g, the projections Matrix A is the numerical
approximation of the line integrals depicted in (4), named as system matrix or
projection matrix. By setting J, the number of voxels in the volume image and
I, the number of measured projections, the cardinals of vectors g and f are 1 x J
and I x 1 respectively, the size of A being I x J In most cases A is a highly sparse
matrix. However besides the projection geometry, other factors when modeling the
system matrix must be taken into consideration such as the attenuation, the detector
efficiency, etc.

2.2. MAP model

Having generated the system matrix, we now focus on the optimization model of the
reconstruction problem. According to Bayesian theory, a MAP estimator of image
vector f is defined as:

fly) = arg max{L(ylf) - BR(f)} (6)

The objective function is composed of two terms. L(y|f), the log-likelihood
function, reflects the statistical features of the projection data. In CT scanners, the
projection data are usually degraded by many factors, such as background noise,
random noise, scatter effect and so on. Thus, a pre-correction should be required before
reconstruction. All these factors above make the statistical features complicated. It is
suggested in (Lu et al.; 2001) that noise property of the projection data for low-dose
CT scan can be assumed as normally distributed with a nonlinear signal-dependent
variance. The elements in the measurement vector are supposed to follow independent
Gaussian distributions with mean value the ideal line integrals along the X-rays:

y; = ! exp i g
' 270y 207

where o; is the variance.

(7)



The corresponding log-likelihood function is:
d 1 /y—1
Lyl =Y~ - A Sy - Af) ~ m(2r2)} (8)
i=1
where X is the covariance matrix. Since the projections are supposed to be
independent, X' is diagonal and X' = diag{o;}

The second term in (6) is the image prior, which acts as a penalty term in the
MAP model, and 3 is a positive hyperparameter, which controls the weight of the
image prior. We here consider penalties that can be expressed in the following very
general form:

R(f) = Z Z wii ¥ (f5 — Fr) (9)
Jj keN;
where IV; is the neighborhood region of jth voxel, wy; is a positive value that denotes
the interaction degree in clique kj. Usually, it is inversely proportional to the distance
between pixel pairs. ¥(t) is potential function.

The TV prior applied by Sidky and Pan (Sidky and Pan; 2008) to the
reconstruction is similar to the Ll-norm prior with a potential function, ¥ (t) = |¢|.
Although Donoho (Donoho; 2006) have proven the L0 semi norm prior is equivilent
to L1 norm prior in signal recovery in some linear systems, yet this is no longer true
when the sampling rate of measurements is too low (Candeés and Romberg; 2005). In
our approach, we choose LO-norm prior for the reconstructionand and the potential
function is then defined as:

P(t) = |sgn(t)| (10)
LO-norm is not continuous and numerical difficulties exist when trying to solve (6)
directly. Chartrand proved that by replacing the Ll-norm with the Lp-norm with
p < 1, exact reconstruction of sparse signal is possible with substantially fewer
measurements (Chartrand; 2007). Therefore, by choosing a p small enough, the LO-
norm may be approximated by Lp-norm. More generally, any function satisfying

lim (t,p) = [Sgn(t) ()

can be taken as potential function.

Yet, another problem has to be addressed. The L1l-norm prior is proven to be
closely related to the total variation prior (they are equivalent in 1D case). This
brings us a convex optimization problem that can be solved efficiently. However the
Lp-norm (0 < p < 1) prior is non-convex. When choosing a relatively small p, the
optimization to (6) may not reach the global minima. Candés have introduced a
reweighted L1 minimization scheme for compressive sampling (Candes et al.; 2007).
In his work, a convave (not convex) objective function, which is more closely resembles
the LO norm was considered. His work can be taken as a special case of the method
Trzasko (Trzasko and Manduca; 2009) introduced. In Trzasko’s work, an asymptotic
optimization scheme for the LO-minimization by approximating the LO-norm with a
set of non-convex potential functions. The following potential function is used in our
approach:

it p) = log ('f) n 1) (12)

Other surrogate functions could be considered such as:
Vit p) = (1 —exp(—[t]/p)) (13)



Or ot = 2 (1) »

Although with a smaller p, the semi-L0-norm better approximates the ”true LO-
norm” defined in (10), it has been proven that to ensure the convergence to the
global optimum, the initial guess should be close enough to the solution. Otherwise
the algorithm will more likely find a local minimum of the objective function, leading
then to highly distorted reconstructions. In order to avoid this situation, a progressive
scheme is applied in this paper. The optimization starts with a relatively large p
(hence the initial guess does not have to be close to the final reconstruction), then p
is reduced when the optimization converges. By successively reducing the value of p,
the optimization gradually approaches the expected result.

3. Optimization

3.1. Quadratic Form Objective Function

Various algorithms have been proposed for the optimization of (6). Fessler (Fessler
and Erdogan; 1998; Erdogan and Fessler; 1999b,a) introduced separable paraboloidal
surrogates (SPS) algorithm for tomographic reconstruction, originally designed for
Poisson statistics. It should be noticed that the optimization of quadratic objective
functions is easier than non-quadratic forms. The SPS algorithm is based on
paraboloidal surrogate functions for the log-likelihood which transform the problem
into a simple quadratic optimization. This idea has been retained here due to the
significant performance achieved in accelerating the convergence speed.

Given projection model and system matrix A, the log-likelihood function can be
taken as function of ideal projection vector g:

IS WANES> (“’{gg)) (15)

i=1 i=1
Substituting (5 ) into (15), the log-likelihood is then:

)
Li(f;: f) = ZL (9::9 ZL (Af)i; AF) (16)

According to Taylor expansion, the Voxel—based quadratic log-likelihood function
should have the following form:

Q;(f;) = L;(f) + f~<A>| F (i =F)
~ 5~ Y (1)
and
f) = Z@(fj) (18)
with
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= ai;Li(3) (19)
According to (15),
dj = Za?ji’(gi) = Za?jaiz (20)

for the penalty part, a quadratic form surrogate function is also needed. In
Erdogan and Fessler’s work (Erdogan and Fessler; 1999b,a), only convex priors are
considered. According to their method, it is usually difficult to get a quadratic
surrogate directly for non-convex priors. Hence, we simply separate the update into
2 steps:

Li(f:
it = gt 240 ey
J
then
OR
g = gty 500D (22)
i
and considering the non-negative constraints, we have:
~ k41,2
fitt =max(f; " 7,0) (23)

3.2. Algorithm

From (21), we may see that the update of each voxel f; requires the computation of
Lj( fj), and d;. For a 3D volume reconstruction, the number of voxels is quite large
and, although the update of Lj( fj) accelerates the convergence, it takes too much
time for a single iteration. To balance the convergence and computation speed, we
followed Fessler’s idea of space-alternating updates in parameters (Fessler and Hero;
1994, 1995). We separate the voxel set into several disjoint subsets f (*) satisfying:

T
f(t)Cf,t:].,,T,Uf(Z):f, (24)
1=1

the updates for L;(f;) and d; are only performed after all voxels in one subset is
updated. In this paper, the 3D object is divided into several horizontal slices, each
being taken as a subset. Yet, we must notice that in the SPS algorithm with Poisson
statistics, the computation cost of d; is quite high since it is the sum of curvatures of
the surrogates function, that has to be recomputed one by one (pre-computation of
curvatures has been suggested to face this problem (Erdogan and Fessler; 1999b.a)).
The advantage with Gaussian statistics is that the curvatures i(gi) are always 1.
The whole algorithm is illustrated as follows:

o Initialize: set fY.

e Set parameters 3° and p°

e calculate d; using (20);

e Quter iteration: forn=1,---) N

— Inner iteration:



* calculate g according to (5);

x* Fort=1,.--,T:
- calculate L(f;) according to (19) for each f; € £,
- update £*) using (21) and (22) ;
- update g; using (5);

x check stopping condition, continue inner iteration if condition not

reached;
— set ﬁn-‘rl — uB/Bna pn+1 — uppn;

ug is a relaxation parameters satisfying 0 < ug < 1 and so is u,. For the initialization,
we can simply set fO to a constant or make use of a filtered backprojection
reconstruction (FBP) (Zou and Pan; 2004) with sparse projections which will need
fewer iteration to get convergence (in our approach, FBP were chosen for initialization,
fewer iterations are needed but the initialization does not affect on the final result).
For the inner iteration, a commonly used stopping criterion is:

|fn,m+1 o fn,ml <€ (25)

where n and m are outer and inner iteration number, € is small positive constant. In
our approach, we have to set different e for each outer iteration because the objective
function is changed. Instead of introduce a variable ¢, we can use the following stopping
rule:

P < R = Y or < M (26)

Here M is an empirical limit of the inner iteration number, to prevent the algorithm
from falling into an infinite loop when dealing with improper parameters or poor
quality projections. The inner iteration number depends largely on the tolerance e.
By reducing ¢, the inner iteration number generally increases (no more than M) and
a better convergence is likely to obtain for each outer iteration. However, there’s no
need to set a very small value for € to obtain a very high degree of convergence, because
a quick descent stage for the reconstruction error already occurs once the algorithm
runs into a new outer iteration.

4. Experiments

Experiments have been realized on a 3-D Shepp-Logan phantom, modified to include
highly contrasted objects nearby low contrast structures so as to consider a more
realistic model of anatomical variations. We performed two sets of simulations. The
first one was designed to validate the efficiency of the LO-SPS method. Noiseless
measurements were generated by means of the modified 3D Shepp-Logan phantom
knowing the system matrix. Three orthogonal slices through the 3-D modified
phantom are seen in Fig. 2. The detector dependent factors (such as detector efficiency
coefficients) were set to 1. The second simulation was then conducted with noisy data.
We also used the modified 3D Shepp-Logan phantom, but the model was made more
realistic by adding Gaussian noise to the ideal measurements to simulate the real scan.
In these two simulations, the system configuration was the same. The 3D volume was
set to 200 x 200 x 200 voxels. The size of each voxel was 2.0mm x 2.0mm x 2.0mm.
The source to iso-center distance was 700mm and the source to detector distance was
1400mm. We considered 16 detector rings, each of which covers a fan angle of 75°
with 256 detectors. For each cycle, the source rotates over 360°, the source trajectory
was covered by 16 view angles and the pitch is set to 12. The whole scan runs 4 cycles.



Figure 2. Visualization of three slices at respectively (a) z = 0 mm, (b) x = 0
mm, (¢) y = -20 mm through the 3-D modified Shepp-Logan phantom: several
high and low contrast structures have been added that are of different sizes and
close to each other to evaluate the performance of the algorithm on a more realistic
anatomical model. Three kinds of structures are highlighted by an arrow and a
vertical line has been drawn in slice (a) and (b) respectively, along which intensity
profiles will be further displayed.

The number of measured rays was 262144. All computations in the simulation were
performed on a PC (Intel processor, 2.8-GHz CPU and 4GB RAM) using Microsoft
visual C++ 2008.

We compared in the following 3 priors: L2-norm, L1-norm and the proposed LO-
norm prior. Note that the potential function for L1-norm prior is not differentiable at
zero, thus we used the following smooth approximation:

Yt =V fE+r—Vk (27)

where r is a small positive constant(set to be 1079).

4.1. Simulation Results

We first applied the proposed method to the reconstruction of noise free projection
data. For LO-norm prior, the initial parameters were: 5 = 1.0, p° = 2.0, relaxation
parameters Upeta = 0.5, u, = 0.5, outside iteration number N = 10 and for inner
iteration, e = 0.2 and M = 120. For L1 norm and L2 norm prior, iteration numbers
were set to 1000. We performed a set of experiments with different parameters and
computed the root mean square error (RMSE) between the reconstructed phantom
and its ground truth. We selected as optimal parameters, the one which brought a
compromise between the minimization of the RMSE and the variance on different
regions. We found thus § = 0.2 for L1 norm prior and 8 = 3.0 for L2 norm prior. The
visual inspection of the reconstructed phantom (Fig. 3) shows that the reconstructions
with LO-norm prior match well with the origin phantom images, whereas the distortion
in the results with L1-norm and L2-norm prior are comparatively high. Fig.4 presents
a density profile corresponding to the vertical lines (in red) placed in Fig. 2 (a) and
(b), which also confirm that with LO-norm prior, the reconstruction quality is better
than with the 2 other priors.

We made then vary the number of projections from 8 to 24 per cycle and
performed the reconstruction using the LO-norm prior. Results displayed in Fig. 5,
show that small objects are not well reconstructed with 8 projections per cycle, whereas
with 24 projections, the result looks better. The reconstruction quality improves with
the increasing of projection number. This is confirmed by the RMSE ratio computed
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Figure 3. Reconstruction results with noise free projections. From top to bottom
are with L2, L1 and LO-norm priors. From left to right: 2D slices at z = 0 mm,
x = 0 mm, and y = -20.0 mm. The RMSE ratios are 10.19%, 8.53%, and 3.95%
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Intensity profile along the vertical lines placed in Fig 2.a (100th
column, z = 0 mm) and 2.b ( 78th column, x = 0 mm). The black solid line
corresponds to the ground truth, the dash lines with triangle, square and circle

markers represent the L2 norm, L1 norm and LO norm respectively.
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Figure 5. Reconstruction with LO-norm prior and with different number of views
and noise free projections. From top to bottom, results with 8, 16, 24 projections
per cycle. The RMSE ratios are 5.74%, 3.95%, and 2.58% for 8, 16, 24 projections
per cycle, respectively.

for each reconstruction. However, both the projection matrix size and the computa-
tional time increase with the number of projection views.

The simulations above have been carried out by considering a discrete to discrete
imaging model. Nevertheless, a real imaging system is a continuous to discrete
transform. The voxelization may bring some effect especially at the frontier of regions.
To better evaluate such effect, we added a small high contrast region in the phantom,
generated then the projections using discrete and continuous imaging model respec-
tively. We performed the reconstruction with the LO norm prior using the same
parameters as before. Fig.6 shows the reconstruction results for each imaging model
i.e. discrete to discrete and continuous to discrete respectively. The object appears
smooth in the first case with slightly fuzzy edges. These latter are better preserved
in the second case to the detriment however of the appearance of a strong texture
inside the regions (Fig. 6-j). This result could be improved with a higher resolution
of the object (currently 2 x 2 x 2mm? ). Nevertheless a compromise must be struck
between improving the quality and obtaining a reasonable computational time. Multi-
resolution reconstruction could be an effective way to solve this problem by introducing
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Figure 6. Comparison of different imaging models. (a): original phantom at
slice z = 0, the ROI is delimited with a red box; (b): reconstruction result
from a discrete to discrete imaging model, at slice z = 0, RMSE 4.08%; (c):
reconstruction result from a continuous to discrete imaging model, at slice z = 0,
RMSE 3.25%; (d)(e)(f): visualization of the ROI displaying the original data
(from (a)) and after reconstruction (from (b) and (c)); (g)(h)(i) provide the
difference between (b) and (c), (b) and (a), (c) and (a) respectively; (j) Normalized
intensity profiles along the red horizontal line drawn in (d), (e) and (f)
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Figure 7. Reconstruction results with noisy projections (0.5% additive Gaussian
noise). The top to bottom and left to right rules are identical to those depicted

figure 3. The RMSE ratios are 12.12%, 9.75%, and 5.91% for L2, L1 and LO norm
priors respectively.

(i)

a high resolution in some specific ROIs and normal or less resolution in other parts of
the object. This will be a further direction of our work.

We evaluated then the behavior of these methods in presence of noisy
measurements for 16 angles of views per cycle. A 0.5% Gaussian noise was added
to the projection data. For the LO-norm reconstruction, the parameters were set
as follows: % = 1.0,p° = 2.0,us = u, = 0.65. For Ll-norm and L2-norm, the
hyperparameters were computed as previously to find a compromise between the
minimization of the RMSE and the variance in large regions. These parameters
were 3 = 0.3 and 8 = 4.0 respectively. Reconstruction results shown in Fig. 7
indicates that LO norm prior also provides the best results with a RMSE equal to
5.91%. Although the L1-norm prior method has a better performance than the L2-
norm prior in providing smoother reconstructions, details of the phantom can hardly
be recognized in the reconstructions. The reason is that L1-norm prior needs more
number of projections to provide a satisfying quality. Fig. 8 presents the density
profile corresponding to the vertical lines in Fig. 2 (a) and (b). It shows that the
LO-norm better preserves the transitions and the constant values.
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Figure 8. line profile for noisy projections (0.5% additive Gaussian noise)
reconstructions, corresponding to vertical line placed in Fig. 2 (a) and (b)

We then increased the Gaussian noise level to 2%. For the LO-norm
reconstruction, the parameters are set as follows: 3° = 2.0,p° = 2.0,ug = u, = 0.7.
For Ll-norm and L2-norm, the optimal hyperparameters were found to be § = 0.4
and § = 5.0 respectively. The reconstructed slices are shown in Fig. 9, and Fig.10
is the corresponding intensity profiles along the vertical lines set in Fig. 2. Although
LO-norm provides better results than L1 and L2 priors in the reconstruction of the
modified phantom, we see that when the noise increases, small structures are not well
reconstructed and edges turn out to be blurred. The hyperparameters were chosen to
produce the best RMSE ratio.

4.2. Parameters

As mentioned in section 3.2, the parameter p was iteratively decreased to better
approximate the ”true LO-norm prior”. For this purpose, we have used a relaxation
parameter u, to dynamically modify p. As the LO-norm is non-convex, the algorithm
could fall into local minima if u, is not properly chosen. Such effect often appears as
bright spots in the reconstructions. In the experiments above u, was set to 0.5 for noise
free projections and 0.65 for noisy projections. u, was made vary for reconstructing
the volume from noisy projections (0.5% Gaussian noise added). Results are shown in
Fig. 11 and Fig. 12 for the corresponding RMSE plots. They pointed out that as the
value of u, increases, the reconstruction quality is first improving and then degrading.

5. Discussion

The advantages of the LO-SPS method over the L1 and L2 norm priors have
been highlighted above for sparse projections, in noise and noise-free situations.
Nevertheless, some problems are still to be faced.

First of all, the time computation is high. For example, with 4 cycles, 16 angles
per cycle, each elementary iteration takes about 30 seconds at first, and reduced to
about 8 seconds after rearranging the subsets. There are several other ways to reduce
the computing workload. It can be done by separating the 3D image into more subsets:
although the time required for each iteration is increased, fewer iterations are needed
to get convergence, therefore the total time cost is reduced. Parallel computing can
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Figure 9. Reconstruction results with noisy projections, 2.0% Gaussian noise.
The top to bottom and left to right rules are identical to those depicted figure 3.
The RMSE ratios are 13.95%, 11.03%, and 7.22% for L2, L1 and LO norm priors
respectively.
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Figure 10. Line profile for noisy projections (2.0% additive Gaussian noise)
reconstructions, corresponding to vertical line placed in Fig. 2 (a) and (b)
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Figure 11. Rconstructions results with different relaxation parameter. From top
to bottom are results with u, =0.4, 0.65 and 0.85. From left to right are 2D slices
at z=0 mm, x = 0 mm, and y = -20.0 mm.

4.50

3.5 L L L L L L L L
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Figure 12. RMSE curve corresponding to different relaxation parameters.
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also be considered (Johnson and Sofer; 1999; Sauer et al.; 1995; Zheng et al.; 2000).

The choice of parameters is another problem which deserves special attention.
As we have seen, a key step for convergence in the proposed method is to iteratively
approximate the ”true LO-norm prior”. In this paper, we have chosen a simple solution
by introducing a relaxation parameter. We have shown that there is an optimal
value for this relaxation parameter but additional experiments pointed out that any
change in the phantom image, the noise level, or the number of projections leads to
different curves with similar shapes. The valid lower bound for p rapidly increases with
noise level in projections, so that it may be difficult to get satisfying reconstructions
for high noise values. An effective noise suppression should be carried out before
reconstruction.

6. Conclusion

Statistical iterative methods are often used to improve tomographic reconstructions
using appropriate priors. However, the conventional MAP using MRF prior model
can not provide satisfactory reconstructions from highly sparse sampled projections.
In the present work, an iterative reconstruction method using LO-norm prior has been
designed for multislice helical CT. This is equivalent to the LO-norm minimization
under sparse signals, a well known highly ill-posed problem. Since the solution
is difficult to achieve directly, a set of surrogate functions has been considered to
approximate the LO-norm. Compared to the L2-norm and Ll-norm priors, the
LO-norm one is able to provide better reconstructions from few projections, while
the quality of reconstructions with the former two priors is poor. To prevent the
algorithm from falling into local minima, a progressive optimization scheme has been
proposed. Although more iterations may be needed before the final solution is reached,
the computational cost for projection and back-projection is rather small since the
projection data is highly sparse sampled. With a carefully designed approximation
scheme, the proposed method is still able to offer high quality reconstructions with
noisy projection data. For the optimization of the method, we used a quadratic form
objective function for the update of each pixel. This is similar to the well-known SPS
algorithm but the difference is that the statistical model is assumed to be Gaussian,
therefore there is no need to find a surrogate function for the likelihood function.
This not only reduces the computation cost, but also accelerates the convergence
speed. The proposed LO-SPS methods provides an effective way for reconstruction
from highly sparse projections, which is helpful in low-dose CT scan. Computation
time cost, noise control and choice of parameters are the three main issues currently
examined.
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