International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma.

To cite this version:

HAL Id: inserm-00561753
https://www.hal.inserm.fr/inserm-00561753
Submitted on 1 Feb 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
IASLC/ATS/ERS INTERNATIONAL MULTIDISCIPLINARY CLASSIFICATION OF LUNG ADENOCARCINOMA‡

William D. Travis† 1
Elisabeth Brambilla† 2
Masayuki Noguchi† 3
Andrew G. Nicholson† 4
Kim R. Geisinger† 5
Yasushi Yatabe† 6
David G. Beer† 7
Charles A. Powell† 8
Gregory J. Riely† 9
Paul E. Van Schil† 10
Kavita Garg† 11
John H.M. Austin† 12
Hisao Asamura† 13
Valerie W. Rusch† 14
Fred R. Hirsch† 15
Giorgio Scagliotti† 16
Tetsuya Mitsudomi† 17
Rudolf M. Huber† 18
Yuichi Ishikawa† 19
James Jett† 20
Montserrat Sanchez-Cespedes† 21
Jean-Paul Sculier† 22
Takashi Takahashi† 23
Masahiro Tsuboi† 24
Johan Vansteenkiste† 25
Ignacio Wistuba† 26
Pan-Chyr Yang† 27
Denise Aberle 28
Christian Brambilla 29
Douglas Flieder 30
Wilbur Franklin 31
Adi Gazdar 32
Michael Gould 33
Philip Hasleton 34
Douglas Henderson 35
Bruce Johnson 36
Travis WD et al

Lung Adenocarcinoma Classification

David Johnson 37
Keith Kerr 38
Keiko Kuriyama 39
Jin Soo Lee 40
Vincent A. Miller 41
Iver Petersen 42
Victor Roggli 43
Rafael Rosell 44
Nagahiro Saijo 45
Erik Thunnissen 46
Ming Tsao 47
David Yankeleowitz 48

Affiliations for co-authors listed in Appendix

†Writing Committee
‡International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS), European Respiratory Society (ERS)

ADDRESS CORRESPONDENCE TO:
William Travis, M.D.
Memorial Sloan Kettering Cancer Center
Department of Pathology
1275 York Avenue
New York, NY 10065
Phone: 212 639 3325
Fax: 212-717-3576; 646 422 2016
Email: travisw@mskcc.org
ABSTRACT

Introduction: Adenocarcinoma is the most common histologic type of lung cancer. In order to address advances in oncology, molecular biology, pathology, radiology and surgery of lung adenocarcinoma, an international multidisciplinary classification was sponsored by the International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS), and European Respiratory Society (ERS). This new adenocarcinoma classification is needed to provide uniform terminology and diagnostic criteria, especially for bronchioloalveolar carcinoma (BAC), the overall approach to small non-resection cancer specimens and for multidisciplinary strategic management of tissue for molecular and immunohistochemical studies.

Methods: An international core panel of experts representing all three societies was formed with oncologists/pulmonologists, pathologists, radiologists, molecular biologists and thoracic surgeons. A systematic review was performed under the guidance of the ATS Documents Development and Implementation Committee. The search strategy identified 11368 citations of which 312 articles met specified eligibility criteria and were retrieved for full text review. A series of meetings were held to discuss the development of the new classification, to develop the recommendations and to write the current document. Recommendations for key questions were graded by strength and quality of the evidence according to the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach.

Results: The classification addresses both resection specimens, as well as, small biopsies and cytology. The terms bronchioloalveolar carcinoma (BAC) and mixed subtype adenocarcinoma are no longer used. For resection specimens, new concepts are introduced such
as adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) for small solitary adenocarcinomas with either pure lepidic growth (AIS) and predominant lepidic growth with ≤5mm invasion (MIA) to define patients who, if they undergo complete resection, will have 100% or near 100% disease specific survival, respectively. AIS and MIA are usually non-mucinous, but rarely may be mucinous. Invasive adenocarcinomas are classified by predominant pattern after using comprehensive histologic subtyping with lepidic (formerly most mixed subtype tumors with nonmucinous BAC), acinar, papillary and solid patterns; micropapillary is added as a new histologic subtype. Variants include invasive mucinous adenocarcinoma (formerly mucinous BAC), colloid, fetal and enteric adenocarcinoma.

This classification provides guidance for small biopsies and cytology specimens, as approximately 70 percent of lung cancers are diagnosed in such samples. Non-small cell lung carcinomas (NSCLC), in patients with advanced stage disease, are to be classified into more specific types such as adenocarcinoma or squamous cell carcinoma, whenever possible for several reasons: 1), adenocarcinoma or NSCLC not otherwise specified (NOS) should be tested for EGFR mutations since the presence of these mutations is predictive of responsiveness to EGFR tyrosine kinase inhibitors, 2) adenocarcinoma histology is a strong predictor for improved outcome with pemetrexed therapy compared to squamous cell carcinoma, and 3) potential life-threatening hemorrhage may occur in patients with squamous cell carcinoma who receive bevacizumab. If the tumor cannot be classified based on light microscopy alone, special studies such as immunohistochemistry and/or mucin stains should be applied to classify the tumor further. Use of the term NSCLC NOS should be minimized.

Conclusions: This new classification strategy is based on a multidisciplinary approach to diagnosis of lung adenocarcinoma, that incorporates clinical, molecular, radiologic, and surgical
issues, but it is primarily based on histology. This classification is intended to support clinical practice as well as research investigation and clinical trials. As EGFR mutation is a validated predictive marker for response and progression-free survival (PFS) with EGFR tyrosine kinase inhibitors (TKIs) in advanced lung adenocarcinoma, we recommend that patients with advanced adenocarcinomas be tested for EGFR mutation. This has implications for strategic management of tissue, particularly for small biopsies and cytology samples, to maximize high quality tissue available for molecular studies.

Potential impact for TNM staging include adjustment of the size T factor according to only the invasive component 1) pathologically in invasive tumors with lepidic areas or 2) radiologically by measuring the solid component of part-solid nodules.

Key words: lung; adenocarcinoma; classification; histologic; pathology; oncology; pulmonary; radiology; computed tomography; molecular; EGFR; KRAS; EML4-ALK; gene profiling; gene amplification; surgery; limited resection; bronchioloalveolar carcinoma; lepidic; acinar; papillary; micropapillary; solid; adenocarcinoma in situ; minimally invasive adenocarcinoma; colloid; mucinous cystadenocarcinoma; enteric; fetal; signet ring; clear cell; frozen section; TTF-1, p63.
CONTENTS:

EXECUTIVE SUMMARY

INTRODUCTION
Rationale for a Change in the Approach to Classification of Lung Adenocarcinoma
Need for a Multidisciplinary Approach to Diagnosis of Lung Adenocarcinoma

METHODOLOGY

Objectives
Participants
Evidence
Meetings
Validation

PATHOLOGIC CLASSIFICATION

CLASSIFICATION FOR RESECTION SPECIMENS
Preinvasive Lesions
 Atypical adenomatous hyperplasia
 Adenocarcinoma in situ, non-mucinous and/or mucinous
Minimally Invasive Adenocarcinoma, Non-Mucinous And/Or Mucinous
Invasive Adenocarcinoma
 Lepidic predominant adenocarcinoma
 Acinar predominant adenocarcinoma
 Papillary predominant adenocarcinoma
 Micropapillary predominant adenocarcinoma
 Solid predominant adenocarcinoma
Variants
 Invasive mucinous adenocarcinoma
 Colloid adenocarcinoma
 Fetal adenocarcinoma
 Enteric adenocarcinoma
Clear cell and signet ring cell features

CLASSIFICATION FOR SMALL BIOPSIES AND CYTOLOGY

GRADING OF ADENOCARCINOMAS

Strategic Use of Pathologic Specimens for Molecular Studies

Pathology Recommendations
Additional Pathology Consideration For Good Practice
Pathology Research Recommendations
CLINICAL FEATURES

Clinical Implications of Histology and Molecular Testing:
Surgically Resectable NSCLC:
Clinical Recommendation
Additional Clinical Consideration for Good Practice
Clinical Research Recommendations

MOLECULAR FEATURES

Histogenetic Origins of Lung Adenocarcinoma Subtypes
Histologic Molecular Correlations
Lung cancers with ALK translocations
Lung Adenocarcinoma Gene Expression Analyses, Copy Number Analyses of Lung Adenocarcinoma Subtypes
Multiple Pulmonary Nodules
Molecular Differences in Metastases versus Primary Tumors
Molecular prognostic factors
Molecular Research Recommendations

RADIOLOGIC FEATURES

Radiologic Spectrum According to Histologic Subtype
Size and growth rate of lesions.
Multiple primary lung cancers
Positron emission tomography (PET scanning).
Magnetic resonance
Imaging-guided percutaneous needle biopsy for molecular and immunohistochemical correlations
Radiology Recommendations
Additional Radiology Considerations for Good Practice
Radiology Research Recommendations

SURGICAL FEATURES

Is sublobar (limited) resection adequate oncologic treatment for some early adenocarcinomas?
Can computed tomography (CT) be used to select patients for sublobar resection?
Is there a difference in outcome between VATS versus thoracotomy in the treatment of early stage lung adenocarcinoma?
What can be expected of pathologists at frozen section?
Should a systematic lymph node dissection be performed in every early stage adenocarcinoma?
Multiple lesions
Surgery Research Recommendations
CLASSIFICATION IN A LOW RESOURCE SETTING

Pathologic Classification
Resection Specimens
Small biopsies and Cytology
Clinical, Radiologic and Surgical Approach to Aid Management of Patients in the Absence of Molecular or Immunohistochemical Data

IMPLICATIONS OF THIS CLASSIFICATION FOR TNM STAGING

EXECUTIVE SUMMARY

INTRODUCTION:

Due to the rapid advances in clinical, radiologic, pathologic and molecular aspects of lung adenocarcinoma there is a need to improve the existing World Health Organization (WHO) classification and to use a multidisciplinary approach. The term bronchioloalveolar carcinoma (BAC) also needs re-evaluation as it is used for widely divergent clinical, radiologic, pathologic and molecular subsets of patients. In resected lung adenocarcinomas, since the former “mixed subtype” category accounts for over 90% of all cases and there is great heterogeneity in clinical, radiologic, pathologic and molecular features, a better way is needed to subclassify these tumors. All previous WHO classifications have addressed histologic classification primarily based on resection specimens. Since only 30% of lung cancers are resectable, the vast majority of lung cancer patients present with advanced disease and are diagnosed based on small biopsy and cytology specimens. Due to the recent understanding that histologic typing and EGFR mutation status are important for selection of chemotherapy for advanced lung adenocarcinoma patients, there is a great need for a new classification that addresses diagnostic issues and strategic management of tissue to allow for molecular testing in small biopsy and cytology specimens.
Methods:

The International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS) and European Respiratory Society (ERS) developed an international core panel of experts with oncologists/respiratory physicians, pathologists, radiologists, molecular biologists and thoracic surgeons. The new classification was developed based upon discussions at a series of meetings between March 2008 and December 2009 and a systematic review supported by members of the ATS Documents Development and Implementation Committee. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to rate the quality of evidence. If applicable, recommendations are expressed as either strong or weak (also known as conditional) and the evidence is graded in four levels (high, moderate, low and very low) following the assessment of eight criteria that influence the confidence in the estimates of effect for the evaluated outcomes. Official notification of approval of the document by the Board of Directors of the ATS and ERS was received on November 8, 2010.

GOALS:

The goals of this project were: 1) To develop a multidisciplinary subclassification of lung adenocarcinoma; a) To resolve the ongoing discrepancy in the pathologic vs clinical use of the term BAC - which currently defines 100% vs 5-20% 5-year survival, respectively, depending on the definition being used; b) To achieve an international standard for histologic subclassification of lung adenocarcinomas; and c) To define clinical/histologic/radiologic/molecular subtypes of lung adenocarcinoma, and 2) To achieve an international consensus that will result in widespread acceptance of this classification.
MAJOR CHANGES IN CLASSIFICATION

This classification outlines multiple major changes in lung adenocarcinoma classification. First, the diagnosis is best established using a multidisciplinary approach. Second, this classification addresses terminology and criteria for diagnosis of lung cancer in small biopsies and cytology, due to the need for \textit{EGFR} mutation testing in advanced lung adenocarcinoma patients and the need to avoid using bevacizumab and pemetrexed chemotherapy in patients with squamous cell carcinoma. Also, due to the need for \textit{EGFR} mutation testing in advanced lung cancer patients, optimal tissue management in these small tissue samples is essential to allow not only for diagnosis but also molecular testing. This requires institutional multidisciplinary coordination to streamline the procurement and processing of specimens for timely diagnosis and molecular testing. Third, use of the term bronchioloalveolar carcinoma (BAC) is discontinued and concepts of adenocarcinoma \textit{in situ} (AIS) and minimally invasive adenocarcinoma (MIA) are introduced. Fourth, for overtly invasive adenocarcinomas, comprehensive histologic subtyping and classification by the predominant subtype is recommended to better stratify tumors previously classified as mixed subtype. Fifth, overtly invasive tumors previously classified as mucinous BAC are now classified as invasive mucinous adenocarcinoma. Finally, implications of this classification for TNM staging include potential improvement in predicting prognosis using invasive size rather than total size in tumors with a lepidic component and better comparison of multiple adenocarcinomas to distinguish metastases from multiple primaries with the aid of comprehensive histologic subtyping.
RECOMMENDATIONS

The committee makes the following recommendations:

PATHOLOGY RECOMMENDATIONS

1) We recommend discontinuing the use of the term “BAC”. (strong recommendation, low quality evidence).

2) For small (≤ 3 cm), solitary adenocarcinomas with pure lepidic growth, we recommend the term “Adenocarcinoma in situ” (AIS) that defines patients who should have 100% disease-specific survival, if the lesion is completely resected. (strong recommendation, moderate quality evidence). Remark: Most AIS are nonmucinous, rarely are they mucinous.

3) For small (≤ 3cm), solitary, adenocarcinomas with predominant lepidic growth and small foci of invasion measuring ≤0.5 cm, we recommend a new concept of “Minimally invasive adenocarcinoma” (MIA) to define patients who should have near 100%, disease-specific survival, if completely resected. (strong recommendation, low quality evidence). Remark: Most MIA are nonmucinous, rarely are they mucinous.

4) For invasive adenocarcinomas, we suggest comprehensive histologic subtyping be used to assess histologic patterns semiquantitatively in 5% increments, choosing a single predominant pattern. We also suggest that individual tumors be classified according to the predominant pattern and that the percentages of the subtypes be reported. (weak recommendations, low quality evidence).

5) In patients with multiple lung adenocarcinomas, we suggest comprehensive histologic subtyping in the comparison of the complex, heterogeneous mixtures of histologic...
patterns to determine if the tumors are metastases or separate synchronous or metachronous primaries (weak recommendation, low quality evidence).

6) For non-mucinous adenocarcinomas previously classified as mixed subtype where the predominant subtype consists of the former non-mucinous BAC, we recommend use of the term lepidic predominant adenocarcinoma (LPA) and discontinuing the term “mixed subtype” (strong recommendation, low quality evidence).

7) In patients with early stage adenocarcinoma, we recommend the addition of “micropapillary predominant adenocarcinoma”, when applicable, as a major histologic subtype due to its association with poor prognosis (strong recommendation, low quality evidence).

8) For adenocarcinomas formerly classified as mucinous BAC we recommend they be separated from the adenocarcinomas formerly classified as non-mucinous BAC and depending on the extent of lepidic versus invasive growth that they be classified as mucinous AIS, mucinous MIA, or for overtly invasive tumors “invasive mucinous adenocarcinoma” (weak recommendation, low quality evidence).

9) For small biopsies and cytology, we recommend that NSCLC be further classified into a more specific type, such as adenocarcinoma or squamous cell carcinoma, whenever possible (strong recommendation, moderate quality evidence).

10) We recommend that the term NSCLC not otherwise specified (NOS) be used as little as possible and we recommend it be applied only when a more specific diagnosis is not possible by morphology and/or special stains (strong recommendation, moderate quality evidence).
Pathology Considerations for Good Practice:

1) When a diagnosis is made in a small biopsy or cytology specimen in conjunction with special studies, it should be clarified whether the diagnosis was established based on light microscopy alone or if special stains were required.

2) Tissue specimens should be managed not only for diagnosis but also to maximize the amount of tissue available for diagnostic studies.

3) To guide therapy for patients with advanced lung adenocarcinoma, each institution should develop a multidisciplinary team that coordinates the optimal approach to obtaining and processing biopsy/cytology specimens to provide expeditious diagnostic and molecular results.

4) The terms AIS or MIA should not be used in small biopsies or cytology specimens. If a non-invasive pattern is present in a small biopsy, it should be referred to as lepidic growth.

5) The term large cell carcinoma should not be used for diagnosis in small biopsy or cytology specimens and should be restricted to resection specimens where the tumor is thoroughly sampled to exclude a differentiated component.

6) When paired cytology and biopsy specimens exist, they should be reviewed together to achieve the most specific and nondiscordant diagnoses.

7) Cell blocks should be prepared from cytology samples including pleural fluids.

8) The term *non-squamous cell carcinoma* should not be used by pathologists in diagnostic reports. It is a categorization used by clinicians to define groups of patients with several histologic types who can be treated in a similar manner; in small
biopsies/cytology pathologists should classify NSCLC as adenocarcinoma, squamous cell carcinoma, NSCLC-NOS or other terms outlined in Table 2 or Figure 9.

9) The above strategy for classification of adenocarcinoma versus other histologies and the terminology in Table 2 and Figure 9, should be used in routine diagnosis as well as future research and clinical trials, so that there is uniform classification of disease cohorts in relation to tumor subtypes and data can be stratified according to diagnoses made by light microscopy alone versus diagnoses requiring special stains.

10) Tumors that show sarcomatoid features, such as marked nuclear pleomorphism, malignant giant cells or spindle cell morphology should be preferentially regarded as adenocarcinoma or squamous cell carcinoma if clear glandular or squamous features are present respectively, as this is apt to influence management. If such features are not present, the term “poorly differentiated non-small cell carcinoma with giant and/or spindle cell features” (depending on what feature is present) should be used.

11) Neuroendocrine immunohistochemical markers should only be performed in cases where there is suspected neuroendocrine morphology. If neuroendocrine morphology is not suspected, neuroendocrine markers should not be performed.
CLINICAL RECOMMENDATION

In patients with advanced lung adenocarcinoma we recommend testing for \textit{EGFR} mutation (strong recommendation, moderate quality evidence).

Remarks: This is a strong recommendation because potential benefits clearly outweigh harms. This recommendation assumes that correct classification by \textit{EGFR} mutation status is associated with important benefit based upon randomized phase 3 clinical trials of \textit{EGFR} TKI therapy which demonstrate a predictive benefit for response rate and progression-free survival, but not overall survival, as well as subset analyses of multiple additional studies.

Clinical Consideration for Good Practice

1) If molecular testing is planned, appropriate biopsy methods should be utilized to obtain sufficient tissue for both pathologic diagnosis and molecular analyses and the specimens should be handled appropriately.

RADIOLOGY RECOMMENDATIONS

1) When an opacity in the lung adenocarcinoma spectrum is either a pure ground glass nodule (GGN) or part-solid nodule with a predominant ground-glass component, we recommend that the term BAC no longer be used. These tumors should be classified by the new terms: AIS, MIA, and LPA (strong recommendation, low quality evidence).
2) For overtly invasive adenocarcinomas previously classified as mucinous BAC, we recommend they be separated from non-mucinous adenocarcinomas and be classified as invasive mucinous adenocarcinoma (strong recommendation, moderate quality evidence).

Remark: At CT, this entity is usually solid or mostly-solid, has frequent air bronchograms, shows a lobar or multilobar distribution and frequently consists of multiple nodular or consolidative opacities (former term multicentric BAC).

Radiology Considerations for Good Practice

1) Radiologists performing biopsies should obtain sufficient tissue not only for traditional microscopic analysis, but also for immunohistochemical and molecular analysis.

2) Thin-section CT technique should be used for part solid lesions to record the size of a) the solid component and b) total tumor size including both solid and ground-glass components.

3) Changes in shape, size and attenuation help determine follow-up and when intervention is appropriate.

Conclusions

In the rapidly progressing field of lung adenocarcinoma this classification brings together many recent advances that will significantly impact diagnosis and management for these patients. A multidisciplinary team approach is needed, particularly for the vast majority of lung
adenocarcinoma patients who present in advanced stage where small biopsies and cytology specimens need to be obtained and processed in such a way to assure not only accurate histologic diagnosis, but also expedited processing for molecular testing. For the first time, standardized terminology and criteria are provided for diagnosis of adenocarcinoma in small biopsy and cytology specimens. For patients with resected lung adenocarcinomas, the old term BAC is discontinued and new terms of AIS, MIA, LPA are introduced. The old term “mixed subtype” is also no longer used and overtly invasive tumors are classified according to the predominant subtype. This approach needs to be tested to validate preliminary data suggesting it may help stratify prognostic subsets of overtly invasive tumors and that the size T-factor may be best measured based on size of the invasive component rather than total size in tumors cases with lepidic components.
INTRODUCTION

Rationale for a Change in the Approach to Classification of Lung Adenocarcinoma

Lung cancer is the most frequent cause of major cancer incidence and mortality worldwide.1,2 Adenocarcinoma is the most common histologic subtype of lung cancer in most countries, accounting for almost half of all lung cancers.3 A widely divergent clinical, radiologic, molecular and pathologic spectrum exists within lung adenocarcinoma. As a result, confusion exists and studies are difficult to compare. Despite remarkable advances in understanding of this tumor in the past decade, there remains a need for universally accepted criteria for adenocarcinoma subtypes, in particular tumors formerly classified as bronchioloalveolar carcinoma (BAC).4,5 As enormous resources are being spent on trials involving molecular and therapeutic aspects of adenocarcinoma of the lung, the development of standardized criteria are of great importance and should help advance the field, increasing the impact of research and improving patient care. This classification is needed to assist in determining patient therapy and predicting outcome.

Need for a Multidisciplinary Approach to Diagnosis of Lung Adenocarcinoma

One of the major outcomes of this project is the recognition that the diagnosis of lung adenocarcinoma requires a multidisciplinary approach. The classifications of lung cancer published by the WHO in 1967, 1981 and 1999, were written primarily by pathologists for pathologists.5-7 Only in the 2004 revision were relevant genetics and clinical information introduced.4 However, due to remarkable advances over the last six years in our understanding of lung adenocarcinoma, particularly in area of medical oncology, molecular biology and radiology, there is a pressing need for a revised classification, based not on pathology alone, but rather on...
an integrated multidisciplinary platform. In particular, there are two major areas of interaction between specialties that are driving the need for our multidisciplinary approach to classification of lung adenocarcinoma: 1) in patients with advanced non-small cell lung cancer recent progress in molecular biology and oncology has led to a) discovery of EGFR mutation and its prediction of response to EGFR tyrosine kinase inhibitors (TKI’s) in adenocarcinoma patients8-11 and b) the requirement to exclude a diagnosis of squamous cell carcinoma to determine eligibility patients for treatment with pemetrexed, (due to improved efficacy)12-15 or bevacizumab (due to toxicity)16,17 and 2) the emergence of radiologic-pathologic correlations between ground-glass vs solid or mixed opacities seen by computed tomography (CT) and BAC vs invasive growth by pathology have opened new opportunities for imaging studies to be used by radiologists, pulmonologists and surgeons for predicting the histologic subtype of adenocarcinomas,18-21 patient prognosis,18-23 and improve preoperative assessment for choice of timing and type of surgical intervention.18-26

While histologic criteria remain the foundation of this new classification, this document has been developed by pathologists in collaboration with clinical, radiology, molecular and surgical colleagues. This effort has led to the development of terminology and criteria that not only define pathologic entities, but also communicate critical information that is relevant to patient management (Tables 1 and 2). The classification also provides recommendations on strategic handling of specimens to optimize the amount of information to be gleaned. The goal is no longer to solely provide the most accurate diagnosis, but also to manage the tissue in a way that immunohistochemical and/or molecular studies can be performed to obtain predictive and prognostic data that will lead to improvement in patient outcomes.
For the first time, this classification addresses an approach to small biopsies and cytology in lung cancer diagnosis (Table 2). Recent data regarding EGFR mutation predicting responsiveness to EGFR tyrosine kinase inhibitors,8-11 toxicities,16 and therapeutic efficacy12-15 have established the importance of distinguishing squamous cell carcinoma from adenocarcinoma and NSCLC-NOS in advanced lung cancer patients. Approximately 70\% of lung cancers are diagnosed and staged by small biopsies or cytology rather than surgical resection specimens, with increasing use of transbronchial needle aspiration (TBNA), endobronchial ultrasound (EBUS) guided TBNA and esophageal ultrasound (EUS) guided needle aspiration.27 Within the NSCLC group, most pathologists can identify well- or moderately differentiated squamous cell carcinomas or adenocarcinomas, but specific diagnoses are more difficult with poorly differentiated tumors. Yet, in small biopsies and/or cytology specimens, 10-30\% of specimens continue to be diagnosed as NSCLC-NOS.13,28,29

Proposed terminology to be used in small biopsies is summarized in Table 2. Pathologists need to minimize the use of the term NSCLC or NSCLC-NOS on small samples and aspiration and exfoliative cytology, providing as specific a histologic classification as possible to facilitate the treatment approach of medical oncologists.30

Unlike previous WHO classifications where the primary diagnostic criteria for as many tumor types as possible were based on hematoxylin and eosin (H&E) examination, this classification emphasizes the use and integration of immunohistochemical [i.e. thyroid transcription factor (TTF-1)/p63 staining], histochemical (i.e. mucin staining) and molecular studies, as specific therapies are driven histologic subtyping. While these techniques should be utilized whenever possible, it is recognized that this may not always be possible and thus a
simpler approach is also provided when only H&E stained slides are available, so this classification may be applicable even in a low resource setting.

METHODOLOGY

Objectives

This international multidisciplinary classification has been produced as a collaborative effort by the International Association for the Study of Lung Cancer (IASLC), the American Thoracic Society (ATS), and the European Respiratory Society (ERS). The purpose is to provide an integrated clinical, radiologic, molecular and pathologic approach to classification of the various types of lung adenocarcinoma that will help to define categories that have distinct clinical, radiologic, molecular and pathologic characteristics. The goal is to identify prognostic and predictive factors and therapeutic targets.

Participants

Panel members included thoracic medical oncologists, pulmonologists, radiologists, molecular biologists, thoracic surgeons and pathologists. The supporting associations nominated panel members. The co-chairs were selected by the IASLC. Panel members were selected because of special interest and expertise in lung adenocarcinoma and to provide an international and multidisciplinary representation. The panel consisted of a core group (author list) and a reviewer group ([Appendix 1](#)).

Evidence

The panel performed a systematic review with guidance by members of the ATS Documents Development and Implementation Committee. Key questions for this project were generated by each specialty group and a search strategy was developed ([Appendix 2](#)). Searches
were performed in June, 2008 with an update in June, 2009 resulting in 11368 citations. These were reviewed to exclude articles that did not have any relevance to the topic of lung adenocarcinoma classification. The remaining articles were evaluated by two observers who rated them by a predetermined set of eligibility criteria using an electronic web based survey program (www.surveymonkey.com) to collect responses.31 This process narrowed the total number of articles to 312 that were reviewed in detail for a total of 141 specific features, including 17 study characteristics, 35 clinical, 48 pathologic, 16 radiologic, 16 molecular, and 9 surgical (Appendix 2). These 141 features were summarized in an electronic database that was distributed to members of the core panel, including the writing committee. Articles chosen for specific data summaries were reviewed and based on analysis of tables from this systematic review, recommendations were made according to the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE).32-37 Throughout the rest of the document the term GRADE (spelled in capital letters) must be distinguished from histologic grade which is a measure of pathologic tumor differentiation. The GRADE system has two major components: 1) grading the strength of the recommendation and 2) evaluating the quality of the evidence.32 The strength of recommendations is based on weighing estimates of benefits versus downsides. Evidence was rated as high, moderate or low or very low.32 The quality of the evidence expresses the confidence in an estimate of effect or an association and whether it is adequate to support a recommendation. After review of all articles, a writing committee met to develop the recommendations with each specialty group proposing the recommendations, votes for or against the recommendation and modifications were conducted after multidisciplinary discussion. If randomized trials were available, we started by assuming high quality but down-graded the quality when there were serious methodological limitations, indirectness in population,
inconsistency in results, imprecision in estimates or a strong suspicion of publication bias. If well-done observational studies were available, low quality evidence was assumed but the quality was upgraded when there was a large treatment effect or a large association, all plausible residual confounders would diminish the effects or if there was a dose-response gradient. We developed considerations for good practice related to interventions that usually represent necessary and standard procedures of health care system – such as history taking and physical examination helping patients to make informed decisions, obtaining written consent, or the importance of good communication – when we considered them helpful. In that case we did not perform a grading of the quality of evidence or strength of the recommendations.

Meetings

Between March 2008 and December 2009, a series of meetings were held, mostly at Memorial Sloan Kettering Cancer Center (MSKCC), in New York, NY to discuss issues related to lung adenocarcinoma classification and to formulate this document. The core group established a uniform and consistent approach to the proposed types of lung adenocarcinoma.

Validation

Separate projects were initiated by individuals involved with this classification effort in an attempt to develop data to test the proposed system. These included projects on small biopsies, histologic grading, Stage I adenocarcinomas, small adenocarcinomas from Japan, international multiple pathologist project on reproducibility of recognizing major histologic patterns of lung adenocarcinoma, molecular-histologic correlations, and radiologic-pathologic correlation focused on adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA).
The new proposals in this classification are based on the best available evidence at the time of writing this document. However, due to the lack of universal diagnostic criteria in the literature, there is a need for future validation studies based on these standardized pathologic criteria with clinical, molecular, radiologic and surgical correlations.

PATHOLOGIC CLASSIFICATION

Histopathology is the backbone of this classification, but *lung cancer diagnosis is a multidisciplinary process* requiring correlation with clinical, radiologic, molecular and surgical information. Because of the multidisciplinary approach in developing this classification we are recommending significant changes that should improve the diagnosis and classification of lung adenocarcinoma, resulting in therapeutic benefits.

Even after publication of the 1999 and 2004 World Health Organization (WHO) Classifications, the former term BAC continues to be used for a broad spectrum of tumors including 1) solitary small noninvasive peripheral lung tumors with a 100% 5-year survival, 2) invasive adenocarcinomas with minimal invasion that have nearly 100% 5-year survival, 3) mixed subtype invasive adenocarcinomas, 4) mucinous as well as non-mucinous subtypes of tumors formerly known as BAC, and 5) widespread advanced disease with a very low survival rate. The consequences of confusion from the multiple uses of the former BAC term in the clinical and research arenas have been the subject of many reviews and editorials and are addressed throughout this document.

Pathology Recommendation #1:

We recommend discontinuing the use of the term “BAC”. Strong recommendation, low quality evidence.
Throughout this manuscript the term BAC (applicable to multiple places in the new classification (Table 3), will be referred to as “former BAC”. We understand this will be a major adjustment and suggest initially that when the new proposed terms are used, that it be accompanied in parentheses by “(formerly BAC)”. This transition will impact not only clinical practice and research but also cancer registries future analyses of registry data.

CLASSIFICATION FOR RESECTION SPECIMENS

Multiple studies have shown that patients with small solitary peripheral adenocarcinomas with pure lepidic growth may have 100% 5-year disease-free survival. In addition, a growing number of articles suggest that patients with lepidic predominant adenocarcinomas with minimal invasion may also have excellent survival. Recent work has demonstrated that over 90% of lung adenocarcinomas fall into the mixed subtype according to the 2004 WHO classification, so it has been proposed to use comprehensive histologic subtyping to make a semiquantitative assessment of the percentages of the various histologic components: acinar, papillary, micropapillary, lepidic and solid and to classify tumors according to the predominant histologic subtype. This has demonstrated an improved ability to address the complex histologic heterogeneity of lung adenocarcinomas and to improve molecular and prognostic correlations.

The new proposed lung adenocarcinoma classification for resected tumors is summarized in Table 1.
PREINVASIVE LESIONS

In the 1999 and 2004 WHO classifications, atypical adenomatous hyperplasia (AAH) was recognized as a preinvasive lesion for lung adenocarcinoma. This is based on multiple studies documenting these lesions as incidental findings in the adjacent lung parenchyma in 5-23% of resected lung adenocarcinomas as well as a variety of molecular findings that demonstrate a relationship to lung adenocarcinoma including clonality, KRAS mutation, KRAS polymorphism, EGFR mutation, p53 expression, loss of heterozygosity, methylation, telomerase overexpression, eukaryotic initiation factor 4E (eIF4E) expression, epigenetic alterations in the WNT pathway, and FHIT expression. Depending on the extensiveness of the search, AAH may be multiple in up to 7% of resected lung adenocarcinomas.

A major change in this classification is the official recognition of adenocarcinoma in situ (AIS), as a second preinvasive lesion for lung adenocarcinoma in addition to AAH. In the category of preinvasive lesions, AAH is the counterpart to squamous dysplasia and AIS the counterpart to squamous cell carcinoma in situ.

Atypical adenomatous hyperplasia

Atypical adenomatous hyperplasia (AAH) is a localized, small (usually 0.5 cm or less) proliferation of mildly to moderately atypical type II pneumocytes and/or Clara cells lining alveolar walls and sometimes, respiratory bronchioles (Figure 1 A and B). Gaps are usually seen between the cells, which consist of rounded, cuboidal, low columnar or “peg” cells with round to oval nuclei (Figure 1B). Intranuclear inclusions are frequent. There is a continuum of morphologic changes between AAH and adenocarcinoma in situ (AIS). A spectrum of cellularity and atypia occurs in AAH. Although some have classified AAH into low and high
grade types, $^{84, 91}$ grading is not recommended. 4 Distinction between more cellular and atypical AAH and AIS can be difficult histologically and impossible cytologically.

Adenocarcinoma in situ, non-mucinous and/or mucinous

AIS (one of the lesions formerly known as BAC), is a localized small (≤ 3 cm) adenocarcinoma with growth restricted to neoplastic cells along pre-existing alveolar structures (lepidic growth), lacking stromal, vascular, or pleural invasion. Papillary or micropapillary patterns and intraalveolar tumor cells are absent. AIS is subdivided into non-mucinous and mucinous variants. Virtually all cases of AIS are non-mucinous, consisting of type II pneumocytes and/or Clara cells (Figure 2A and B). There is no recognized clinical significance to the distinction between type II or Clara cells, so this morphologic separation is not recommended. The rare cases of mucinous AIS consist of tall columnar cells with basal nuclei and abundant cytoplasmic mucin; sometimes they resemble goblet cells (Figure 3A and B). Nuclear atypia is absent or inconspicuous in both nonmucinous and mucinous AIS (Figure 2B and 3B). Septal widening with sclerosis is common in AIS, particularly the non-mucinous variant.

Tumors that meet criteria for AIS have formerly been classified as BAC according to the strict definition of the 1999 and 2004 WHO classifications and Type A and B adenocarcinoma according to the 1995 Noguchi Classification. $^4, 46$ Multiple observational studies on solitary lung adenocarcinomas with pure lepidic growth, smaller than either 2 cm or 3 cm have documented 100% disease free survival. $^{46, 62-68}$ While most of these tumors are non-mucinous, two of the 28 tumors reported by Noguchi as type A and B in the 1995 study were mucinous. $^{46} \text{Small size (} \leq 3$
cm) and a discrete circumscribed border is important, to exclude cases with miliary spread into adjacent lung parenchyma and/or lobar consolidation, particularly for mucinous AIS.

Pathology Recommendation #2:

For small (≤ 3 cm), solitary adenocarcinomas with pure lepidic growth, we recommend the term “Adenocarcinoma in situ” (AIS) that defines patients who should have 100% disease-specific survival, if the lesion is completely resected (strong recommendation, moderate quality evidence).

Remark: Most AIS are nonmucinous, rarely are they mucinous.

MINIMALLY INVASIVE ADENOCARCINOMA, NON-MUCINOUS AND/OR MUCINOUS

Minimally invasive adenocarcinoma (MIA) is a small, solitary adenocarcinoma, (≤3 cm), with a predominantly lepidic pattern and ≤ 5 mm invasion in greatest dimension in any one focus.\(^{47, 48, 92}\) MIA is usually non-mucinous (Figure 4 A, B and C) but rarely may be mucinous (Figure 5A and B).\(^{44}\) MIA is, by definition, solitary and discrete. The criteria for MIA can be applied in the setting of multiple tumors only if the other tumors are regarded as synchronous primaries rather than intrapulmonary metastases.

The invasive component to be measured in MIA is defined as follows: 1) histological subtypes other than a lepidic pattern (i.e. acinar, papillary, micropapillary and/or solid) or 2) tumor cells infiltrating myofibroblastic stroma. MIA is excluded if the tumor 1) invades lymphatics, blood vessels, or pleura or 2) contains tumor necrosis. If multiple micro-invasive areas are found in one tumor, the size of the largest invasive area should be measured in the
largest dimension and it should be ≤ 5 mm in size. The size of invasion is not the summation of all such foci, if more than one occurs. If the manner of histologic sectioning of the tumor makes it impossible to measure the size of invasion, an estimate of invasive size can be made by multiplying the total percentage of the invasive (non-lepidic) components times the total tumor size.

Evidence for a category of MIA with 100% disease free survival can be found in the 1995 paper by Noguchi, where vascular and/or pleural invasion was found in 10% of the small solitary lung adenocarcinomas that otherwise met the former definition of pure BAC. Even these focally invasive tumors also showed 100% disease free survival. Subsequent papers by Suzuki K et al and Sakurai defined subsets of small lung adenocarcinomas with 100% disease free survival using scar size <5mm and stromal invasion in the area of bronchioloalveolar growth, respectively. More recently articles by Lim Y et al, Borczuk A et al and Maeshima A et al have described patients with MIA defined similar to the above criteria and these have demonstrated near 100% disease-specific or very favorable overall survival. There is very limited data regarding mucinous MIA, however this appears to exist. A mucinous MIA with a minor mixture of a nonmucinous component is being reported. The recent report by Sawada of localized mucinous BAC may have included a few cases of mucinous AIS or MIA, but details of the pathology is not specific enough to be certain. A recent series of surgically resected solitary mucinous BAC did not document histologically whether focal invasion was present or not, so AIS vs MIA status cannot be determined, but all eight patients with tumors measuring ≤3 cm had 100% overall 5- year survival rates. Presentation as a solitary mass, small size and a discrete circumscribed border are important, to exclude cases of miliary involvement of adjacent lung parenchyma and/or lobar consolidation, particularly for mucinous AIS.
Pathology Recommendation #3

For small (≤ 3cm), solitary, adenocarcinomas with predominant lepidic growth and small foci of invasion measuring ≤ 0.5 cm, we recommend a new concept of “Minimally invasive adenocarcinoma” (MIA) to define patients with who have near 100%, disease-specific survival, if completely resected (strong recommendation, low quality evidence).

Remark: Most MIA are nonmucinous, rarely are they mucinous.

Tumor size and Specimen Processing Issues for AIS and MIA

The diagnosis of AIS or MIA cannot be firmly established without entire histologic sampling of the tumor. If tumor procurement is performed it should be done strategically as discussed in the molecular section.

Because most of the literature on the topic of AIS and MIA deal with tumors 2.0 or 3.0 cm or less, there is insufficient evidence to support that 100% disease free survival can occur in completely resected, solitary tumors suspected to be AIS or MIA that are larger than 3.0 cm. Until data validate 100% disease free survival for completely resected, solitary, adenocarcinomas larger than 3.0 cm suspected to be AIS or MIA after complete sampling, the term “lepidic predominant adenocarcinoma, suspect AIS or MIA” is suggested. If such a tumor larger than 3.0 cm has not been completely sampled, the term “lepidic predominant adenocarcinoma” is best applied with a comment that an invasive component cannot be excluded.
INVASIVE ADENOCARCINOMA

As invasive adenocarcinomas represent over 70-90% of surgically resected lung cases, one of the most important aspects of this classification is to present a practical way to address these tumors that are composed of a complex heterogeneous mixture of histologic subtypes. This complex mixture of histologic subtypes has presented one of the greatest challenges to classification of invasive lung adenocarcinomas. In recent years, multiple independent research groups have begun to classify lung adenocarcinomas according to the most predominant subtype. This approach provides better stratification of the “mixed subtype” lung adenocarcinomas according to the 1999/2004 WHO Classifications and has allowed for novel correlations between histologic subtypes and both molecular and clinical features.

In the revised classification, the term “predominant” is appended to all categories of invasive adenocarcinoma, as the vast majority of these tumors consist of mixtures of the histologic subtypes (Figure 6A-C). This replaces the use of the term adenocarcinoma, mixed subtype. Semiquantitative recording of the patterns in 5% increments encourages the observer to identify all patterns that may be present, rather than focusing on a single pattern (i.e. lepidic growth). This method provides a basis for choosing the predominant pattern. While most previous studies on this topic used 10% increments, using 5% allows for greater flexibility in choosing a predominant subtype when tumors have two patterns with relatively similar percentages; it also avoids the need to use 10% for small amounts of components that may be prognostically important such as micropapillary or solid patterns. Recording of these percentages also makes it clear to the reader of a report when a tumor has relatively even mixtures of several patterns versus a single dominant pattern. In addition, it provides a way to compare the histology of multiple adenocarcinomas (see below). This approach may also provide a basis for
architectural grading of lung adenocarcinomas. A recent reproducibility study of classical and difficult selected images of the major lung adenocarcinoma subtypes circulated among a panel of 26 expert lung cancer pathologists documented kappa values of 0.77 +/- 0.07 and 0.38 +/- 0.14, respectively. This study did not test recognition of predominant subtype.

Pathology Recommendation #4

For invasive adenocarcinomas, we suggest comprehensive histologic subtyping be used to assess histologic patterns semiquantitatively in 5% increments, choosing a single predominant pattern. Individual tumors are then classified according to the predominant pattern and the percentages of the subtypes are also reported (weak recommendation, low quality evidence).

Histologic Comparison of Multiple Adenocarcinomas and Impact on Staging

Comprehensive histologic subtyping can be useful in comparing multiple lung adenocarcinomas in order to distinguish multiple primary tumors from intrapulmonary metastases. This has a great impact on staging for patients with multiple lung adenocarcinomas. Recording the percentages of the various histologic types in 5% increments, not just the most predominant type, allows these data to be used to compare multiple adenocarcinomas, particularly if the slides of a previous tumor are not available at the time of review of the additional lung tumors. In addition to comprehensive histologic subtyping, other histologic features of the tumors such as cytologic (clear cell or signet ring features) or stromal (desmoplasia or inflammation) characteristics may be helpful to compare multiple tumors.
Pathology Recommendation #5:

In patients with multiple lung adenocarcinomas, we suggest comprehensive histologic subtyping may facilitate in the comparison of the complex, heterogeneous mixtures of histologic patterns to determine if the tumors are metastases or separate synchronous or metachronous primaries (weak recommendation, low quality evidence).

Lepidic predominant adenocarcinoma (LPA) typically consists of bland pneumocytic cells (type II pneumocytes or Clara cells) growing along the surface of alveolar walls similar to the morphology defined in the above section on AIS and MIA (Figure 6A and B). Invasive adenocarcinoma is present in at least one focus measuring more than 5 mm in greatest dimension. Invasion is defined as 1) histological subtypes other than a lepidic pattern (i.e. acinar, papillary, micropapillary and/or solid) or 2) myofibroblastic stroma associated with invasive tumor cells (Figure 6C). The diagnosis of LPA rather than MIA is made if the tumor 1) invades lymphatics, blood vessels, or pleura or 2) contains tumor necrosis. It is understood that lepidic growth can occur in metastatic tumors as well as invasive mucinous adenocarcinomas. However the specific term “Lepidic predominant adenocarcinoma (LPA)” in this classification defines a non-mucinous adenocarcinoma that has lepidic growth as its predominant component and these tumors are now separated from invasive mucinous adenocarcinoma. The term LPA should not be used in the context of invasive mucinous adenocarcinoma with predominant lepidic growth.

In the categories of mixed subtype in the 1999/2004 WHO Classifications and Type C in the Noguchi classification respectively, there was no assessment of the percentage of lepidic growth (former BAC pattern), so in series diagnosed according to these classification systems,
most of the lepidic predominant adenocarcinomas are buried among a heterogeneous group of tumors that include predominantly invasive adenocarcinomas. However, several studies have shown lepidic growth to be associated with more favorable survival in small solitary resected lung adenocarcinomas with an invasive component.47, 64, 103-105 One recent study of Stage I adenocarcinomas using this approach demonstrated 90% 5-year recurrence free survival.44

Pathology Recommendation #6:

For non-mucinous adenocarcinomas previously classified as mixed subtype where the predominant subtype consists of the former non-mucinous BAC, we recommend use of the term lepidic predominant adenocarcinoma (LPA) and discontinuing the term “mixed subtype” (strong recommendation, low quality evidence).

Acinar predominant adenocarcinoma shows a majority component of glands which are round to oval-shaped with a central luminal space surrounded by tumor cells (Figure 6D).4 The neoplastic cells and/or glandular spaces may contain mucin. Acinar structures also may consist of rounded aggregates of tumor cells with peripheral nuclear polarization with central cytoplasm without a clear lumen. AIS with collapse may be difficult to distinguish from the acinar pattern. However, when the alveolar architecture is lost and or myofibroblastic stroma is present, invasive acinar adenocarcinoma is considered present. Cribriform arrangements are regarded as a pattern of acinar adenocarcinoma.106

Papillary predominant adenocarcinoma shows a major component of a growth of glandular cells along central fibrovascular cores (Figure 6E).4 This should be distinguished from tangential sectioning of alveolar walls in AIS. If a tumor has lepidic growth but the alveolar spaces are
filled with papillary structures the tumor is classified as papillary adenocarcinoma. Myofibroblastic stroma is not needed to diagnose this pattern.

Micropapillary predominant adenocarcinoma has tumor cells growing in papillary tufts which lack fibrovascular cores (Figure 6F). These may appear detached and/or connected to alveolar walls. The tumor cells are usually small and cuboidal with minimal nuclear atypia. Ring-like glandular structures may “float” within alveolar spaces. Vascular and stromal invasion is frequent. Psammoma bodies may be seen.

The micropapillary pattern of lung adenocarcinoma was cited in the 2004 WHO classification in the discussion, but there were too few publications on this topic to introduce it as a formal histologic subtype. While most of the studies have used a very low threshold for classification of adenocarcinomas as micropapillary, including as low as 1-5%, it has recently been demonstrated that tumors classified as micropapillary according to the predominant subtype also have a poor prognosis similar to adenocarcinomas with a predominant solid subtype. All articles on the topic of micropapillary lung adenocarcinoma in early stage patients have reported data indicating this is a poor prognostic subtype. Additional evidence for the aggressive behavior of this histologic pattern is the over-representation of the micropapillary pattern in metastases compared to the primary tumors, where it sometimes comprises only a small percentage of the overall tumor.

Pathology Recommendation #7:

In patients with early stage adenocarcinoma, we recommend the addition of “micropapillary predominant adenocarcinoma”, when applicable, as a major histologic subtype due to its association with poor prognosis.
(strong recommendation, low quality evidence).

Solid predominant adenocarcinoma with mucin production shows a major component of polygonal tumor cells forming sheets which lack recognizable patterns of adenocarcinoma, i.e. acinar, papillary, micropapillary or lepidic growth (Figure 6G). If the tumor is 100 percent solid, intracellular mucin should be present in at least 5 tumor cells in each of two high power fields, confirmed with histochemical stains for mucin (Figure 6H). Solid adenocarcinoma must be distinguished from squamous cell carcinomas and large cell carcinomas both of which may show rare cells with intracellular mucin.

VARIANTS

Rationale for Changes in Adenocarcinoma Histologic Variants

Rationale for Separation of Invasive Mucinous Adenocarcinoma (formerly mucinous BAC) from Non-mucinous Adenocarcinomas

Multiple studies indicate that tumors formerly classified as mucinous BAC have major clinical, radiologic, pathologic and genetic differences from the tumors formerly classified as non-mucinous BAC (Table 4). In particular, these tumors show a very strong correlation with KRAS mutation while nonmucinous adenocarcinomas are more likely to show EGFR mutation and only occasionally KRAS mutation (Table 4). Therefore, in the new classification, these tumors are now separated into different categories (Table 1). The neoplasms formerly termed mucinous BAC, now recognized to have invasive components in the majority of cases, are classified as *invasive mucinous adenocarcinoma (formerly mucinous BAC)*.

Travis WD et al Lung Adenocarcinoma Classification

Inserm-00561753, version 1 - 1 Feb 2011
Rationale for Including Mucinous Cystadenocarcinoma in Colloid Adenocarcinoma

Tumors formerly classified as “Mucinous cystadenocarcinoma” are very rare and they probably represent a spectrum of colloid adenocarcinoma. Therefore we suggest that these adenocarcinomas that consist of uni- or oligo-locular cystic structures by imaging and/or gross exam be included in the category of colloid adenocarcinoma.131 For such tumors a comment could be made that the tumor resembles that formerly classified as mucinous cystadenocarcinoma.

Rationale for Removing Clear Cell and Signet Ring Carcinoma as Adenocarcinoma Subtypes

Clear cell and signet ring cell features are now regarded as cytologic changes that may occur in association with multiple histologic patterns.132, 133 Thus, their presence and extent should be recorded, but data are not available that shows a clinical significance beyond a strong association with the solid subtype. They are not considered to be specific histologic subtypes, although associations with molecular features are possible such as the recent observation of a solid pattern with >10\% signet ring cell features in up to 56\% of tumors from patients with echinoderm microtubule-associated protein-like 4 \textit{EML4} and anaplastic lymphoma kinase (ALK) gene fusions (EML4-ALK).134

Rationale for Adding Enteric Adenocarcinoma

\textit{Enteric adenocarcinoma} is added to the classification to draw attention to this rare histologic type of primary lung adenocarcinoma that can share some morphologic and immunohistochemical features with colorectal adenocarcinoma.135 Because of these similarities,
clinical evaluation is needed to exclude a gastrointestinal primary. It is not known if there are any distinctive clinical or molecular features.

Histologic Features

Invasive Mucinous Adenocarcinoma (formerly mucinous BAC) has a distinctive histologic appearance with tumor cells having a goblet or columnar cell morphology with abundant intracytoplasmic mucin (Figure 7A and B). Cytologic atypia is usually inconspicuous or absent. Alveolar spaces often contain mucin. These tumors may show the same heterogeneous mixture of lepidic, acinar, papillary, micropapillary and solid growth as in non-mucinous tumors. The clinical significance of reporting semiquantitative estimates of subtype percentages and the predominant histologic subtype similar to non-mucinous adenocarcinomas is not certain. When stromal invasion is seen, the malignant cells may show less cytoplasmic mucin and more atypia. These tumors differ from mucinous AIS and MIA by one or more of the following criteria: size (>3 cm), amount of invasion (>0.5 cm), multiple nodules, or lack of a circumscribed border with miliary spread into adjacent lung parenchyma.

There is a strong tendency for multicentric, multilobar, and bilateral lung involvement, which may reflect aerogenous spread. Mixtures of mucinous and non-mucinous tumors may rarely occur; then the percentage of invasive mucinous adenocarcinoma should be recorded in a comment. If there is at least 10% of each component, it should be classified as “Mixed mucinous and non-mucinous adenocarcinoma.” Invasive mucinous adenocarcinomas (formerly mucinous BAC) need to be distinguished from adenocarcinomas that produce mucin, but lack the characteristic goblet cell or columnar cell morphology of the tumors that have historically been
classified as mucinous BAC. When mucin is identified by light microscopy or mucin stains in adenocarcinomas that do not meet the above criteria, this feature should be reported in a comment after classifying the tumor according to the appropriate terminology and criteria proposed in this classification. This can be done by adding a descriptive phrase such as “with mucin production” or “with mucinous features” rather than the term “invasive mucinous adenocarcinoma”.

Pathology Recommendation #8:

For adenocarcinomas formerly classified as mucinous BAC we recommend they be separated from the adenocarcinomas formerly classified as non-mucinous BAC and depending on the extent of lepidic versus invasive growth that they be classified as mucinous AIS, mucinous MIA, or for overtly invasive tumors “invasive mucinous adenocarcinoma” (weak recommendation, low quality evidence).

Colloid adenocarcinoma shows extracellular mucin in abundant pools, which distend alveolar spaces with destruction of their walls (Figure 8A). The mucin pools contain clusters of mucin-secreting tumor cells, which may comprise only a small percentage of the total tumor and thus be inconspicuous (Figure 8A).\(^{136, 137}\) The tumor cells may consist of goblet cells or other mucin secreting cells. Colloid adenocarcinoma is found more often as a mixture with other adenocarcinoma histologic subtypes rather than as a pure pattern. A tumor is classified as a colloid adenocarcinoma when it is the predominant component; the percentages of other components should be recorded.\(^{131}\) Cystic gross and or histologic features are included in the
spectrum of colloid adenocarcinoma, but in most cases this is a focal feature. Cases previously reported as mucinous cystadenocarcinoma are extremely rare and now these should be classified as colloid adenocarcinoma with cystic changes. The cysts are filled with mucin, and lined by goblet or other mucin secreting cells (Figure 8B). The lining epithelium may be discontinuous and replaced with inflammation including a granulomatosus reaction or granulation tissue.

Cytologic atypia of the neoplastic epithelium is usually minimal.138

Fetal adenocarcinoma consists of glandular elements with tubules composed of glycogen-rich, non-ciliated cells that resemble fetal lung tubules (Figure 8C).4 Subnuclear vacuoles are common and characteristic. Squamoid morules may be seen within lumens. Most are low grade with a favorable outcome. High grade tumors occur. When mixtures occur with other histologic subtypes, the tumor should be classified according to the predominant component.139 This tumor typically occurs in younger patients than other adenocarcinomas. Uniquely, these tumors appear driven by mutations in the beta-catenin gene and the epithelial cells express aberrant nuclear and cytoplasmic staining with this antibody by immunohistochemistry.140, 141 Nakatani et al and Sekine et al have suggested that upregulation of components in the Wnt signaling pathway such as β-catenin are important in low grade fetal adenocarcinomas as well as in biphasic pulmonary blastomas in contrast to high grade fetal adenocarcinomas.140, 141

Enteric differentiation can occur in lung adenocarcinoma and when this component exceeds 50%, the tumor it is classified as pulmonary adenocarcinoma with enteric differentiation (PAED). The enteric pattern shares morphologic and immunohistochemical features with colorectal adenocarcinoma.135 In contrast to metastatic colorectal adenocarcinoma these tumors are histologically heterogeneous with some component that resembles primary lung adenocarcinoma such as lepidic growth. Recording of the percentages of these other components
may be useful. The enteric pattern consists of glandular and or papillary structures sometimes with a cribriform pattern, lined by tumor cells that are mostly tall-columnar with nuclear pseudostratification, luminal necrosis and prominent nuclear debris (Figure 8D). Poorly differentiated tumors may have a more solid pattern. These tumors show at least one immunohistologic marker of enteric differentiation (CDX-2, CK20 or MUC2). Consistent positivity for CK7 and expression of TTF-1 in approximately half the cases help in the distinction from metastatic colorectal adenocarcinoma. Primary lung adenocarcinomas that histologically resemble colorectal adenocarcinoma, but lack immunohistochemical markers of enteric differentiation are probably better regarded as lung adenocarcinomas with enteric morphology rather than PAED.

CLASSIFICATION FOR SMALL BIOPSIES AND CYTOLOGY

Clinical Relevance of Histologic Diagnosis Drives Need to Classify NSCLC Further

This section applies to pathologic diagnosis of the majority of lung cancer patients due to presentation with locally advanced or metastatic disease. Due to the need for improved separation of squamous cell carcinoma from adenocarcinoma, as it determines eligibility for molecular testing and impacts on specific therapies, there is now greater clinical interest in application of additional pathology tools to refine further the diagnosis in small biopsies (bronchoscopic, needle or core biopsies) and cytology specimens from advanced lung cancer patients, when morphologic features are not clear. Patients with adenocarcinoma should be tested for EGFR mutations (see evidence in Clinical Recommendation) because patients with EGFR mutation positive tumors may be eligible for first line TKI therapy.
Adenocarcinoma patients are also eligible for pemetrexed$^{12-15}$ or bevacizumab based chemotherapy regimens (see Clinical Section). 16,17

Pathology Recommendation #9:

For small biopsies and cytology, we recommend that NSCLC be further classified into a more specific histologic type, such as adenocarcinoma or squamous cell carcinoma, whenever possible (strong recommendation, moderate quality evidence).

Data Driving Need to Classify NSCLC Further is Based Only on Light Microscopy

All current data that justify the importance of the distinction between histologic types of NSCLC in advanced lung cancer patients are based upon light microscopy alone.$^{8-16}$ Thus, the diagnosis for clinical work, research studies and clinical trials should be recorded in a manner so it is clear how the pathologist made their determination: based on light microscopy alone or light microscopy plus special studies.

Pathology Consideration for Good Practice:

1) When a diagnosis is made in a small biopsy or cytology specimen in conjunction with special studies, it should be clarified whether the diagnosis was established based on light microscopy alone or if special stains were required.

Management of Tissue For Molecular Studies is Critical

Strategic use of small biopsy and cytology samples is important, i.e. use the minimum specimen necessary for an accurate diagnosis, in order to preserve as much tissue as possible for
potential molecular studies (Figure 9).147 Methods that utilize substantial amounts of tissue to make a diagnosis of adenocarcinoma versus squamous cell carcinoma, such as large panels of immunohistochemical stains or molecular studies may not provide an advantage over routine light microscopy with a limited immunohistochemical workup.146

\textit{Pathology Consideration for Good Practice:}

2) Tissue specimens should be managed not only for diagnosis but also to maximize the amount of tissue available for molecular studies.

3) To guide therapy for patients with advanced lung adenocarcinoma, each institution should develop a multidisciplinary team that coordinates the optimal approach to obtaining and processing biopsy/cytology specimens to provide expeditious diagnostic and molecular results.

If Light Microscopic Diagnosis is Clearly Adenocarcinoma or Squamous cell carcinoma, Use These WHO Diagnostic Terms

Squamous cell carcinoma and adenocarcinoma should be diagnosed on biopsy and cytological materials when the criteria for specific diagnosis of these tumor types in the 2004 WHO classification are met. However, for tumors that do not meet these criteria, newly proposed terminology and criteria are outlined in Table 2 and Figure 9.4

\textbf{Histologic Heterogeneity of Lung Cancer is an Underlying Complexity}
Due to histologic heterogeneity, small biopsy and/or cytology samples may not be representative of the total tumor and there may be a discrepancy with the final histologic diagnosis in a resection specimen. Still, combined histologic types that meet criteria for adenosquamous carcinoma, comprise less than 5% of all resected NSCLCs. A much more common difficulty in small biopsies or cytologies is classifying poorly differentiated tumors where clear differentiation is difficult or impossible to appreciate on light microscopy. The heterogeneity issue also makes it impossible to make the diagnosis of AIS, MIA, large cell carcinoma or pleomorphic carcinoma in a small biopsy or cytology, because resection specimens are needed to make these interpretations. The term “large cell carcinoma” has been used in some clinical trials, but the pathologic criteria for that diagnosis are not defined and it is not clear how these tumors were distinguished from NSCLC-NOS, since this diagnosis cannot be made in small biopsies or cytology, the type of specimens used to diagnose the patients with advanced stage lung cancer studied in these trials, 13, 15, 148

Pathology Considerations for Good Practice:

4) The terms AIS or MIA should not be diagnosed in small biopsies or cytology specimens. If a non-invasive pattern is present in a small biopsy, it should be referred to as a lepidic growth pattern.

5) The term large cell carcinoma should not be used for diagnosis in small biopsy or cytology specimens and should be restricted to resection specimens where the tumor is thoroughly sampled to exclude a differentiated component.
Use Minimal Stains to diagnose NSCLC, Favor Adenocarcinoma, or Favor Squamous Cell Carcinoma

In those cases where a specimen shows NSCLC lacking either definite squamous or adenocarcinoma morphology, immunohistochemistry may refine diagnosis (Figure 9, Step 2). To preserve as much tissue as possible for molecular testing in small biopsies, the workup should be minimal. Realizing that new markers are likely to be developed, we suggest the initial evaluation utilize only one adenocarcinoma marker and one squamous marker. At the present time, TTF-1 appears to be the single best marker for adenocarcinoma. TTF-1 provides the added value of serving as a pneumocyte marker that can help confirm a primary lung origin in 75-85% of lung adenocarcinomas. This can be very helpful in addressing the question of metastatic adenocarcinoma from other sites such as the colon or breast. Diastase-periodic acid Schiff (D-PAS) or mucicarmine mucin stains may also be of value. p63 is consistently reported as a reliable marker for squamous histology and CK5/6 also can be useful. Other antibodies (34βE12 and S100A7) are less specific and sensitive for squamous differentiation. These data have been confirmed using resections where biopsies were interpreted as NSCLC and also work on most needle aspirate specimens. It is possible that cocktails of nuclear and cytoplasmic markers (TTF1/CK5/6 or p63/napsin-A) may allow for use of fewer immunohistochemical studies of multiple antibodies. Cases positive for an adenocarcinoma marker (i.e. TTF-1) and/or mucin with a negative squamous marker (i.e. p63) should be classified as “NSCLC favor adenocarcinoma” (Figure 10A-C) and those that are positive for a squamous marker, with at least moderate, diffuse staining, and a negative adenocarcinoma marker and/or mucin stains, should be classified as “NSCLC favor squamous cell carcinoma”, with a comment
specifying whether the differentiation was detected by light microscopy and/or by special stains. These two small staining panels are generally mutually exclusive. If an adenocarcinoma marker such as TTF-1 is positive the tumor should be classified as NSCLC, favor adenocarcinoma despite any expression of squamous markers.145,146 If the reactivity for adenocarcinoma versus squamous markers is positive in a different population of tumor cells, this may suggest adenosquamous carcinoma. If tumor tissue is inadequate for molecular testing, there may be a need to rebiopsy the patient in order to perform testing that will guide therapy (Step 3, Figure 9).

There may be cases where multidisciplinary correlation can help guide a pathologist in their evaluation of small biopsies and/or cytology specimens from lung adenocarcinomas. For example, if a biopsy showing NSCLC-NOS is obtained from an Asian, female, never smoker with ground-glass nodules on CT, the pathologist should know this information as the tumor is more likely to be adenocarcinoma and have an EGFR mutation.

Cytology Is A Useful Diagnostic Method, Especially When Correlated With Histology

Cytology is a powerful tool in the diagnosis of lung cancer, in particular in the distinction of adenocarcinoma from squamous cell carcinoma.159 In a recent study, of 192 preoperative cytology diagnoses, definitive vs favored vs unclassified diagnoses were observed in 88\% vs 8\% vs 4\% of cases, respectively.160 When compared with subsequent resection specimens, the accuracy of cytologic diagnosis was 93\% and for definitive diagnoses it was 96\%. For the adenocarcinoma and squamous cell carcinoma cases, only 3\% of cases were unclassified and the overall accuracy was 96\%. When immunohistochemistry was utilized in 9\% of these cases, the accuracy was 100\%.160
Whenever possible, cytology should be used in conjunction with histology in small biopsies (Figure 10D). In another study where small biopsies were evaluated in conjunction with cytology for the diagnosis of adenocarcinoma vs squamous cell carcinoma vs unclassified (NSCLC-NOS) the result for cytology was 70% vs 19% vs 11% and for biopsies it was 72%, 22% and 6%. Still when cytology was correlated with biopsy, the percentage of cases diagnosed as NSCLC-NOS was greatly reduced to only 4% of cases. In a small percentage of cases (<5%), cytology was more informative than histology in classifying tumors as adenocarcinoma or squamous cell carcinoma. The factors that contributed the greatest to difficulty in a specific diagnosis in both studies were poor differentiation, low specimen cellularity and squamous histology.

Pathology Consideration for Good Practice:

6) When paired cytology and biopsy specimens exist, they should be reviewed together to achieve the most specific and nondiscordant diagnoses.

Preservation of Cell Blocks from Cytology Aspirates or Effusions For Molecular Studies

The volume of tumor cells in biopsies may be small due to frequent prominent stromal reactions so that there may be insufficient material for molecular analysis. Material derived from aspirates or effusions may have more tumor cells than a small biopsy obtained at the same time, so any positive cytology samples should be preserved as cell blocks, so that tumor is archived for immunohistochemical and/or molecular studies. Furthermore, these materials should be used judiciously in making the diagnosis to preserve as much material as possible for potential molecular studies. In a recent study, material from cell blocks prepared from 128 lung
cancer cytology specimens was suitable for molecular analysis for \textit{EGFR} and \textit{KRAS} mutations in 126 (98\%) of specimens.160

\textit{Pathology Consideration for Good Practice:}

7) Cell blocks should be prepared from cytology samples including pleural fluids.

\textbf{NSCLC-NOS: If No Clear Differentiation by Morphology or Immunohistochemistry}

There will remain a minority of cases where the diagnosis remains NSCLC-NOS, as no differentiation can be established by routine morphology and/or immunohistochemistry (Figure 9, Step 2). In the setting of a tumor with a negative adenocarcinoma marker (i.e. TTF-1), and only weak or focal staining for a squamous marker, it is best to classify the tumor as NSCLC-NOS rather than NSCLC, favor squamous cell carcinoma. These cases may benefit from discussion in a multidisciplinary setting (a) to determine the need for a further sample if subtyping will affect treatment; (b) whether molecular data should be sought, again if treatment will be defined by such data; (c) whether non-invasive features such as imaging characteristics (e.g. peripheral ground-glass nodule supporting adenocarcinoma) favor a tumor subtype; and (d) whether clinical phenotype (e.g. female, never-smoker, Asian) may assist in determining future management (Figure 9, Step 3).

\textbf{Pathology Recommendation #10}

We recommend that the term NSCLC not otherwise specified (NOS) be used as little as possible and we recommend it be applied only when a more specific diagnosis is not possible by morphology and/or special stains (strong recommendation, moderate quality evidence).
Pathology Consideration for Good Practice:

8) The term *non-squamous cell carcinoma* should not be used by pathologists in diagnostic reports. It is a categorization used by clinicians to define groups of patients with several histologic types who can be treated in a similar manner; in small biopsies/cytology pathologists should classify NSCLC as adenocarcinoma, squamous cell carcinoma, NSCLC-NOS or other terms outlined in Table 2 or Figure 9.

NSCLC-NOS: When Morphology and/or Immunohistochemistry are Conflicting

Rarely, small samples may show either morphologic features of both squamous cell carcinoma and adenocarcinoma with routine histology or by immunohistochemical expression of both squamous and adenocarcinoma markers; these should be termed as “NSCLC-NOS” with a comment recording the features suggesting concurrent glandular and squamous cell differentiation, specifying whether this was detected by light microscopy or immunohistochemistry. Since p63 expression can occur in up to one third of adenocarcinomas, in a tumor that lacks squamous cell morphology, virtually all tumors that show co-expression of p63 and TTF-1 will be adenocarcinomas. It is possible the tumor may be an adenosquamous carcinoma, but that diagnosis cannot be established without a resection specimen showing at least 10% of each component. If TTF-1 and p63 positivity is seen in different populations of tumor cells, it is possible this may be more suggestive of adenosquamous carcinoma than if these markers are co-expressed in the same tumor cells.

Interpret Morphologic and Staining Patterns to Maximize Patient Eligibility for Therapies
Presently, the recommendation for EGFR mutation testing and candidacy for pemetrexed or bevacizumab therapy is for the diagnosis of 1) adenocarcinoma, 2) NSCLC NOS, favor adenocarcinoma or 3) NSCLC, NOS (see clinical section below). For this reason, in most NSCLC, the primary decision pathologists need to focus on while interpreting small biopsies and cytology specimens is whether the tumor is a definite squamous cell carcinoma or NSCLC, favor squamous cell carcinoma versus one of the above diagnoses. Thus, when morphology or immunohistochemical findings are equivocal, pathologists need to keep in mind that a diagnosis of squamous cell carcinoma or NSCLC, favor squamous cell carcinoma will exclude them from histologically driven molecular testing or chemotherapy. In such a situation, it may be best to favor NSCLC-NOS, to allow the patient to be eligible for the therapeutic options mentioned above. Hopefully effective therapies, perhaps based on molecular targets, will become available for squamous cell carcinoma in the near future.

Pathology Consideration for Good Practice:

9) The above strategy for classification of adenocarcinoma versus other histologies and the terminology in Table 2 and Figure 9, should be used in routine diagnosis as well as future research and clinical trials, so that there is uniform classification of disease cohorts in relation to tumor subtypes and data can be stratified according to diagnoses made by light microscopy alone versus diagnoses requiring special stains.

Distinction of Adenocarcinoma from Sarcomatoid Carcinomas

Cases that show sarcomatoid features such as marked nuclear pleomorphism, malignant giant cells or spindle cell morphology should be preferentially regarded as adenocarcinoma or
squamous cell carcinoma if these features are clearly present, as this is apt to influence management. However, pleomorphic carcinoma, carcinosarcoma and blastoma are very difficult to diagnose in small specimens due to the limited ability to assess for mixed histologies. Yet, if a small biopsy shows what is probably an adenocarcinoma with pleomorphism, a comment should be made, e.g. “NSCLC, favor adenocarcinoma, with giant and/or spindle cell features” (depending on which feature is identified).

Pathology Consideration for Good Practice:

10) Tumors that show sarcomatoid features, such as marked nuclear pleomorphism, malignant giant cells or spindle cell morphology should be preferentially regarded as adenocarcinoma or squamous cell carcinoma if clear glandular or squamous features are present, as this is apt to influence management. If such features are not present, the term “poorly differentiated non-small cell carcinoma with giant and/or spindle cell features” (depending on what feature is present) should be used.

Distinction of Adenocarcinoma from Neuroendocrine Carcinomas

Some cases of NSCLC may suggest neuroendocrine (NE) morphology; these should be assessed with NE markers (CD56, chromogranin and/or synaptophysin), so that a diagnosis of large cell neuroendocrine carcinoma (LCNEC) can be suggested. The term NSCLC, possible LCNEC is usually the best term when this diagnosis is suspected as it is difficult to establish a diagnosis of LCNEC on small biopsies. In those lacking NE morphology, we recommend against using routine staining with NE markers, as immunohistochemical evidence of NE differentiation in
otherwise definite adenocarcinoma and squamous cell carcinoma does not appear to affect prognosis167,168 or treatment.

\textbf{Pathology Consideration for Good Practice Consideration for Good Practice:}

11) Neuroendocrine immunohistochemical markers should only be performed in cases where there is suspected neuroendocrine morphology. If neuroendocrine morphology is not suspected, neuroendocrine markers should not be performed.

\textbf{GRADING OF ADENOCARCINOMAS}

No well established histologic or cytologic grading system exists for lung adenocarcinoma. Most publications which grade adenocarcinomas do not cite specific morphologic criteria. The overall grade of a tumor is typically determined by the component with the worst grade. Only a few studies have evaluated detailed morphologic grading systems41,169-172 The primary approaches are based on architectural and/or nuclear attributes. However, the following histologic features are promising candidates for components of a grading system. By architecture, the following prognostic associations have been reported: poor (solid41,43,44,53,69 and micropapillary),43,44,108,109 favorable (non-mucinous lepidic,43,44,46,173 [formerly BAC]) and intermediate (papillary, acinar).43,44 Thus, comprehensive histologic subtyping method and subclassification of invasive tumors by the predominant subtype may be a simple way to develop the architectural grade of lung adenocarcinomas,43,44 similar to the Gleason grading system for prostate cancer.174 By nuclear criteria, preliminary data suggests poor prognosis may be associated with large nuclei and variability in nuclear size and shape.171,172,175 As stated above,
histologic grading should not be confused with the GRADE method of formulating recommendations and weighing evidence.171, 172

STRATEGIC USE OF PATHOLOGIC SPECIMENS FOR MOLECULAR STUDIES

With the emerging importance of molecular diagnostics to guide therapy a multidisciplinary approach is needed to set a consistent strategy for obtaining and preserving tissue samples optimized to perform studies such as DNA sequence analysis, fluorescence \textit{in situ} hybridization (FISH) and in some settings, RNA based studies. It is not yet possible to provide specific guidelines on how to do this in the current document, due to the wide variation in infrastructure and expertise from one institution to another. Still, this process begins with the method of obtaining tissue (fine needle aspiration, core or transbronchial biopsy, surgical resection) and continues with the processing of the specimen in the pathology department, to delivery of material for molecular analysis, and communication of the molecular results in pathology reports.

If a portion of a sampled tumor is snap-frozen for molecular studies, a few considerations exist as regards resection specimens. As most critical molecular studies can be performed from formalin-fixed paraffin-embedded tissue (FFPE), there is a need for frozen samples only for certain techniques such as comparative genomic hybridization (CGH) and gene expression profiling. If frozen tissue is being obtained from tumors with lepidic predominant tumors where AIS or MIA are in the differential diagnosis, efforts should be made to ascertain if this frozen piece has an invasive component. The CT and gross appearance of the lesion should be considered to ensure a solid component is sampled in a tumor that appeared part-solid on CT. Another approach is to perform a frozen section from the tissue saved for storage in a freezer.
Small biopsies and/or cytologic samples including pleural fluids can be used for many molecular analyses.162, 164, 176-186 EGFR and KRAS mutation testing are readily performed on these specimens.160-162, 176-180, 184-186 FFPE samples can be utilized effectively for polymerase chain reaction (PCR) based mutation testing as well as for FISH or chromogenic \textit{in situ} hybridization (CISH) testing for gene amplification and for immunohistochemistry. Cytology smears can be analyzed for immunohistochemical and certain molecular studies, but it is far preferable if cell blocks are available. Manual or laser-guided microdissection may enrich tumor cells for molecular studies. Assessment of \textit{EGFR} mutations helps in selecting patients to be treated with \textit{EGFR} tyrosine kinase inhibitors. Molecular testing in the setting of clinical trials can stratify patients by results of gene expression or markers of sensitivity to specific cytotoxic agents such as excision repair cross-complementation group 1 (ERCC1) or breast cancer 1 (BRCA1) for platinum, ribonucleotide reductase M1 (RRM1) for gemcitabine, or thymidylate synthase (TS) for antifolates.187-192

\textbf{Summary of Pathology Recommendations}

1) We recommend discontinuing the use of the term “BAC” (strong recommendation, low quality evidence).

2) For small (≤ 3 cm), solitary adenocarcinomas with pure lepidic growth, we recommend the term “Adenocarcinoma \textit{in situ}” (AIS) that defines patients who should have 100% disease-specific survival, if the lesion is completely resected. (strong recommendation, moderate quality evidence). Remark: Most AIS are nonmucinous, rarely are they mucinous.
3) For small (≤ 3cm), solitary, adenocarcinomas with predominant lepidic growth and small foci of invasion measuring ≤0.5 cm, we recommend a new concept of “Minimally invasive adenocarcinoma” (MIA) to define patients who should have near 100%, disease-specific survival, if completely resected. (strong recommendation, low quality evidence).

Remark: Most MIA are nonmucinous, rarely are they mucinous.

4) For invasive adenocarcinomas, we suggest comprehensive histologic subtyping be used to assess histologic patterns semiquantitatively in 5% increments, choosing a single predominant pattern. We also suggest that individual tumors be classified according to the predominant pattern and that the percentages of the subtypes be reported (weak recommendations, low quality evidence).

5) In patients with multiple lung adenocarcinomas, we suggest comprehensive histologic subtyping in the comparison of the complex, heterogeneous mixtures of histologic patterns to determine if the tumors are metastases or separate synchronous or metachronous primaries (weak recommendation, low quality evidence).

6) For non-mucinous adenocarcinomas previously classified as mixed subtype where the predominant subtype consists of the former non-mucinous BAC, we recommend use of the term lepidic predominant adenocarcinoma (LPA) and discontinuing the term “mixed subtype” (strong recommendation, low quality evidence).

7) In patients with early stage adenocarcinoma, we recommend the addition of “micropapillary predominant adenocarcinoma”, when applicable, as a major histologic subtype due to its association with poor prognosis (strong recommendation, low quality evidence).
8) For adenocarcinomas formerly classified as mucinous BAC we recommend they be separated from the adenocarcinomas formerly classified as non-mucinous BAC and depending on the extent of lepidic versus invasive growth that they be classified as mucinous AIS, mucinous MIA, or for overtly invasive tumors “invasive mucinous adenocarcinoma” (weak recommendation, low quality evidence).

9) For small biopsies and cytology, we recommend that NSCLC be further classified into a more specific type, such as adenocarcinoma or squamous cell carcinoma, whenever possible (strong recommendation, moderate quality evidence).

10) We recommend that the term NSCLC not otherwise specified (NOS) be used as little as possible and we recommend it be applied only when a more specific diagnosis is not possible by morphology and/or special stains (strong recommendation, moderate quality evidence).

Summary of Pathology Considerations for Good Practice:

1) When a diagnosis is made in a small biopsy or cytology specimen in conjunction with special studies, it should be clarified whether the diagnosis was established based on light microscopy alone or if special stains were required.

2) Tissue specimens should be managed not only for diagnosis but also to maximize the amount of tissue available for molecular studies.

3) To guide therapy for patients with advanced lung adenocarcinoma, each institution should develop a multidisciplinary team that coordinates the optimal approach to obtaining and processing biopsy/cytology specimens to provide expeditious diagnostic and molecular results.
4) The terms AIS or MIA should not be used in small biopsies or cytology specimens. If a non-invasive pattern is present in a small biopsy, it should be referred to as lepidic growth.

5) The term large cell carcinoma should not be used for diagnosis in small biopsy or cytology specimens and should be restricted to resection specimens where the tumor is thoroughly sampled to exclude a differentiated component.

6) When paired cytology and biopsy specimens exist, they should be reviewed together to achieve the most specific and nondiscordant diagnoses.

7) Cell blocks should be prepared from cytology samples including pleural fluids.

8) The term *non-squamous cell carcinoma* should not be used by pathologists in diagnostic reports. It is a categorization used by clinicians to define groups of patients with several histologic types who can be treated in a similar manner; in small biopsies/cytology pathologists should classify NSCLC as adenocarcinoma, squamous cell carcinoma, NSCLC-NOS or other terms outlined in **Table 2** or Figure 9.

9) The above strategy for classification of adenocarcinoma versus other histologies and the terminology in **Table 2** and Figure 9, should be used in routine diagnosis as well as future research and clinical trials, so that there is uniform classification of disease cohorts in relation to tumor subtypes and data can be stratified according to diagnoses made by light microscopy alone versus diagnoses requiring special stains.

10) Tumors that show sarcomatoid features, such as marked nuclear pleomorphism, malignant giant cells or spindle cell morphology should be preferentially regarded as adenocarcinoma or squamous cell carcinoma if clear glandular or squamous features are present, as this is apt to influence management. If such features are not present,
the term “poorly differentiated non-small cell carcinoma with giant and/or spindle cell features” (depending on what feature is present) should be used.

11) Neuroendocrine immunohistochemical markers should only be performed in cases where there is suspected neuroendocrine morphology. If neuroendocrine morphology is not suspected, neuroendocrine markers should not be performed.

Pathology Research Recommendations

1) Criteria for MIA are based on limited published data and require further validation. Persistent questions include: what is the optimal method for measuring the size of the invasive component? Is 0.5 cm the best size cut off? If multiple areas of invasion are present, should the greatest dimension of the largest invasive focus be used or the total size multiplied times the percentage of the invasive components? What should be the impact of scar size or prominent stromal desmoplasia and stromal inflammation on determining size of the invasive component? Should criteria for MIA be different for mucinous versus non-mucinous tumors?

2) Lepidic growth may also be composed of neoplastic cells with nuclear atypia resembling that of the adjacent invasive patterns. Whether there is any clinical implication is unknown. That is, it is not established if this is in-situ or invasive carcinoma.

3) The level of reproducibility for identifying predominant histologic patterns is untested. In particular, how should the lepidic pattern be distinguished from other invasive patterns such as acinar and papillary?
4) Do tumors that meet criteria for MIA have 100% disease free survival if the invasive component is predominantly solid, micropapillary or if they show giant cell and spindle cell components that fail to qualify for a diagnosis pleomorphic carcinoma?

5) What is the long term follow-up for completely resected solitary mucinous MIA? Can this be the initial presentation for multifocal invasive mucinous adenocarcinoma?

6) Does the micropapillary pattern have a similar poor prognostic significance in advanced stage as well as early stage?

7) Is there any prognostic significance to the aggressive micropapillary or solid components when present in relatively small amounts if they do not represent the predominant pattern? If so, what percentage is needed for such significance?

8) Is immunohistochemical testing using EGFR mutation specific antibodies a reliable method for predicting the presence of an EGFR mutation?

9) It is unknown whether there is any added value provided by refining NSCLC-NOS via immunohistochemistry on small biopsies or cytology samples. This requires assessment in future trials using systemic therapy.

10) Additional markers for squamous or adenocarcinoma differentiation, such as desmocoglein-3193 or desmocollin194 for squamous cell carcinoma or napsin-A for adenocarcinoma195 need further evaluation.

11) The ability of pathologists to distinguish AIS from invasive disease at frozen section is not proven.

12) Currently, we cannot recommend any specific grading system. Further investigation is needed to determine whether the optimal grading system should include architectural versus nuclear assessment or both.
13) In specimens from metastatic sites, is there any clinical significance to recognizing histologic patterns, including the predominant pattern?

CLINICAL FEATURES

Several important clinical facts have had a significant impact on this classification: 1) Adenocarcinoma histology is a strong predictor for outcome to pemetrexed therapy in advanced stage patients.\(^{13-15}\) 2) Distinction between adenocarcinoma or other non-small cell histologies and squamous cell carcinoma is important because of potential life-threatening hemorrhage in patients with squamous cell carcinoma who receive bevacizumab therapy.\(^{16}\) 3) *EGFR* mutation is a validated predictive marker for response and progression-free survival (PFS) with EGFR tyrosine kinase inhibitors (TKIs) in the first line therapy in advanced lung adenocarcinoma.\(^{8,196-199}\) 4) Molecular markers are an important evolving area in evaluation and management of patients with lung adenocarcinoma.\(^{200}\) More data is needed regarding other molecular markers beyond *EGFR* mutation, such as *KRAS* mutation, *EGFR* gene copy number and echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion, before they can be accepted as validated markers for a recommendation in this document.\(^{134,201}\)

Biopsy and Pathology Issues for the Clinician

After initial evaluation, a plan for an invasive procedure to obtain a diagnosis and complete staging should be made in a multi-disciplinary setting.\(^{202}\) The site for the biopsy should be chosen to yield the maximal information with the least risk. A key element in determining the type of procedure is the need to obtain adequate tissue for all pathologic and molecular evaluations (e.g., mutation analysis, immunohistochemistry).
For sampling a peripheral nodular lesion that contains a solid component, the suitable invasive procedures are transthoracic biopsy such as CT-guided biopsies, bronchoscopy/navigation assisted bronchoscopy, sublobar resection or lobectomy (e.g., by video-assisted thoracic surgery, VATS or thoracoscopy). Either a core biopsy or a fine needle aspiration (FNA) with a cell block will reliably obtain adequate tissue.160, 184 For mediastinal involvement, sampling can be achieved by blind transbronchial needle aspiration (TBNA), endobronchial endoscopy (EBUS) guided TBNA, esophageal ultrasound guided fine needle aspiration (EUS-FNA), mediastinoscopy, VATS or Chamberlain procedure. For patients with recurrent disease, repeat biopsy can be useful not only to confirm the diagnosis but also the molecular profile.

Prognostic and Predictive factors: Multiple clinical, pathologic, and molecular factors have been explored for their association with patient outcome. In order to facilitate the discussion, we divided them into two categories although both categories are prognostic factors in the strict sense: prognostic factors which dictate the virulence of the disease (e.g. progression, recurrence) and predictive factors which are correlated with the outcome for specific therapies. Predictive and prognostic factors may overlap; however, they are often different.

The main independent clinical prognostic factors for patients with lung adenocarcinoma are stage, performance status (PS), age and sex.203 The independent prognostic value of stage exists whether using clinical204 or pathological205 staging. Data also suggest that smoking history may be an independent prognostic factor.206

While clinical factors provide important prognostic information, recently there has been greater focus on predictive factors for specific therapies, initially focusing on histology.200 In early clinical trials of erlotinib and gefitinib, some patients with good responses to these drugs
were those with adenocarcinoma with lepidic growth patterns (formerly known as BAC). This led to trials of gefitinib and erlotinib in patients formerly diagnosed with BAC. West reported the results of a Southwest Oncology Group trial in which 17% of patients had a response to gefitinib. Similarly, Miller and colleagues reported a 22% response rate to erlotinib in patients formerly diagnosed with BAC or adenocarcinoma with BAC features. In the new classification, many of these tumors would be regarded to be invasive adenocarcinomas with varying degrees of lepidic growth.

While histology will continue to play an important predictive role, recently the use of molecular markers for predicting response to therapy has become more prominent, particularly after the discovery of EGFR mutations and their association with sensitivity to erlotinib and gefitinib. While KRAS mutations were identified in patients with NSCLC more than 20 years ago, their clinical role as predictive and prognostic biomarkers remains controversial. Several phase 2 clinical trials verified use of EGFR mutations as predictors of response to erlotinib and gefitinib. EGFR mutations occur most frequently in East Asian patients and in those patients with little or no smoking history. The EGFR mutations that are most common and recognized to be of greatest clinical significance are somatic point mutations in codon L858R in exon 21 and in-frame deletions in exon 19. Four recent phase 3 trials based on patients with either pure or predominantly lung adenocarcinoma histology, one which selected patients clinically, and three which selected patients by EGFR mutations have demonstrated that patients with EGFR mutation lung cancer have better treatment outcomes (response rate and progression free survival) when treated with the EGFR inhibitor gefitinib than with conventional platin-based doublet chemotherapy. In the Iressa Pan Asian Survival Study (IPASS) trial, molecular subset analysis showed that progression-free survival benefit was limited to the patients with EGFR.
mutation (HR, 0.48; 95% CI, 0.36 to 0.64) and that gefitinib therapy was detrimental for those without mutations (hazard ratio, 2.85; 95% CI, 2.05 to 3.98). Maemondo M et al showed progression free survival of patients with EGFR mutations was 10.8 months in patients who received gefitinib compared to 5.4 months in those that received carboplatin plus paclitaxel (HR 0.30; 95% CI 0.22-0.41, p<0.001) as well as a higher response rate (73.7% vs 30.7%, p<0.001). Mitsudomi T et al showed that patients with EGFR mutations who received gefitinib had significantly longer median progression-free survival of 9.2 months versus 6.3 months (HR 0.489, 95% CI 0.336-0.710, p<0.001). Zhou C, et al showed that patients with EFRG mutations treated with erlotinib have significantly longer median progression-free survival of 13.1 months compared to 4.6 months for those treated with gemcitabine/carboplatin (HR 0.16, 95% CI 0.10-0.26, p<0.0001). These trials do not demonstrate significant differences in overall survival for gefitinib treatment, likely an effect of cross-over treatment with gefitinib or erlotinib in second line therapy. Similarly, in a chemotherapy controlled phase III study (INTEREST) comparing gefitinib to docetaxel, EGFR mutation-positive patients had longer progression-free survival and higher objective response rates (42% vs 7%) than those without mutations for gefitinib. The finding that EGFR mutation is predictive of important benefit for progression-free survival and responsiveness to TKI therapy is also supported by multiple phase 2 clinical trials.

Other molecular predictors of outcome have also been explored for erlotinib and gefitinib treatment. Retrospective analysis of data from the Iressa Survival Evaluation in Lung Cancer (ISEL) study showed that EGFR copy number and protein expression were predictive of significantly better overall survival following treatment with gefitinib. A multivariate analysis of data from the Canadian BR.21, phase 3 randomized, placebo-controlled trial of erlotinib in advanced NSCLC showed that EGFR copy number (but not EGFR mutation status) was
associated with worse survival (HR 1.9, 95% CI 1.1 to 3.4) and a better response to erlotinib (p=0.005), after controlling for race, performance status, weight loss, smoking history, prior treatment and response to prior treatment. In a second-line, chemotherapy controlled phase III study (INTEREST) comparing gefitinib to docetaxel, overall survival was similar in the two arms and there were no statistically significant interactions between treatment and EGFR copy number, protein expression, or mutation status. The results of all three of these studies may be influenced by inclusion of large numbers of patients with histologies other than adenocarcinoma and should be regarded as exploratory.

For treatment of advanced NSCLC response and outcome to EGFR tyrosine kinase inhibitors has been demonstrated in most studies to be better predicted by EGFR mutation testing rather than copy number or immunohistochemistry. In a Phase II study of erlotinib-treated patients, multivariate analysis of molecular predictors showed that EGFR mutations, but not copy number was predictive of response to erlotinib with a response of 83% in patients with EGFR mutations versus 7% in those without (p<0.01). In this study immunohistochemistry was not predictive of response. Another study by Scholl et al found EGFR mutation status, but not FISH, CISH or immunohistochemistry was useful for predicting response and progression free survival for TKI therapy. The recent development of new mutation specific antibodies for EGFR exon 19 deletion and L858R mutation appear to be much more reliable in predicting EGFR mutation status and these need to be evaluated in future clinical trials. In the IPASS study, in FISH+ patients, gefitinib was worse than chemotherapy if those patients lacked EGFR mutations. All of these studies used Response Evaluation Criteria in Solid Tumors (RECIST) to measure response to therapy.
More recently, investigators have noted that all NSCLC histologies other than squamous cell carcinoma appear to garner more benefit from two drugs, pemetrexed for efficacy and bevacizumab for avoidance of toxicity. However, most of the analyses are subgroup analyses with the known shortcomings. Pemetrexed, a multi-targeted antifolate agent, appears to have greater activity in NSCLCs with non-squamous histology (adenocarcinoma and NSCLC-NOS), with the greatest proportion of benefit observed in patients with adenocarcinomas as demonstrated in two phase 3 trials. In a phase 3 trial, comparing cisplatin/pemetrexed to cisplatin/gemcitabine, pre-planned subgroup analysis, revealed median overall survival was significantly better for patients with adenocarcinoma (12.6 versus 10.9 months, HR=0.81, 95% CI, 0.71-0.99, p=0.03) and large cell carcinoma (would be called NSCLC-NOS by the current proposal), overall survival of 10.4 versus 6.7 months, HR=0.67, CI, 0.48-0.96), while no benefit was seen with squamous cell carcinoma or with all histologies combined. Follow-up analysis of the same patients from this phase 3 study but focusing on those without grade 3 or 4 drug toxicity, a similar benefit for overall survival was found in patients with non-squamous histology comparing cisplatin pemetrexed to cisplatin/gemcitabine (median survival of 5.6 months versus 2.8 months, respectively, HR=0.64, 95% CI: 0.56-0.72, p<0.001). Ciuleanu et al showed in a phase 3 trial comparing pemetrexed versus placebo, where prespecified analysis for histology were performed, that patients with adenocarcinoma histology had better median progression free survival (4.5 versus 1.5 months, HR= 0.511 CI, 0.38-0.68, p<0.0001) and median overall survival (16.8 versus 11.5 months, HR= 0.73, CI, 0.56-0.96, p<0.026). The benefit was also significant for non-squamous carcinomas classified as other, and for non-squamous cell carcinoma overall, but not for large cell carcinomas or squamous cell carcinomas. Several phase II studies have also shown a benefit for pemetrexed in advanced NSCLC patients with
non-squamous histologic subtypes.\cite{223,224} However, a recent Phase III trial, with primary end point as the assessment of quality of life, observed similar outcomes for patients treated with pemetrexed/carboplatin regardless of histology.\cite{225} Patients with adenocarcinoma or NSCLC-NOS (non-squamous NSCLC histology) are the only patients who have been demonstrated to benefit from bevacizumab in combination with chemotherapy.\cite{226} Indeed, patients with squamous cell carcinoma are at greater risk of adverse events and, therefore, such patients have been excluded from receiving this drug by the FDA,\cite{17} but they are eligible for adjuvant therapy in ongoing trials.\cite{16}

Very recently, a new predictive biomarker has been identified in patients with NSCLC, the \textit{EML4/ALK} translocation. This translocation leads to an oncogenic constitutive activation of ALK.\cite{201,227,228} A recent study of 82 patients with NSCLC confirmed to have ALK fusion by FISH, demonstrated a 57\% overall response rate to crizotinib (PF-02341066), an inhibitor of MET and ALK, and the estimated 6-month progression-free survival was 72\%.\cite{229} De novo resistance mutations in the kinase domain of EML4-ALK have been reported to develop during ALK inhibitor therapy.\cite{230}

Clinical Implications of Histology and Molecular Testing: Accurate histologic subtyping and \textit{EGFR} mutation testing are important and should be included in the initial work-up of patients with advanced lung adenocarcinoma because it may guide treatment decisions. Whether other \textit{EGFR} tests should be recommended (i.e. immunohistochemistry, FISH) and/or \textit{KRAS} mutation as an indicator of TKI resistance is not yet clear.\cite{231,232} In addition to \textit{EGFR} mutation analysis, additional molecular tests are in development and may be more useful when further clinical data support their use.
Surgically Resectable NSCLC: 20-30% of NSCLC patients are diagnosed with Stage I-IIIA disease and thus may be amenable to surgical resection. Patients who undergo resection have differing prognoses based upon pathologic stage. The recent IASLC staging project has demonstrated overall 5-year survival of 73% for stage IA, 58% for stage IB, 46% for stage IIA, 36% for stage IIB, 24% for stage IIIA, and 9% for stage IIIB.233,234 The introduction of adjuvant cisplatin-based chemotherapy represented a major step forward with a 5% increase in cure rate.235 Still, 27% of patients with stage IA disease and 42% of patients with stage IB NSCLC eventually recur and die from their disease; there is no accurate way to predict which of these patients have poor risk disease and are likely to recur. Similarly, 41% of patients with Stage II NSCLC are cured by surgery alone and do not need any adjuvant therapy.233,234 Thus, an urgent need to identify factors which will select patients for adjuvant therapy exists. Several predictive factors for better efficacy of adjuvant chemotherapy have been described in retrospective analyses of phase III randomised adjuvant studies. An example is low expression of the DNA repair genes \textit{ERCC1} for greater benefit from cisplatin-based chemotherapy, although this needs further validation.188 Based on initial data showing striking differences in survival predicted by histologic subtyping according to this proposed classification of lung adenocarcinomas in resected specimens,44 it is possible in the future that histology will play an important role in selecting patients for adjuvant therapy.

\textbf{Clinical Recommendation:}

In patients with advanced lung adenocarcinoma we recommend testing for \textit{EGFR} mutation (strong recommendation, moderate quality evidence).
Remarks: This is a strong recommendation because potential benefits clearly outweigh harms. This recommendation assumes that correct classification by \textit{EGFR} mutation status is associated with important benefit based upon randomized phase 3 clinical trials of EGFR TKI therapy which demonstrate a predictive benefit for response rate and progression-free survival, but not overall survival, as well as subset analyses of multiple additional studies.

Clinical Consideration for Good Practice

1) If molecular testing is planned, appropriate biopsy methods should be utilized to obtain sufficient tissue for both pathologic diagnosis and molecular analyses and the specimens should be handled appropriately.

Clinical Research Recommendations

1) How can this histological and/or molecular classification improve our ability to estimate prognosis and optimize the selection of patients for a specific therapy?

2) What is the relative importance of histologic versus molecular data for identifying prognostic or predictive markers based on small biopsies and cytology versus resected specimens?

3) Is immunohistochemical testing using \textit{EGFR} mutation specific antibodies as predictive of response to EGFR TKI’s as \textit{EGFR} mutations?

4) In advanced lung adenocarcinomas, are the prognostic and therapeutic implications of histology any different if the pathologic diagnosis is based on a combination of histology
and immunohistochemistry (i.e. TTF-1 and/or p63) versus conventional light microscopy alone which is the basis for current data?

5) In metastatic lung adenocarcinomas, what are the clinical implications of any potential differences in molecular or histologic features compared to primary tumors?

6) What are the clinical, epidemiological, molecular, and histologic characteristics of never smokers with lung adenocarcinoma?
MOLECULAR FEATURES

There are several molecular observations that have important implications for lung adenocarcinoma patients: 1) *EGFR* mutation is a validated predictive marker for response and progression free survival (PFS) with *EGFR* tyrosine kinase inhibitors (TKIs) in the first line therapy in advanced lung adenocarcinoma.\(^8,196-199\) 2) Tumors with an *EGFR* mutation have been associated with a more indolent course.\(^8,215\) 3) *EGFR* and *KRAS* mutations are virtually mutually exclusive.\(^217,236\) 4) *EGFR/KRAS* mutation negative cases may have detectable fusion of *EML4-ALK*.\(^134,201\)

Histogenetic Origins of Lung Adenocarcinoma Subtypes

Normal lung tissues, from which lung cancers arise, can be anatomically divided into two major components, the air-conducting system and the peripheral lung parenchyma where gases are exchanged. Following generation of the two embryologic lung buds, repeated branching morphogenesis results in conducting airways and the subsequent development of the terminal sac and alveoli. During the later stages, the regulatory thyroid transcription factor-1 (TTF-1) is ubiquitously expressed in the peripheral lung epithelial cells such as small bronchioles and alveoli.\(^237\) TTF-1 is potentially a lineage-specific survival oncogene of some lung adenocarcinomas.\(^238,239\) The peripheral bronchioloalveolar compartment (terminal bronchioles, alveolar ducts, alveoli) also contains two potential tumor cells of origin, the Clara cells and type II pneumocytes,\(^240\) which together comprise the Terminal Respiratory Unit (TRU) and give rise to tumors expressing TTF1. These often manifest as a ground-glass nodule on CT. The central conducting airways (bronchi) contain two potential candidate progenitor cells that give rise to tumors: the bronchial basal cells and the mucous cells.\(^240,241\) These tumors are TTF1-negative

70
and demonstrate a solid appearance on CT. Hierarchical clustering analysis of lung adenocarcinoma based on the expression profile demonstrated two major clusters, which correspond to TRU and non-TRU type adenocarcinomas and thus two major subsets of adenocarcinoma with distinct histogenetic origins.242

It is hypothesized that a subset of lung adenocarcinomas undergo progression from AAH to AIS to invasive carcinoma and that this may be a stepwise process triggered by multiple genetic changes that supplement those responsible for initiation of the malignant phenotype.4, 77, 243, 244 Although \textit{EGFR} and \textit{KRAS} mutation are observed from the earliest stages including normal epithelium245, 246 and AAH, to invasive adenocarcinoma, \textit{EGFR} gene copy number changes become widespread later at the stage of invasion and metastases.247, 248 \textit{EGFR, KRAS} and \textit{TTF1} amplification are characteristic of this progression.239, 247, 249 \textit{p53} mutation is more often found in invasive compared to non-invasive adenocarcinomas.48, 250-254 However, \textit{p53} mutation has not been identified as a reliable prognostic marker or a therapeutic target.

Histologic Molecular Correlations

High-throughput analysis of DNA mutations has reshaped the molecular landscape of lung adenocarcinomas.98 DNA sequencing of 623 known cancer-related genes in 188 adenocarcinomas identified 1013 somatic mutations.98 In addition to confirmation of known tumor suppressor genes \textit{p53}, \textit{P16INK4}, and \textit{STK11/LKB1}, newly described mutations in \textit{NF1} and \textit{RB1} were detected at a frequency of 10\% each. There were two other important findings: 1) Mutations were often detected in the tyrosine kinase gene family members \textit{EGFR, KRAS, ERBB4, EPHA4, EPH3, KDR,} and \textit{FGFR4} that are potentially targetable by tyrosine-kinase inhibitors; and 2) Mutual exclusivity was demonstrated in several gene mutation pairs including \textit{EGFR/KRAS}, \textit{EGFR/STK11} and \textit{NF1} and \textit{p53/ATM}.98, 255 Mutation frequency showed negative
correlations between acinar, papillary and BAC subtypes with mutations in LRP1B, p53, and INHBA. However, these mutations showed significant positive correlations with the solid subtype (Table 5).

Many publications have studied the prevalence and specificity of KRAS and EGFR alterations in lung adenocarcinoma (Table 5). The frequency of KRAS and EGFR mutations is each 10-30% with higher EGFR mutation frequency in Asians, never-smokers, and non-mucinous tumors while KRAS mutations are most common in non-Asians, smokers and in invasive mucinous adenocarcinoma. Mutations in EGFR mainly affect the ATP-binding pocket within the tyrosine kinase domain. The most common mutations result in an arginine for leucine substitution at amino acid 858 and in frame deletions at exon 19. EGFR mutation status has been reported to be significantly associated with AIS, LPA, papillary and micropapillary adenocarcinoma subtypes, although EGFR mutations can be seen in tumors with other histologic subtypes (Table 5). A large cohort of 806 NSCLC specimens showed a correlation between the presence of EGFR mutation and adenocarcinomas formerly classified as BAC or with BAC features (probably including AIS, MIA and LPA), but another study with pathology review of 97 adenocarcinomas showed no difference. Predominant solid subtype has been shown to be significantly associated with KRAS mutations, but not in all studies. V600E BRAF mutations, occur in less than 5% of cases, and they have been associated with papillary, micropapillary and lepidic components of invasive lung adenocarcinomas. Other less common types of BRAF mutations are reported such as V599E in a patient with a “well differentiated adenocarcinoma” (no subtyping information) and 2 cases with missense mutations in exon 11 (G465V) and in exon 15 (L596R) where no histologic subtyping was reported.
Table 5 summarizes our present knowledge on the molecular features associated with predominant patterns of adenocarcinoma. The only example of a strong correlation between a histologic subtype and a set of molecular and biologic features is that of invasive mucinous adenocarcinoma (former mucinous BAC) which typically have KRAS mutations and lack of EGFR mutation.\(^{55, 256, 262-265}\) Most of these tumors are negative for TTF-1 and they may express MUC 2-5-6 because of their derivation from bronchiolar mucinous goblet cells.\(^{123, 266}\)

EGFR mutation is a specific target for therapy by EGFR TKIs and is a validated biomarker of treatment response based on three recent phase 3 trials (see detailed explanation in clinical section)\(^{8-11}\) and multiple phase 2 trials.\(^{209-214}\) Recently described mutation specific antibodies for the EGFR exon 19 deletion and L858R mutation appear to be much more reliable in predicting EGFR mutation status than previous antibodies, but they require further testing and validation in clinical trials.\(^{219-221}\) Specific acquired EGFR mutations such as T790M as well as, other genetic alterations in MET (amplification), ERBB3 (over-expression) and epiregulin (autocrine loop activation), account for approximately 50% of cases of TKI-resistance.\(^{217, 231, 267-272}\)

Lung cancers with ALK translocations

A minority of lung tumors harbor a small inversion within chromosome 2p giving rise to the transforming fusion gene EML4-ALK (echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene). No activating mutations in the kinase domain are observed; the dimerization of the fusion protein causes its activation.\(^{227}\) Epidemiological characteristics include prevalence in 5% of lung adenocarcinomas. Younger age, male gender, and never- or light-smokers may identify a population of patients with greater chance of
A variety of histologic features are reported including acinar, papillary, cribriform, mucin production (intra- and extracytoplasmic) and signet-ring patterns.134, 201, 273-277

It is still at issue whether other histological types such as squamous cell carcinoma and mucoepidermoid carcinoma also contain \textit{EML4-ALK} translocations. Detection of the \textit{EML4-ALK} translocations can be difficult and can be approached with several methods including immunohistochemistry, FISH and reverse transcription-polymerase chain reaction (RT-PCR).134, 229, 230, 273-276, 278 Immunohistochemistry requires use of antibodies and methods that are validated to correspond well to \textit{EML4-ALK} translocations and it may serve as a useful screening method.134, 275, 279-281 Most tumors with \textit{EML4-ALK} translocations are positive for TTF-1 and may be p63 positive.274, 276 Tumors with \textit{EML4-ALK} translocations appear to be mutually exclusive with \textit{EGFR} and \textit{KRAS} mutations and have a lower frequency of \textit{p53} mutations.134, 228, 273, 274, 276 Another ALK translocation involving \textit{KIF5B-ALK} fusion has been recently identified in lung adenocarcinomas, however at present, insufficient data exist to define its specific histological nature.275 De novo resistance mutations in the kinase domain of \textit{EML4-ALK} have been reported to develop during ALK inhibitor therapy.230

Lung Adenocarcinoma Gene Expression Analyses

The mRNA genomic profiling of tumors can provide important information about pathogenesis, patient prognosis, and prediction of response to therapy in a fashion that complements histological evaluation. Unsupervised clustering analysis consistently shows three distinct groups of adenocarcinomas associated with tumor morphology69, 242, 282, 283 and with lung developmental pathways. Beer, et al showed that tumors within the three clusters were
significantly correlated with differentiation, stage and morphology as classified by bronchial-derived or lepidic morphology.282 Borczuk, et al showed that invasive features were associated with the cluster containing more aggressive tumors.283 The three groups consisted of non-invasive and minimally-invasive tumors (≤5 mm); mixed-invasive and lepidic pattern tumors; and solid-invasive cancers. Motoi et al. demonstrated that the three clusters correlated strongly with former BAC, solid and papillary subtypes, respectively.69 Takeuchi et al showed that expression profile-defined adenocarcinoma subtypes were correlated with morphology and with normal lung developmental pathways.242 Morphologic analysis revealed two branches consisted of TRU (terminal respiratory unit)-type adenocarcinomas, which are based on lepidic pattern and expression of TTF-1 and surfactant proteins, and non-TRU adenocarcinomas that lack these characteristics. TRU tumors were further divided into TRU-a and TRU-b classes. Functional annotation showed retention of normal peripheral differentiated lung features in the TRU types, which contrasted with the cell cycling and proliferation enriched annotation of genes associated with the non-TRU tumors.

Although \textit{EGFR} mutations are found in association with papillary predominant adenocarcinomas (\textbf{Table 5})69, 98 and TRU-a tumors, while \textit{KRAS} mutations are more frequent in the solid and TRU-b tumors, it is clear that oncogene mutation status is not a primary determinant of the molecular subtypes as defined by gene expression profiling.284 Taken together, unsupervised clustering defines three morphologically distinct groups of lung adenocarcinomas. These include: 1) AIS and MIA; 2) invasive non-solid adenocarcinoma; and 3) invasive adenocarcinoma, predominantly solid.69, 242, 282, 283 Thus, these molecular profiles provide biological plausibility for the proposed classification scheme that creates separate
categories based upon evaluation of lepidic pattern and other components, including solid pattern.

Recently Bryant et al285 utilized the lung adenocarcinoma gene expression data from Shedden et al99 together with complete pathological review to examine associations between 27 known cancer-related pathways and the adenocarcinoma subtype, clinical characteristics and patient survival. Unsupervised clustering of adenocarcinoma and gene expression enrichment analysis reveals three main clusters and that cell proliferation is the most important pathway separating tumors into subgroups.285 Further, adenocarcinomas with increased cell proliferation demonstrate significantly poorer outcome and an increased solid subtype component. Interestingly, tumors with any solid component have decreased survival as compared to tumors without a solid component. Significant associations between specific histologic subtypes, gene expression pathways and clusters were also reported, some of these are included in Table 5. The consistency of these findings was demonstrated using two independent lung adenocarcinoma cohorts from Japan (N=87) and France (N=89) using the identical analytic procedures.285

Tumor mRNA profiling is emerging as a source of clinically significant information regarding patient outcome after resection. Several predictors have been developed based upon methodologically sound approaches that include independent validation.286-298 The results of these studies are heterogeneous both in terms of the number of genes in the predictors and in the specific genes included in each signature. This heterogeneity is expected given differences in study design, assay platform, tumor histology, and patient selection. A large, multi-center, blinded evaluation of eight independently derived genomic signatures of prognosis in 442 adenocarcinomas demonstrated that the addition of clinical covariates enhanced the performance of the signatures, relative to using gene expression alone.99 A method that relied on the
correlated expression of 100 gene clusters to predict subject outcome produced relatively good performance with several other methods showing similar performance.99 Relatively higher expression of a cluster of 545 genes enriched for cell proliferation was associated with poor outcome. This study is a model for the careful handling of challenges inherent in translational cancer genomic studies and for its vast repository of clinical and pathologically annotated data. Independent prospective evaluation of the predictive accuracy of these signatures, prospective clinical trials, and application to small biopsy specimens181-184 will be required to extend this area of research.

Copy Number Analyses of Lung Adenocarcinoma Subtypes

Multiple studies have defined lung adenocarcinoma subtypes by utilizing techniques to assess DNA copy number changes.41, 69, 238, 299-303 Adenocarcinoma subtype was examined in a comprehensive analysis utilizing comparative genomic hybridization (CGH) by Aviel-Ronen et al,300 who contrasted former BAC and invasive mixed-type adenocarcinoma with former BAC features, most of which would probably be classified as invasive *adenocarcinoma with predominant lepidic growth* in the new classification. A large number of specific chromosomal alterations were detected such as gain at 1p, 2q, 5p, 7p, 11p, 11q, 12q, 16p, 16q, 17q, 20q, and 21q in both former BAC and the adenocarcinomas with lepidic growth. Although both types had similar chromosomal changes, the invasive adenocarcinomas with lepidic growth showed greater variability and frequency of chromosomal changes and with longer segmental alterations and deletions. Deletions were also more common in adenocarcinomas with lepidic growth and were observed mainly on 3p and 5q and to a lesser extent on 4q and 6q. The genomic profile of former BAC appears to be distinguishable from that of invasive adenocarcinoma with lepidic growth,
with the latter displaying greater genomic aberrations. This demonstrates a progression at the genomic level from former BAC to the invasive areas of adenocarcinoma with lepidic growth.

Weir et al, found the most common focal amplification event in lung adenocarcinoma involved chromosome 14q13.3 in 12% of cases and TTF1, also known as NKX2-1 was identified in this region. Barletta et al examined histologic correlations with amplification of the TTF-1 gene, and six cases demonstrated TTF-1 amplification among the 49 acinar, papillary, and solid subtypes but not in tumors classified formerly as BAC.41

EGFR gene amplification was examined using fluorescence in situ hybridization (FISH) by Hirsch et al, who demonstrated that EGFR gene copy number detected by FISH is associated with improved response to gefitinib therapy in patients with advanced-stage former BAC and in adenocarcinomas with lepidic growth.301 A strong relationship between mutation and EGFR amplification was also reported by Cappuzzo et al.304 Conde et al reported similar results with a higher percentage of mutations among adenocarcinomas with former BAC and papillary morphologies relative to adenocarcinomas without these features.302 Chang et al used chromogenic in situ hybridization (CISH) and found that TKI responsiveness was significantly associated with EGFR mutation and adenocarcinoma morphology, but only marginally with increased EGFR gene copy number.303 Other studies report similar findings, but the relationship between adenocarcinoma subtype and EGFR copy number changes is often not indicated.176, 179, 305 Motoi et al was one of the first studies to examine this and found no strong correlations between adenocarcinoma subtype and EGFR amplification using CISH.69

EGFR copy number analysis during the progression of adenocarcinomas has been examined.245, 248 EGFR mutations precede copy number abnormalities. EGFR copy number heterogeneity was greater in the primary tumor than in corresponding metastases.245 EGFR
amplification correlated with high histologic grade and/or invasive growth, and was rare in the precursor lesions AAH and former BAC.248 Thus tumors with these changes appear more aggressive. Zhu et al showed that using a multivariate Cox model, high \textit{EGFR} copy number was both a significant prognostic factor for poor survival (HR 1.93, CI:1.09-3.44, \(p < 0.025 \)) and a significant predictive factor of an erlotinib effect on survival (HR 0.33, CI 0.15-0.71, \(p < 0.005 \)).217 The amplification of \textit{MET} may be one possible mechanism associated with tumor resistance to erlotinib.248 Finally, the application of these types of FISH analyses to small diagnostic samples was examined by Zudaire et al.182 They found that over 90\% of cases of paraffin-embedded transthoracic FNA samples were suitable for FISH for both \textit{EGFR} and \textit{c-MYC} analyses. These studies suggest that even when limited tumor material is available copy number analyses may provide prognostic information for \textit{EGFR} amplification and an explanation for resistance to \textit{EGFR} TKIs for \textit{MET} amplification. However, \textit{EGFR} mutation is more predictive of response to \textit{EGFR} TKIs than amplification.179, 222

Multiple Pulmonary Nodules

Several techniques have been tested to distinguish metastases from synchronous primary tumors including DNA microsatellite analysis,306, 307 comparative genomic hybridization (CGH),308 DNA mutation sequencing,309-313 immunohistochemistry314 and gene expression analysis. The utility of these assays is enhanced by their potential application to small biopsy specimens. These approaches have not been prospectively validated; thus their performance and efficacy in routine clinical practice remain to be established. However, these molecular techniques offer promising new ways to help in the distinction of synchronous primary tumors from metastases in patients with multiple adenocarcinoma nodules, which is critical for accurate tumor staging, determination of prognosis and for planning treatment.315, 316
Molecular Differences in Metastases versus Primary Tumors

There may be important differences between the primary tumor and metastases of lung adenocarcinoma both with regard to morphology and biomarker expression, however, more study of this problem is needed. The mutation status of metastases can be the same or different from that of the primary tumor and also among metastases, so a multidisciplinary approach is needed. The available data regarding EGFR mutations is mainly from tumor material collected at the time of diagnosis (either from the primary tumor or from metastases) and not from the point in time at which treatment with EGFR-inhibitors is given.

Molecular prognostic factors

Biomarkers that can predict patient prognosis have been extensively sought during the past 20 years. Immunohistochemical markers for which meta-analyses have been done include EGFR, TTF-1, p21ras, HER2, p53, Ki67, Bcl2 and cyclooxygenase 2 (Cox-2). All but EGFR, p21 ras and Cox-2 were statistically significant by meta-analysis. However, the magnitude of the association is generally weak with hazard ratios that range from 1.13 to 1.57.

Meta-analyses showed that although prognostic impact of mutations of p53 or KRAS gene might be statistically significant, their impact was not strong enough to be recommended for routine clinical use. In contrast, there is a suggestion that patients who underwent surgical resection for lung adenocarcinomas that have EGFR mutations appear to have better prognosis in the absence of EGFR TKI therapy than those without, based on two retrospective observational studies.
Molecular Research Recommendations

1) More investigation is needed of copy number variation, genomic, and proteomic markers for their relationship to clinical and pathologic variables.

2) *EML4-ALK* fusion gene needs further study, particularly in *EGFR/KRAS* negative cases.

3) We recommend that research studies of molecular markers be based on well annotated clinical and pathologic datasets, with adenocarcinomas diagnosed according to this classification.

4) MicroRNAs need further evaluation to determine if they can be helpful in lung adenocarcinoma risk stratification and outcome prediction.\(^{333, 334}\) There is limited information regarding correlation with adenocarcinoma subtype classification.

5) Investigations combining both genomic and proteomic studies are needed to determine if they can provide more accurate sub-classification of NSCLC and adenocarcinoma, and more precise information regarding the risk stratification, outcome prediction, and treatment selection for different subtypes of adenocarcinoma.

RADIOLOGIC FEATURES

A number of terms have been used to describe lung adenocarcinomas by CT imaging. In particular, for tumors that present as small nodules, the terms used have reflected the various ground-glass (nonsolid), solid or part-solid appearances that can occur. Largely based on the Fleischner Society glossary of terms\(^ {335}\) and the recently suggested guidelines by Godoy and Naidich for subsolid nodules,\(^ {336}\) we propose the following definitions: 1) a pure ground-glass nodule (*GGN*) (synonym: non-solid nodule) as a focal area of increased lung attenuation within which the margins of any normal structures, e.g. vessels, remain outlined, 2) a solid nodule as a
focal area of increased attenuation of such density that any normal structures, e.g. vessels, are completely obscured, and 3) *part-solid nodule* (synonym: semi-solid nodule) as a focal nodular opacity containing both solid and ground-glass components.335, 336 The Fleischner Society glossary of terms for thoracic imaging defines a nodule on a CT scan as “a rounded or irregular opacity, well or poorly defined, measuring up to 3 cm in greatest diameter” in any plane.335 If the opacity is greater than 3 cm, it is referred to as a mass.335 The ≤3 cm cutoff is in keeping with our concept of the maximum accepted size for the pathologic diagnosis of AIS and MIA. The term *subsolid nodule* has also entered common radiologic usage, referring to both part-solid nodules and pure GGN.336 Optimal evaluation of subsolid nodules requires thin-section CT scans (≤3 mm thickness) to assess the solid versus ground-glass components.336, 337

Radiologic Spectrum According to Histologic Subtype

AAH is the earliest preinvasive lesion for lung adenocarcinoma detectable by thin-section CT. It appears as a small (usually ≤5 mm), ground-glass nodule (Figure 11)19, 23, 338-343 AAH characteristically appears as a very faint pure GGN usually measuring ≤ 5mm.344, 345 The pure GGN of AAH can be single or multiple339, 343, 346

AIS is best demonstrated at CT (preferably thin-section) and sometimes can be seen on chest radiography. It is a noninvasive lesion, and non-mucinous AIS presents typically as a pure GGN (Figure 12) but sometimes as a part-solid or occasionally a solid nodule.19, 23, 340, 346-351 AIS can be bubble-like.343, 349, 350, 352 Mucinous AIS can appear as a solid nodule or consolidation (Figure 13). The pure GGN of AIS usually appears at thin-section CT as slightly higher attenuation than the very faint GGN of AAH.344-346 AIS also can be single or multiple.19, 343, 349-351
MIA is variable in its imaging presentation, and is, as yet, not fully described, but a provisional description of the nonmucinous type at thin-section CT is a part-solid nodule consisting of a predominant ground-glass component and a small central solid component measuring 5 mm or less (Figure 14). Mucinous MIA (Figure 14) is less common than non-mucinous MIA and appears as a solid or part-solid nodule. There is an overlap among imaging features of AAH, AIS and MIA.

Radiology Recommendation #1

When an opacity in the lung adenocarcinoma spectrum is either a pure GGN or part-solid nodule with a predominant ground-glass component, we recommend that the term BAC no longer be used. These tumors should be classified by the new terms: AIS, MIA, and LPA (strong recommendation, low quality evidence).

Invasive adenocarcinoma is usually a solid nodule (Figure 15), but may also be part-solid (Figure 16) and occasionally a GGN. A lobar pattern of ground-glass opacity (GGO) may occur (Figure 17). Bubble-like or cystic lucencies in stage IA adenocarcinoma have been described as correlating with well-differentiated tumors and slow growth. Thick (≥2 mm) coarse spiculation has been associated with lymph node metastasis, vascular invasion, and decreased survival post resection. For stage IA adenocarcinoma presenting as a part-solid nodule, an extensive ground-glass component suggests a favorable prognosis. Histologically the ground-glass component typically corresponds to a lepidic pattern and the solid component to invasive patterns. An intratumoral air bronchogram usually indicates a well-differentiated tumor. Absence of
pleural retraction for stage IA adenocarcinoma is also a favorable prognostic sign.359, 373 In solid adenocarcinomas, the presence of notches, or concave cuts on thin section CT, has been associated with poor differentiation on histology and adverse outcome.374

Invasive mucinous adenocarcinoma, formerly called mucinous BAC, characteristically presents in imaging studies as a range of nodules to lobar replacement by a spectrum of patterns including GGO, mixed GGO/solid foci or consolidation,120, 351 but intra-alveolar mucus may make the CT appearance solid or nearly solid (Figures 18 and 19).126, 375 The mucoid component may appear as homogeneous consolidation with soft-tissue attenuation that is lower than that of muscle. After administration of an intravenous iodinated contrast agent, vessels are well shown traversing these regions (CT angiogram sign).120, 126, 354, 375 Overlap does occur between imaging features of mucinous and nonmucinous invasive adenocarcinomas.

Radiology Recommendation #2

For overtly invasive adenocarcinomas previously classified as *mucinous BAC*, we recommend they be separated from non-mucinous adenocarcinomas and be classified as *invasive mucinous adenocarcinoma* (strong recommendation, moderate quality evidence).

Remark: At CT, this entity is usually solid or mostly-solid, has frequent air bronchograms, shows a lobar or multilobar distribution and frequently consists of multiple nodular or consolidative opacities (former term multicentric BAC).

Size and growth rate of lesions.

AAH characteristically is \(\leq 5\) mm, but in a minority of cases may be up to 12 mm.19, 339, 341, 342, 347, 376 Growth is very slow. Although it has been suggested that a pure GGN \(< 5\) mm is so
unlikely to become a cancer that it needs no follow-up,336 optimal frequency and duration of CT follow-up of a ground-glass nodule of any size is as yet unclear.

AIS is variable in size, but most are 2 cm or less. Growth is very slow. Suspicious GGNs, i.e. \(\geq 5 \) mm diameter, are usually followed by at least annual follow-up CT examination, and an increase in size or attenuation is regarded as a sign of probable progression to invasive disease.336 For sizes \(>10 \) mm, closer follow-up is indicated with CT every 6 months to 1 year. However, all recommendations for following suspicious GGNs to date have been based on data from small observational studies and need further evaluation.338, 347, 350, 356, 371, 377-379

MIA has not yet been well defined in terms of imaging findings, in part because the histopathologic definition is difficult, and little is known about size and growth rates, but most MIA are less than 2 cm.58 Invasive adenocarcinomas of the lung are variable in size and growth rates. For adenocarcinoma <2 cm, the smaller the tumor, the less likely there is to be vascular invasion.357 Size of an adenocarcinoma does predict metastatic disease to the central nervous system: for a node-negative adenocarcinoma of 2 to 6 cm, the probability of metastatic disease to the central nervous system has been reported as 0.14 for a 2 cm tumor, increasing linearly to 0.72 for a 6 cm tumor.380, 381

For small solid nodules suspicious for lung cancer at CT, the recommendations for follow-up per Fleischner Society guidelines are currently widely recognized.382-384 However, these guidelines do not specifically address GGNs and part-solid nodules, as discussed by Godoy and Naidich.336

Because the sizes of many of the clinically problematic nodular lesions at CT are small, how size is measured is especially important. Differences in CT scanners, window settings, and
inter- and intra-observer performance are common and may impact critically on assessments of size, especially in the CT follow-up of nodular lesions.385-390

Multiple primary lung cancers

Multifocal lung adenocarcinomas are not uncommon, being found in up to 8-22\% in surgically resected adenocarcinomas391,392 and 18\% of adenocarcinomas detected in screening programs.64 Multiple lung adenocarcinomas can occur in the setting of multiple AAH, AIS, and invasive adenocarcinoma (Figure 20).343 Similarities or differences in attenuation may provide clues regarding the relative percentage of lepidic versus solid histologic components.336 Subsolid nodules are very rarely metastatic.393

Positron emission tomography (PET scanning)

Elevated standard uptake values (SUV) on FDG PET correlate with cellular proliferation and aggressiveness of the primary cancer (Figure 15 and 19).348,394-402 Sensitivity of PET for AIS is usually very low.395,399 PET is commonly used for staging and follow-up of invasive adenocarcinoma, and for lesions of 7 mm or larger, SUV for adenocarcinoma of the lung tend to be lower than for other histologic types of lung cancer, and correlate inversely with survival.401,403,404 PET may be more accurate than CT for assessing response to chemotherapy, though more studies are needed.405,406 For mucinous vs. nonmucinous adenocarcinoma, after adjusting for size of the lesion, no significant difference in SUV has been found.126 For a small, well differentiated adenocarcinoma of low FDG avidity (e.g. maximum SUV <2.5), follow-up PET to assess change in SUV as a diagnostic tool unfortunately appears to be of only limited value.407
Magnetic resonance (MR)

MR has been investigated as a method for differentiating among small AIS, mixed invasive adenocarcinoma/AIS, and invasive adenocarcinoma.408, 409 In the studies by Ohno, et al and Tanaka, et al, for the distinction of AIS/lepidic predominant (former BAC) from invasive adenocarcinoma, sensitivity was 86\% and 97\% and specificity was 100\% and 77\%, respectively408, 409

Imaging-guided percutaneous needle biopsy for molecular and immunohistochemical correlations.

Percutaneous imaging-guided needle biopsy, whether obtained by aspiration or as a core, allows molecular characterization from even minimal samples.181, 182, 184

Radiology Recommendations

1) When an opacity in the lung adenocarcinoma spectrum is either a pure GGN or part-solid nodule with a predominant ground-glass component, we recommend that the term BAC no longer be used. These tumors should be classified by the new terms: AIS, MIA, and LPA (strong recommendation, low quality evidence).

2) For overtly invasive adenocarcinomas previously classified as mucinous BAC, we recommend they be separated from non-mucinous adenocarcinomas and be classified as invasive mucinous adenocarcinoma (strong recommendation, moderate quality evidence).
Remark: At CT, this entity is usually solid or mostly-solid, has frequent air bronchograms, shows a lobar or multilobar distribution and frequently consists of multiple nodular or consolidative opacities (former term multicentric BAC).

Radiology Considerations for Good Practice

1) Radiologists performing biopsies should obtain sufficient tissue not only for traditional microscopic analysis, but also for immunohistochemical and molecular analysis.

2) Thin-section CT technique should be used for part-solid lesions, to record the size of a) the solid component and b) total tumor size, including both solid and ground-glass components (Figure 16).

3) Changes in shape, size and attenuation help determine follow-up and when intervention is appropriate.

Radiology Research Recommendations

1) What is the natural history of single and multiple GGNs? The frequency of invasive transformation of these lesions is unknown.

2) How should tumor size be measured: single largest diameter, bi-dimensional, volume? For part-solid lesions, size of both the entire lesion and solid component should be mentioned, because prognosis as a function of size is not yet well established in terms of the dimensions of the solid component. Correlation of the measurement of the solid component of part-solid lesions and size of the invasive component at histopathologic assessment is also needed. Careful attention to thin-section CT technique to assess changes over time in sizes of small adenocarcinomas of the lung is warranted. Inter- and intra-observer differences among
radiologists for measurements of the size of a nodule remain an important arena for inquiry.385, 387 Volumetric measurements also offer promise for assessing changes in size of indeterminate nodules, but error – both human and computer – remains an issue for small GGN, including identifying a possible solid component (Figure 17 B and C).390, 410, 411

3) What is the CT attenuation according to the newly proposed lung adenocarcinoma histologic subtypes? CT histogram analysis suggests that attenuation characteristics may differ among AAH, AIS, and MIA.344 Further investigations of these lesions using quantitative analysis are in order.

4) In the setting of multiple adenocarcinomas, can careful description of the attenuation (e.g. relative extent of ground-glass versus solid components) for each nodule assist in the determination whether the nodules are metastases versus synchronous or metachronous primary carcinomas, similar to the way comprehensive histologic subtyping is helpful pathologically?102

5) How can this new classification impact CT screening? Screening may reveal small cancers early in their natural history,64, 356, 412-420 and cost/benefit issues, both medical and economic, remain an arena of active current research.410, 421-425

6) What molecular correlations can be made with the spectrum of radiologic patterns of lung adenocarcinoma? Not many studies have attempted correlation of imaging and molecular findings. \textit{EGFR} mutations have been described as correlating with >50\% GGO,252, 426, 427 with size <3.5 cm426, 428 and with a high SUV level at PET of advanced-stage disease.426, 429 Ki-67 has been described as associated with high SUV levels at PET430, 431 and with dedifferentiation of the tumor.431
SURGICAL FEATURES

The newly proposed adenocarcinoma classification, particularly introduction of the concepts of AIS and MIA, raises surgical issues to which no definite answer is available yet. This relates to sublobar resection for early stage lung cancer, role of chest CT in selecting patients for sublobar resection, specific surgical approach for these lesions, extent of lymph node dissection, the role of frozen section analysis and the treatment of multiple small lung cancers.

Is sublobar (limited) resection adequate oncologic treatment for some early adenocarcinomas? One of the main reasons for defining the concepts of AIS and MIA in this classification is to raise the question whether these diagnoses can be anticipated by a GGO appearance on CT when presenting as a small, solitary lesion and whether limited resection may be effective therapy for such lesions. Lobectomy is still considered standard surgical treatment for tumors 2 cm or less in size which have a solid appearance on CT because such tumors are invasive carcinomas. Whether there can be any change in this standard care for lesions that present with a GGO appearance on CT awaits the results of two randomized trials (Japan Clinical Oncology Group, JCOG 0802 in Japan, CALGB 140503 in North America) that randomize such patients to either lobectomy or sublobar resection. Recently, there have been numerous retrospective studies that have suggested that sublobar (limited) resection for early lung cancers may be adequate surgical treatment, however, these are not randomized trials.24-26 Most reports showed no difference in survival or in locoregional recurrence between lobectomy and sublobar resection for tumors 2 cm or less in size. Tumors with a ground-glass nodule (GGO) appearance on CT are reported to have 100% disease free survival at 5 years after
Can CT be used to select patients for sublobar resection? In performing sublobar resections, several important factors affect the appropriateness of this intervention. These include the location (peripheral versus central), appearance (ground-glass versus solid), and size (T1a versus T1b versus T2) of the tumor. CT images, especially obtained by high-resolution CT scan with thin slices, are indispensable to evaluate these factors, and recent studies show rather good image-pathological correlations. In recent studies correlating CT findings of GGOs with histopathology, many of these lesions, though not all, correspond to preinvasive, non-invasive, or early forms of neoplastic growth, especially those of adenocarcinoma lineage.

Is there a difference in outcome between VATS versus thoracotomy in the treatment of early stage lung adenocarcinoma? Several series suggest that there is no difference in overall survival between patients who have lobectomies performed by VATS versus those performed by thoracotomy for clinical stage I non-small cell lung cancer. Morbidity appears to be lower with the VATS approach. VATS is a standard approach for peripheral wedge resections; VATS segmentectomy is much less widely performed and requires further evaluation.

What can be expected of pathologists at frozen section?

For a limited resection to be adequate oncologically, a precise pre- and intraoperative diagnosis is critical. The accuracy of intraoperative frozen section analysis in determining whether small lung adenocarcinomas have an invasive component still needs to be defined. The predictive value of frozen section ranges from 93 to 100% but not all papers clearly report the accuracy of frozen section analysis.
Evaluation of margins by frozen section may be problematic, especially when stapler cartridges have been used on both sides. Scraping or washing of staple lines with subsequent cytological analysis has been attempted436, 437. When a sublobar resection is performed, frozen section analysis of an interlobar, hilar or any suspicious lymph node is a useful staging evaluation, and when positive nodes are found, a lobectomy is indicated when there is no functional cardiopulmonary limitation.

Should a systematic lymph node dissection be performed in every early stage adenocarcinoma?

The necessity of systematic hilar and mediastinal lymph node dissection is based on the fact that nearly 20\% of pulmonary adenocarcinomas \(\leq 20\) mm and 5\% of cases \(\leq 10\) mm in size are reported to have nodal metastases438-440. Lobe-specific nodal dissection, which limits dissection to the primary nodal regions draining the involved lobe, has been shown to be a potentially adequate alternative to complete systematic nodal dissection26, 441, 442. A recently reported multicenter prospective clinical trial randomizing patients with intraoperatively staged T1-2N0 – non-hilar N1 NSCLC to lymph node sampling versus systematic nodal dissection showed that systematic nodal dissection identified occult disease in 3.8\% of patients but was not associated with a benefit in overall survival443. These results should not be generalized to higher stage tumors. Recent studies also show that in some specific subsets of very early stage adenocarcinoma, especially GGO lesions, systematic lymph node dissection is not always required444.
Multiple lesions
In the setting of multifocal lung adenocarcinomas, when there is no evidence of mediastinal lymph node invasion, multiple nodules are not a contra-indication for surgical exploration.64,445 A standard treatment algorithm for multiple lesions has not yet been established. Several factors have to be taken into consideration: number and size of the different nodules, synchronous versus metachronous lesions, ipsilateral versus contralateral, primary versus metastatic lesions, and specific nature (AAH, AIS, MIA).

\textbf{Surgery Research Recommendations}

1) The precise role of limited resection has not been determined yet, due to a lack of randomized prospective trials.
2) The extent of lymph node dissection remains controversial.
3) The accuracy of frozen section in assessing the presence of invasive adenocarcinoma and the accuracy of frozen section or cytology of resection margins in sublobar resections need to be investigated further, and specific guidelines for frozen section analysis should be developed to guide intraoperative decisions.
4) Treatment of multiple lesions has not been standardized.

\textbf{CLASSIFICATION IN A LOW RESOURCE SETTING}
While this lung adenocarcinoma classification is written to incorporate special stains and molecular techniques, it is understood that some patients will need to be managed without immunohistochemical or molecular data. This may occur in parts of the world where resources

93
are limited or it may happen in academic centers where the additional tissue required for special studies is not available. This section briefly outlines how this classification can be applied in such situations.

Pathologic Classification

In the absence of molecular, immunohistochemical or histochemical testing, the diagnosis and subclassification of lung adenocarcinoma is based purely on light microscopic evaluation of pathologic material.

Resection Specimens

For resection specimens, the two situations where special stains may be useful include solid adenocarcinoma, for which mucin stains can help in the distinction from large cell carcinoma, and for which neuroendocrine markers can help diagnose large cell neuroendocrine carcinoma (LCNEC). In the former situation, if an adenocarcinoma shows a pure solid pattern without acinar, papillary or lepidic patterns, sometimes intracytoplasmic mucin can be seen on H&E stains. If this cannot be detected, the tumor should be classified as large cell carcinoma, mentioning that it was not possible to perform special stains. If a non-small cell carcinoma shows neuroendocrine morphology and neuroendocrine immunohistochemical markers cannot be performed, the tumor should be classified as large cell carcinoma with neuroendocrine morphology and a specific comment should be made that the tumor could be LCNEC, but that material was not available to confirm this immunohistochemically.

Small biopsies and Cytology

For small biopsies, if clear glandular or squamous differentiation is seen morphologically, the tumor can be classified as adenocarcinoma or squamous cell carcinoma, respectively. If there is some level of uncertainty, this can be reflected by the phrase: poorly
differentiated non-small cell carcinoma, favor adenocarcinoma (or squamous cell carcinoma), mentioning in a comment that special stains were not available and this diagnosis is based purely on light microscopic morphology. If no morphologic features of glandular or squamous differentiation are seen, the tumor should be classified as poorly differentiated NSCLC-NOS.

Clinical, Radiologic and Surgical Approach to Aid Management of Patients in the Absence of Molecular or Immunohistochemical Data

Evaluation of patients with lung adenocarcinoma should be no different if the diagnosis is established in the absence of special techniques.

Whenever possible, a chest CT extending to adrenals and liver should be utilized for radiologic evaluation of such patients. In a low resource setting, chest radiography may reveal the primary lung cancer, pleural effusions and involvement of lymph nodes or bones, however given the much lower resolution with radiographs compared to CT, an attempt to obtain a chest CT examination should be made for accurate diagnosis and staging of tumor when possible.

If patients diagnosed in low resource settings may subsequently have tissue tested with molecular or immunohistochemical studies, tissue should be managed appropriately to make this possible.

Clinical management of lung adenocarcinoma patients without information about molecular status such as *EGFR* or *KRAS* mutations consists of standard surgical and chemotherapeutic approaches based on TNM staging.

IMPLICATIONS OF THIS CLASSIFICATION FOR TNM STAGING

There are several important implications of this new adenocarcinoma classification for staging that need to be considered for the next revision of the TNM classification. The changes
relating to the concepts of AIS, MIA and LPA parallel classification criteria and terminology currently used in breast cancer, but they would not be applicable to other histologic types of lung cancer. In addition, the comprehensive histologic subtyping approach to assessing invasive adenocarcinomas in this classification provides a useful approach to staging multiple adenocarcinomas.

1) AIS would be classified as Tis. However, because carcinoma in situ (CIS) can occur with both lung squamous cell carcinoma and adenocarcinoma, these should be specified as Tis (squamous) or Tis (adenocarcinoma), similar to breast cancer where there is Tis (DCIS) for ductal CIS and Tis (LCIS) for lobular CIS.

2) MIA would be classified as T1mi, similar to microinvasive breast cancer, which defined as an invasive carcinoma with no focus measuring greater than 1 mm, however the size for MIA is not greater than 5 mm.

3) Also, similar to breast cancer, the size T factor for adenocarcinomas with an in situ or lepidic component may best predict prognosis according only to the size of the invasive component rather than the way it is currently done including total tumor size including both the invasive and the lepidic or in situ components. In early stage tumors, the tumor size T factor may need to be adjusted from total tumor size to only the size of the invasive component. This needs to be tested radiologically and pathologically by comparing survival according to total tumor size (GGO plus solid components by CT versus invasive vs in situ/lepidic components pathologically) compared to analysis only by the size of the solid or invasive component by CT and pathology examinations, respectively.
4) For multiple lung adenocarcinomas, comprehensive histologic subtyping can help in distinguishing intrapulmonary metastasis versus synchronous or metachronous primaries.\(^{102}\) The role of molecular testing in this setting is promising, but needs further study.\(^{308}\)

Many of these concepts need to be tested vigorously in the next 5 years in both early and advanced stage lung adenocarcinoma to determine whether they are robust enough to warrant changes in the 8th Edition TNM classification.

ACKNOWLEDGEMENTS:

Isabel Sulimanoff, MSKCC Senior Reference Librarian, for expert assistance with developing the search strategy and literature search. Drs. Holger Schunemann of the ATS Documents Development and Implementation Committee for advice about the systematic review. Thomas Barker, for administrative assistance.
FIGURE LEGENDS

Figure 1: Atypical adenomatous hyperplasia. A) This 3 mm nodular lesion consists of atypical pneumocytes proliferating along preexisting alveolar walls. There is no invasive component. B) The slightly atypical pneumocytes are cuboidal and show gaps between the cells. Nuclei are hyperchromatic and a few show nuclear enlargement and multinucleation.

Figure 2: Nonmucinous Adenocarcinoma in situ. A) This circumscribed non-mucinous tumor grows purely with a lepidic pattern. No foci of invasion or scarring are seen. B) The tumor shows atypical pneumocytes proliferating along the slightly thickened, but preserved, alveolar walls.

Figure 3: Mucinous Adenocarcinoma in situ: A) This mucinous AIS consists of a nodular proliferation of mucinous columnar cells growing in a purely lepidic pattern. Although there is a small central scar, no stromal or vascular invasion is seen. B) The tumor cells consist of cuboidal to columnar cells with abundant apical mucin and small basally oriented nuclei.

Figure 4: Nonmucinous Minimally Invasive Adenocarcinoma: A) This subpleural adenocarcinoma tumor consists primarily of lepidic growth with a small (<0.5 cm) central area of invasion. B) To the left is the lepidic pattern and on the right is an area of acinar invasion. C) These acinar glands are invading in the fibrous stroma.

Figure 5: Mucinous Minimally Invasive Adenocarcinoma: A) This mucinous MIA consists of a tumor showing lepidic growth and a small (<0.5 cm) area of invasion. B) The tumor cells consist of mucinous columnar cells growing mostly in a lepidic pattern along the surface of alveolar walls. The tumor invades the areas of stromal fibrosis in an acinar pattern.

Figure 6: Major histologic patterns of invasive adenocarcinoma. A) Lepidic predominant pattern with mostly lepidic growth (right) and a smaller area of invasive acinar adenocarcinoma (left). B) Lepidic pattern consists of a proliferation type II pneumocytes and Clara cells along the surface alveolar walls. C) Area of invasive acinar adenocarcinoma (same tumor as in 6A &B). D) Acinar adenocarcinoma consists of round to oval shaped malignant glands invading a fibrous stroma. E) Papillary adenocarcinoma consists of malignant cuboidal to columnar tumor cells growing on the surface of fibrovascular cores. F) Micropapillary adenocarcinoma consists of small papillary clusters of glandular cells growing within this airspace, most of which do not show fibrovascular cores. G) Solid adenocarcinoma with mucin consisting of sheets of tumor cells with abundant cytoplasm and mostly vesicular nuclei with several conspicuous nucleoli. No acinar, papillary or lepidic patterns are seen, but multiple cells have intracytoplasmic basophilic globules that suggest intracytoplasmic mucin. H) Solid adenocarcinoma with mucin. Numerous intracytoplasmic droplets of mucin are highlighted with this DPAS stain.
FIGURE LEGENDS (cont’d)

Figure 7: Invasive Mucinous Adenocarcinoma. A) This area of invasive mucinous adenocarcinoma demonstrates a pure lepidic growth. The tumor consists of columnar cells filled with abundant mucin in the apical cytoplasm and shows small basal oriented nuclei. B) However, elsewhere this tumor demonstrated invasion associated with desmoplastic stroma and an acinar pattern.

Figure 8: Adenocarcinoma, Variants. A) Colloid adenocarcinoma consists of abundant pools of mucin growing within and distending airspaces. Focally well differentiated mucinous glandular epithelium grows along the surface of fibrous septa and within the pools of mucin. Tumor cells may be very inconspicuous. B) This colloid adenocarcinoma contains a cystic component surrounded by a fibrous wall that is filled with pools of mucin; such a pattern was previously called mucinous cystadenocarcinoma. The surface of the fibrous wall is lined by well differentiated cuboidal or columnar mucinous epithelium. C) Fetal adenocarcinoma consists of malignant glandular cells growing in tubules and papillary structures. These tumor cells have prominent clear cytoplasm, and squamoid morules are be present. D) Enteric adenocarcinoma consists of an adenocarcinoma that morphologically resembles colonic adenocarcinoma with back to back angulated acinar structures. The tumor cells are cuboidal to columnar with nuclear pseudostratification.

Figure 9: Algorithm for Adenocarcinoma Diagnosis in Small Biopsies and/or Cytology.

STEP 1: When positive biopsies [fiberoptic bronchoscopy (FOB), transbronchial (TBBx), core, or surgical lung biopsy (SLBx)] or cytology (effusion, aspirate, washings, brushings) show clear adenocarcinoma (ADC) or squamous cell carcinoma (SQCC) morphology, the diagnosis can be firmly established. If there is neuroendocrine morphology the tumor may be classified as small cell carcinoma (SCLC) or non-small cell lung carcinoma (NSCLC), probably large cell neuroendocrine carcinoma (LCNEC) according to standard criteria. (+ = positive, - = negative, +/- = positive or negative) If there is no clear ADC or SQCC morphology, the tumor is regarded as NSCLC-not otherwise specified (NOS).
FIGURE LEGENDS (cont’d)

Figure 9 (cont’d)

STEP 2: NSCLC NOS can be further classified based on a) immunohistochemical stains b) mucin (DPAS or mucicarmine) stains, or c) molecular data. If the stains all favor ADC: positive ADC marker(s) (i.e. TTF-1 and/or mucin positive) with negative SQCC markers, then the tumor is classified as NSCLC, favor ADC. If SQCC markers (i.e. p63 and/or CK5/6) are positive with negative ADC markers, the tumor is classified as NSCLC, favor SQCC. If the ADC and SQCC markers are both strongly positive in different populations of tumor cells, the tumor is classified as NSCLC, NOS, with a comment it may represent adenosquamous carcinoma. If all markers are negative, the tumor is classified as NSCLC, NOS. See text for recommendations on NSCLCs with marked pleomorphic and overlapping ADC/SQCC morphology. † EGFR mutation testing should be performed in 1) classic ADC, 2) NSCLC, favor ADC, 3) NSCLC NOS and 4) NSCLC, NOS, possible adenosquamous carcinoma. In a NSCLC, NOS, if EGFR mutation is positive, the tumor is more likely to be ADC than SQCC.

STEP 3: If clinical management requires a more specific diagnosis than NSCLC, NOS, additional biopsies may be indicated.

(-ve = negative; +ive = positive; TTF-1: thyroid transcription factor-1; D-PAS +ve: periodic-acid-Schiff with diastase; +ve: positive; e.g.: for example; IHC: immunohistochemistry; NE: neuroendocrine; CD: cluster designation; CK: cytokeratin; NB: of note.)

Figure 10: Adenocarcinoma in Small Biopsy and Cytology. A, B & C: Poorly differentiated non-small cell carcinoma, favor adenocarcinoma. A) This core biopsy shows a solid pattern of growth and morphologically it lacks any acinar, papillary or lepidic patterns. The mucin stain was also negative. B) The TTF-1 stain is strongly positive. C) The p63 stain is very focally positive. The strongly and diffusely positive TTF-1 and only focal p63 staining favors adenocarcinoma. In this case EGFR mutation was positive. D) Cytology from different adenocarcinoma shows large malignant cells with abundant cytoplasm and prominent nuclei growing in an acinar structure.

Figure 11: CT of preinvasive lesion (AAH or AIS). Axial 2-mm image through the left upper lobe shows a 5 mm pure ground-glass nodule (GGN) which has remained stable for 8 years (arrow). AAH and AIS can be single or multiple.

Figure 12: CT of a peripheral 2 cm nonmucinous AIS. A) Axial CT section, B) coronal maximal intensity projection (MIP) image shows a pure GGN in the left lower lobe. Vessels and lung architecture are seen through the nodule.
FIGURE LEGENDS (cont’d)

Figure 13: CT of Mucinous Adenocarcinoma In Situ. 2 cm predominantly solid nodule with air bronchogram (arrow) is noted in the left upper lobe.

Figure 14: CT of Nonmucinous Minimally Invasive Adenocarcinoma. Axial 2-mm CT section shows a peripheral, predominantly ground-glass, part-solid nodule in the right upper lobe, that includes a 4 X 3-mm solid component (arrow), which corresponded to invasion by pathology.

Figure 15: CT and FDG-PET of Invasive Adenocarcinoma. A) Axial CT image and B) FDG-PET images show a 2-cm spiculated hypermetabolic solid nodule in the left lower lobe.

Figure 16: Invasive Adenocarcinoma. A: Axial CT image shows a part-solid nodule in the left upper lobe. B) Corresponding sagittal CT images show automated estimation of the volume of (b) the solid component (1.188 cm3) and (c) the entire lesion (8.312 cm3). In this case, if tumor size were measured only by the invasive component, the size T factor would change from T2a (3.2 cm) to T1a (1.8 cm). Recording of total and invasive sizes are suggested until it is known whether invasive size predicts prognosis better than total size.

Figure 17: CT of Nonmucinous Lepidic Predominant Adenocarcinoma. CT images show A) predominantly GGO in the right upper lobe and B) multiple GGN in the right lower lobe.

Figure 18: CT of Invasive Mucinous Adenocarcinoma. A) Axial and B) coronal CT images show multilobar consolidation and nodules mixed with GGO. Air bronchograms are present.

Figure 19: CT and FDG PET of Invasive Mucinous Adenocarcinoma. A) Coronal CT and B) FDG-PET images show a hypermetabolic hypodense solid 4 cm mass in the right lower lobe.

Figure 20: CT of Multicentric GGNs of AIS/AAH. A and B: Multiple subsolid nodules (arrows) on axial 3-mm CT images show differing sizes and attenuation. These were presumed to represent preinvasive lesions (AAH and AIS). Because the dominant nodule in the right upper lobe posteriorly near the fissure in part A (large arrowhead) appears somewhat dense, it was excised surgically and found to be nonmucinous AIS.
TABLE 1: IASLC/ATS/ERS CLASSIFICATION OF LUNG ADENOCARCINOMA IN RESECTION SPECIMENS

PREINVASIVE LESIONS
Atypical adenomatous hyperplasia
Adenocarcinoma in situ (≤3 cm formerly BAC)
 - nonmucinous
 - mucinous
 - mixed mucinous/non-mucinous

MINIMALLY INVASIVE ADENOCARCINOMA (≤3 cm lepidic predominant tumor with ≤5 mm invasion)
 - nonmucinous
 - mucinous
 - mixed mucinous/non-mucinous

INVASIVE ADENOCARCINOMA
Lepidic predominant (formerly non-mucinous BAC pattern, with >5 mm invasion)
 Acinar predominant
 Papillary predominant
 Micropapillary predominant
 Solid predominant with mucin production

VARIANTS OF INVASIVE ADENOCARCINOMA
Invasive mucinous adenocarcinoma (formerly mucinous BAC)
 Colloid
 Fetal (low and high grade)
 Enteric
<table>
<thead>
<tr>
<th>2004 WHO Classification</th>
<th>SMALL BIOPSY/CYTOLOGY: IASLC/ATS/ERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADENOCARCINOMA</td>
<td>Small biopsy cytology: IASLC/ATS/ERS</td>
</tr>
<tr>
<td></td>
<td>Morphologic adenocarcinoma patterns clearly present:</td>
</tr>
<tr>
<td></td>
<td>Adenocarcinoma, describe identifiable patterns present (including micropapillary pattern not included in 2004 WHO classification)</td>
</tr>
<tr>
<td>Mixed subtype</td>
<td></td>
</tr>
<tr>
<td>Acinar</td>
<td></td>
</tr>
<tr>
<td>Papillary</td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td></td>
</tr>
<tr>
<td>No 2004 WHO counterpart — most will be solid adenocarcinomas</td>
<td>Morphologic adenocarcinoma patterns not present (supported by special stains):</td>
</tr>
<tr>
<td></td>
<td>Non-small cell carcinoma, favor adenocarcinoma</td>
</tr>
<tr>
<td>Bronchioloalveolar carcinoma (nonmucinous)</td>
<td>Adenocarcinoma with lepidic pattern (if pure, add note: an invasive component cannot be excluded)</td>
</tr>
<tr>
<td>Bronchioloalveolar carcinoma (mucinous)</td>
<td>Mucinous adenocarcinoma (describe patterns present)</td>
</tr>
<tr>
<td>Fetal</td>
<td>Adenocarcinoma with fetal pattern</td>
</tr>
<tr>
<td>Mucinous (colloid)</td>
<td>Adenocarcinoma with colloid pattern</td>
</tr>
<tr>
<td>Signet ring</td>
<td>Adenocarcinoma with (describe patterns present) and signet ring features</td>
</tr>
<tr>
<td>Clear cell</td>
<td>Adenocarcinoma with (describe patterns present) and clear cell features</td>
</tr>
<tr>
<td>SQUAMOUS CELL CARCINOMA</td>
<td>Morphologic squamous cell patterns clearly present:</td>
</tr>
<tr>
<td></td>
<td>Squamous cell carcinoma</td>
</tr>
<tr>
<td>Papillary</td>
<td></td>
</tr>
<tr>
<td>Clear cell</td>
<td></td>
</tr>
<tr>
<td>Small cell</td>
<td></td>
</tr>
<tr>
<td>Basaloid</td>
<td></td>
</tr>
<tr>
<td>No 2004 WHO counterpart</td>
<td>Morphologic squamous cell patterns not present (supported by stains):</td>
</tr>
<tr>
<td></td>
<td>Non-small cell carcinoma, favor squamous cell carcinoma</td>
</tr>
<tr>
<td>SMALL CELL CARCINOMA</td>
<td>Small cell carcinoma</td>
</tr>
<tr>
<td>LARGE CELL CARCINOMA</td>
<td>Non-small cell carcinoma, not otherwise specified (NOS)</td>
</tr>
<tr>
<td>Large cell neuroendocrine carcinoma (LCNEC)</td>
<td>Non-small cell carcinoma with neuroendocrine (NE) morphology (positive NE markers), possible LCNEC</td>
</tr>
<tr>
<td>Large cell carcinoma with NE morphology (LCNEM)</td>
<td>Non-small cell carcinoma with NE morphology (negative NE markers) – see comment</td>
</tr>
<tr>
<td></td>
<td>Comment: This is a non-small cell carcinoma where LCNEC is suspected, but stains failed to demonstrate NE differentiation.</td>
</tr>
<tr>
<td>ADENOSQUAMOUS CARCINOMA</td>
<td>Morphologic squamous cell and adenocarcinoma patterns present:</td>
</tr>
<tr>
<td></td>
<td>Non-small cell carcinoma, NOS, (comment that glandular and squamous components are present)</td>
</tr>
<tr>
<td>No counterpart in 2004 WHO classification</td>
<td>Morphologic squamous cell or adenocarcinoma patterns present and stains are conflicting (TTF1 and p63 positive) or suggest the other pattern is also present</td>
</tr>
<tr>
<td></td>
<td>Non-small cell carcinoma, NOS, comment that glandular and squamous differentiation seen by IHC</td>
</tr>
<tr>
<td></td>
<td>Comment (for either setting): this could represent adenosquamous carcinoma.</td>
</tr>
<tr>
<td>Sarcomatoid carcinoma</td>
<td>Poorly differentiated NSCLC with spindle and/or giant cell carcinoma (mention if adenocarcinoma or squamous carcinoma are present)</td>
</tr>
</tbody>
</table>
TABLE 3: CATEGORIES OF NEW ADENOCARCINOMA CLASSIFICATION WHERE FORMER BAC CONCEPT WAS USED

1) Adenocarcinoma in situ (AIS), which can be non-mucinous and rarely mucinous

2) Minimally invasive adenocarcinoma (MIA), which can be non-mucinous and rarely mucinous

3) Lepidic predominant adenocarcinoma (nonmucinous)

4) Adenocarcinoma, predominantly invasive with some nonmucinous lepidic component (includes some resected tumors, formerly classified as mixed subtype and some clinically advanced adenocarcinomas formerly classified as nonmucinous BAC)

5) Invasive mucinous adenocarcinoma (formerly mucinous BAC)

BAC=bronchioloalveolar carcinoma
Table 4: Difference Between Invasive Mucinous Adenocarcinoma and Nonmucinous Adenocarcinoma in situ/Minimally Invasive Adenocarcinoma/Lepidic Predominant Adenocarcinoma

<table>
<thead>
<tr>
<th></th>
<th>Invasive Mucinous Adenocarcinoma</th>
<th>Nonmucinous AIS/MIA/LPA (Formerly Non-mucinous BAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Formerly Mucinous BAC)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>49/84 (58%)²⁶²⁸¹²⁷, 128, 447, 448</td>
<td>101/140(72%)²⁶²⁸¹²⁷, 128, 447, 448</td>
</tr>
</tbody>
</table>
| **Smoker** | 39/87 (45%)
| | 447 52, 127, 128, 449 | 75/164 (46%)
| | | ²⁶²⁸¹²⁷, 128, 447, 449 |

Radiographic appearance
- Majority consolidation; Air-bronchogram¹²⁶
- Frequent multifocal & multi-lobar presentation

Cell type
- Mucin-filled, columnar and/or goblet

Phenotype
- **CK7**
 - Mostly positive (≥88%)
 - Positive (≥54%)

- **CK20**
 - Positive (≥54%)

- **TTF-1**
 - Mostly negative (≥17%)

Genotype
- **KRAS** mutation
 - Frequent (≥76%)
- **EGFR** mutation
 - Almost none (≥7)

BAC = bronchioloalveolar carcinoma; AIS=adenocarcinoma in situ; MIA=minimally invasive adenocarcinoma; LPA=lepidic predominant adenocarcinoma; † numbers represent the percentage of cases that are reported to be positive.
TABLE 5: ADENOCARCINOMA HISTOLOGIC SUBTYPES, MOLECULAR AND RADIOLOGICAL ASSOCIATIONS

<table>
<thead>
<tr>
<th>Histological subtype predominant</th>
<th>Molecular Features</th>
<th>CT. Scan appearance</th>
<th>Gene pathways associated</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonmucinous AIS MIA</td>
<td>TTF1 + (100%)</td>
<td>GGN, Part-solid nodule</td>
<td>Not known</td>
<td>252, 257, 262, 376, 484</td>
</tr>
<tr>
<td></td>
<td>EGFR mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>never-smokers: 10-30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KRA5 mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>smokers: 10-30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidic (nonmucinous)</td>
<td>TTF1 + (100%)</td>
<td>Part solid nodule</td>
<td>Low cell cycle stimulatory^285</td>
<td>69, 242, 247, 259, 302, 376, 455-457</td>
</tr>
<tr>
<td></td>
<td>EGFR mutation</td>
<td></td>
<td>High wnt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>never-smokers: 10-30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KRAS mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>smokers: 10-30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EML4/ALK translocation >5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAF mutations : 5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papillary</td>
<td>TTF1 + (90-100 %)</td>
<td>Solid nodule</td>
<td>Low cell cycle stimulatory</td>
<td>69, 96, 245, 247, 259, 301, 302, 409, 455, 456, 458</td>
</tr>
<tr>
<td></td>
<td>EGFR mutation : 10-30%</td>
<td></td>
<td>High EGFR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGFR amplification : 20-50%</td>
<td></td>
<td>High Notch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KRA5 mutation 3% (lack of KRAS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERBB2 mutations : 3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p53 mutations : 30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAF mutations : 5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinar</td>
<td>TTF1 + or – KRA5 mutation in smokers (20%)</td>
<td>Solid nodule</td>
<td>High PDGF^285</td>
<td>69, 96, 250, 305</td>
</tr>
<tr>
<td></td>
<td>EGFR mutations <10%</td>
<td></td>
<td>Low EGFR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>non smokers EGFR amplification : 10%</td>
<td></td>
<td>Low angiogenesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KRA5 mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>smokers : 10-30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EML4/ALK translocation - >5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p53 mutations : 40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAF mutations : 5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micropapillary</td>
<td>KRA5 mutations (33%)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>69, 95, 457</td>
</tr>
<tr>
<td></td>
<td>EGFR mutations (20%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRAF mutations (20%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td>TTF1 (70%)</td>
<td>Solid</td>
<td>High cell cycle stimulatory^+^285</td>
<td>69, 96, 125, 250, 258, 305</td>
</tr>
<tr>
<td></td>
<td>MUC1 positive</td>
<td></td>
<td>High angiogenesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KRA5 mutation</td>
<td></td>
<td>High JAK-STAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>smokers : 10-30%</td>
<td></td>
<td>Low Notch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGFR mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>never-smokers: 10-30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KRAS mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>smokers: 10-30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EML4/ALK translocation >5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p53 mutation : 50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LRP1B mutations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INHBA mutations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive mucinous adenocarcinoma</td>
<td>TTF1 (0-33% positive)</td>
<td>Consolidation, air bronchograms; less often GGO</td>
<td>Not known</td>
<td>123, 124, 126, 256, 262, 263, 266, 451, 458-460</td>
</tr>
<tr>
<td></td>
<td>KRA5 mutation - 80% - 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No EGFR mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MUC5+ MUC6+ MUC2+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIS = adenocarcinoma in situ; MIA= minimally invasive adenocarcinoma; GGN- ground glass nodule
Reference List

155. Kaufmann O, Dietel M. Thyroid transcription factor-1 is the superior immunohistochemical marker for pulmonary adenocarcinomas and large cell carcinomas compared to surfactant proteins A and B. Histopathology 2000;36:8-16.

166. Ang DC, Ghaffar H, Zakowski MF, Teruya-Feldstein J, Moreira AL, Rekhtman N. Expression of Squamous Markers in Lung Adenocarcinoma (AD): Clinicopathologic and Molecular Correlates, and Implications for Differentiation from Squamous Cell Carcinoma (SqCC). Modern Pathology 2010;23:397A.

228. Wong DW, Leung EL, So KK, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 2009;115:1723-33.

337. Takashima S, Sone S, Li F, et al. Small solitary pulmonary nodules (< or =1 cm) detected at population-based CT screening for lung cancer: Reliable high-resolution CT features of benign lesions. AJR Am J Roentgenol 2003;180:955-64.

Figure 9

In the diagram, a decision tree is presented for diagnosing lung cancer. The process involves several steps:

Step 1
- **Positive Biopsy** (FOB, TBBx, Core, SLBx)
- **Positive Cytology** (effusion, aspirate, washings, brushings)

Histology:
- Lepidic, papillary, and/or acinar architecture(s)
- Cytology: 3-D arrangements, delicate foamy/vacuolated (translucent) cytoplasm, fine nuclear chromatin and often prominent nucleoli
- Nuclei are often eccentrically situated

NE Morphology:
- Large cells, NE IHC+
- Small cells, no nucleoli, NE IHC+, TTF-1 +/−, CK+
- Keratinization, pearls, and/or intercellular bridges

Classic Morphology:
- SQCC

No Clear ADC or SQCC Morphology:
- NSCLC-NOS

Step 2
- **Apply Ancillary Panel of One SQCC and One ADC Marker** +/− OR Mucin

Classic Morphology:
- ADC

ADC Marker and/or Mucin +ve; SQCC marker −ve (or weak in same cells)

NSCLC, favor ADC

IHC −ve and Mucin −ve

NSCLC NOS

Molecular Analysis:
- e.g., EGFR mutation

NSCLC, NOS, possible adenosquamous CA

Step 3
- If tumor tissue inadequate for molecular testing, discuss need for further sampling - back to Step 1
APPENDIX 1

IASLC/ATS/ERS INTERNATIONAL MULTIDISCIPLINARY CLASSIFICATION OF LUNG ADENOCARCINOMA
Travis WD, et al

CONTENTS:
I: REVIEWER PANEL
II: CORE PANEL AND AUTHOR – CONTACT INFORMATION
I: REVIEWER PANEL FOR ADENOCARCINOMA CLASSIFICATION

Molecular
 David Carbone, USA
 Curtis Harris, USA
 John Iafrate, USA
 Jin Jen, USA
 Marc Ladanyi, USA
 Matthew Meyerson, USA
 William Pao, USA
 Gabriella Sozzi, Italy

Thoracic Medical Oncology/Respiratory Physicians
 Douglas Arenberg, USA
 Alex Chang, Singapore
 Wilfried Eberhardt, Germany
 Enriqueta Felip, Spain
 Dean Fennel, Ireland
 David Gandara, USA
 David Garfield, USA
 Nicolas Girard, France
 Jacek Jassem, Poland
 Mark Kris, USA
 Daniel Libby, USA
 Jan van Meerbeeck, The Netherlands
 Peter Postmus, The Netherlands
 Joan Schiller, USA
 Everett E. Vokes, USA
 Long Wu Yi, China
 Lanjun Zhang, China

Pathology
 Emilio Alvarez-Fernandez, Spain
 Marie-Christine Aubry, USA
 Alain Borczuk, USA
 Mary Beth Beasley, USA
 Sang-Ho Cho, Korea
 Teh-Ying Chou, Taiwan
 Vera Luiza Capelozzi, Brazil
 Lina Maria Carvalho, Portugal
 Yih-Leong Chang, Taiwan
 Lucian R. Chirieac, USA
 Belinda Clarke, Australia
 Thomas V. Colby, USA
 Edwina Duhig, Australia
 Teri Franks, USA
 Peter Göran Elemberger, Sweden
I: REVIEWER PANEL FOR ADENOCARCINOMA CLASSIFICATION (cont’d)

Pathology (cont’d)

Nirmila A. Jamhekar, India
Kirk Jones, USA
Sylvie Lantuejoul, France
Alex Lash, M.D., USA
Weihua Li, China
Eugene J. Mark, USA
Akiko Miyagi Maeshima, Japan
Joachim Majo, United Kingdom
Yoshihiro Matsuno, Japan
Yuko Minami, Japan
Andre Moreira, USA
Noriko Motoi, Japan
Siobhan Nicholson, Ireland
Daisuke Nonaka, USA
Mauro Papotti, Italy
Giuseppe Pelosi, Italy
Nicolai Petrovitchev, Russia
Natasha Rekhtman, USA
Mee Sook Roh, Korea
Giulio Rossi, Italy
Maoxin Wu, USA
Jennie Mae Wyatt, Australia
Haodong Xu, USA
Joanne Yi, USA
Akihiko Yoshida, Japan
Akihiko Yoshizawa, Japan
Maureen Zakowski, USA

Radiation
David Ball, Australia
Ritsuko Komaki, USA

Radiology
Maurizio Bellomi, Italy
Jeffrey Galvin, USA
Michelle Ginsberg, USA
Claudia Henschke, USA
Christian J. Herold, Austria
Jung-Gi Im, Korea
Francine Jacobson, USA
Ryutaro Kakinuma, Japan
Ella Kazarooni, USA
John Mayo, Canada
Heber MacMahon, USA
I: REVIEWER PANEL FOR ADENOCARCINOMA CLASSIFICATION (cont’d)

Radiology (cont’d)

David Naidich, USA
Kyung Soo Lee, USA
Bradley Sabloff, USA
Johny Verschakelen, Belgium

Surgery

Nasser K. Altorki, USA
Frank Detterbeck, USA
Peter Goldstraw, United Kingdom
David Harpole, USA
Akira Iyoda, Japan
David Jablons, USA
Riken Kawachi, Japan
Gilbert Massard, France
Steven J. Mentzer, USA
Bernward Passlick, Germany
Ugo Pastorino, Italy
Ramon Rami-Porta, Spain
Hiroyuki Sakurai, Japan
Kenji Suzuki, Japan
David A. Waller, United Kingdom
Yi-long Wu, China
Junji Yoshida, Japan

Systematic Review

Holger Schunemann, USA
II: CORE PANEL AND AUTHOR CONTACT INFORMATION

1 William Travis, M.D.
Memorial Sloan Kettering Cancer Center
Department of Pathology
1275 York Avenue
New York, NY 10065
Phone: 212 639 3325
Fax: 212-717-3576; 646 422 2016
Email: travisw@mskcc.org

2 Elisabeth Brambilla, M.D.
Chef de Service
Service de Pathologie Cellulaire
Centre Hospitalier Universitaire de Grenoble,
FRANCE; B.P. 217 – 38043
Tel: 011-33-4-76 75 75 75 or 011-33-4-76-76-54-86
FAX:011-33-4-76-76-59-49
Email: EBrambilla@chu-grenoble.fr

3 Masayuki Noguchi, M.D.
Dept. of Pathology
Institute of Basic Medical Sciences
University of Tsukuba
Tsukuba-shi, Ibaraki 305-8575
JAPAN
Tel: 81-298-53-3350 or 3750
Fax: 81-298-53-3150 or 3039
Email: nmasayuk@md.tsukuba.ac.jp

4 Andrew Nicholson, Brompton, London
Royal Brompton Hospital
Sydney Street
London, SW3 6NP
UK
Phone: 44 207 351 8423
Email: a.nicholson@rbh.nthames.nhs.uk
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

5 Kim Geisinger, M.D.
Dept. of Pathology
Wake Forest Univ./Medicine
Medical Center Blvd.
Winston-Salem, NC
27157-1072
Tel: 336-716-2608
Fax: 336 716 7595.
Email: kgeis@wfubmc.edu

6 Yasushi Yatabe, M.D.
Dept. of Pathology and Molecular Diagnostics,
Aichi Cancer Ctr.
1-1 Kanokoden, Chikusa-ku,
Nagoya 464-8681
Japan
Phone: +52-762-6111, ext. 3432
Fax: +52-763-5233
yyatabe@aichi-cc.jp

7. David Beer, Ph.D.
University of Michigan
B560 MSRBZ, Box 0686
Ann Arbor, MI 48109
Phone: 1 734 763 0325
Email: dgbeer@umich.edu

8 Charles A Powell, M.D.
Columbia University
630 West 168th Street
Box 91
New York, NY 10032
Phone: 212 305 3584
Email: cap6@columbia.edu
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

9 Gregory J. Riely, M.D.
Thoracic Oncology Service
Memorial Sloan Kettering Cancer Center
1275 York Ave
New York, NY 10065
212 639 3042
rielyg@mskcc.org

10 Paul E. Van Schil, M.D.
Univ. Hospital of Antwerp
Wilrijkstraat 10
B-Edegem 2650
Belgium
Phone: 32 3 821 3785
Email: paul.van.schil@uza.be

11 Kavita Garg, M.D.
University of Colorado Hospital,
Anchutz Outpatient Pavilion (AOP),
Department of Radiology,
1635 N Ursula St,
Campus Box F726,
Aurora, CO 80010
Tel: 720-848-1314
Kavita.Garg@UCHSC.edu

12. John Austin, M.D.
Dept of Radiology
Columbia University
New York, NY
jha3@columbia.edu
(212) 305-2639

13. Hisao Asamura, M.D.
Dept. Of Thoracic Surgery
National Cancer Center Hospital and Research Institute
5-1-1 Tsukiji
Chuo-ku
Tokyo, JAPAN
Tel: 81 33 542 2511 X7005
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

14. Valerie Rusch, M.D.
Memorial Sloan Kettering Cancer Center
1275 York Avenue
New York, NY 10065
Phone: 212 639 8695
Email ruschv@mskcc.org

15. Fred Hirsch, M.D.
Univ. of Colorado Cancer Center
MS 811
PO Box 6511
Aurora, CO 80045
USA
Phone: 1 303 724 3155
Fax: 1 303 724 3162
Email: Fred.Hirsch@UCHSC.edu

16. Giorgio Scagliotti, M.D.
Head of the Thoracic Oncology unit
University of Torino
Department of Clinical and Biological Science
Regione Gonzole, 10
Orbassano, Torino I-10043
Italy
Phone: 39 011 902 6414
Fax:39 011 903 8616
Email: Scagliotti@ihnet.it

17. Rudolf M. Huber, M.D.
University of Munich
Pneumologie- Innenstadt
Siemssenstrasse 1
Munich, Germany
Phone: 49 895 160 2590
Fax: 49 895 160 4905
Email: huber@med.uni-muenchen.de

18. Yuichi Ishikawa, M.D.
Dept. of Pathology
The JFCR Cancer Institute
3-10-6 Ariake
Koto-ku, Tokyo
Japan 135-8550
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

19. James Jett, M.D.
Mayo Clinic
Thoracic Diseases-E18
200 First St. S.W.
Rochester, MN 55905
Phone: 507-284-3764
Fax: 507-266-4372
Email: jett.james@mayo.edu

20. Tetsuya Mitsudomi, M.D.
Aichi Cancer Center Hospital
1-1, Kanokoden, Chikusa-ku
Nagoya-shi, Aichi 464-8681
Japan
Phone: 81 52 762 6111
Email: mitsudom@aichi-cc.jp

21. Montserrat Sanchez-Cespedes, Ph.D.
Genes and Cancer Group
Programa de Epigenètica y Biología del Cáncer-PEBC
Institut d’Investigacions Biomèdiques Bellvitge (IDIBELL)
Hospital Durant i Reynals
Av. Gran Via de l’Hospitalet, 199-203
08907-L’Hospitalet de Llobregat-Barcelona
Tel: 34.93.260.7500 (ext 3164)/Fax: 34.93.260.72.19
E-mail: mscespedes@iconcologia.net

22. Jean-Paul Sculier, M.D.
Institut Jules Bordet
Dept. of Medicine
1 Rue Heger Bordet
Brussels B-1000
Belgium
Phone: 32 2 541 3185
Fax: 32 2 534 3756
Email: sculier@bordet.be
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

23. Takashi Takahashi, M.D.
Nagoya University
Graduate of School of Medicine
Div. of Molecular Carcinogenesis
65 Tsurumai-cho, Showa-ku
Nagoya City, Aichi 466-8550
Japan
Phone: 81 52 744 2454
Email: tak@med.nagoya-u.ac.jp

24. Masahiro Tsuboi, M.D.
Tokyo Medical University
6-7-1, Nishishinjuku,
Shinjuku-ku, Tokyo 160-0023
Japan
Phone: 81 33 342 6111 x5070
Email: mtsuboi@za2.so-net.ne.jp; tsuboi0120@aol.com

25. Johan Vansteenkiste, M.D.
University Hospitals Leuven
Department of Pulmonology
UZ Gasthuisberg
Herestraat 49
B-3000 Leuven
Belgium
Phone: (32) 16 34 68 02
Fax: (32) 16 34 68 03
Email: Johan.vansteenkiste@uz.kuleuven.ac.be

26. Ignacio Wistuba, M.D.
Associate Professor
UT-MD Anderson Cancer Center
Departments of Pathology and
Thoracic/Head and Neck Medical Oncology
1515 Holcombe Blvd. Unit 85
Houston, TX 77030-4009
Phone: 1 713-563-9184
Fax: 1 713 7920309
Email: iiwistuba@mdanderson.org
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

27. Pan-Chyr Yang/Taiwan
National Taiwan University College of Medicine
Dept of Internal Medicine
#7 Chung-Shan S Rd
Taipei, TAIWAN 10043
Ph: 886-2-23562185
Fax: 886-2-23582867
Email: pcyang@ntu.edu.tw

28. Denise Aberle, M.D.
Prof V Chair
UCLA
Department of Radiology
BOX 951721, BL-428 CHS
Los Angeles, CA 90095-1721
Phone: 310-794-8996
Fax: 310-794-8657
Email: daberle@mednet.ucla.edu

29. Christian Brambilla, M.D.
University Hospital
Dept. Of Pneumology
Hopital de Grenoble BP217
Grenoble Cedex 9, 38043
France
Phone: 33 47 676 5591
Fax: 33 47 676 5364
Email: Chbrambilla@chu-grenoble.fr

30. Douglas B. Flieder, Philadelphia
Fox Chase Cancer Center
333 Cottman Avenue
Philadelphia, PA 19111
Phone: 215 728 4092
Email: douglas.flieder@fccc.edu
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

31. Wilbur Franklin, M.D.
Dept of Pathology
UCHSC at Fitzsimons
RC-1 South Tower Campus
PO Box 6511, Box 8104
Aurora, CO 80045
Phone: 1 303 724 3080
Email: wilbur.franklin@uchsc.edu

32. Adi Gazdar, M.D.
Hamon Cancer Center
UT Southwestern Medical Ctr.
5323 Harry Hines Bld., Rm NB8-206
Dallas, TX 75235-8593
Phone: 1 214 648 4921
Email: adi.gazdar@utsouthwestern.edu

33. Michael K. Gould, MD, MS
Pulmonary Medicine
UCLA
Los Angeles, CA
650/315-3950 (cell)
michael.gould32@gmail.com
Michael.Gould@va.gov

34. Philip S. Hasleton, M.D.
Dept of Histopathology
Central Manchester University Hospital
Manchester, UK
philiphasleton@gmail.com

35. Douglas W. Henderson, M.D.
Flinders Medical Centre
Bedford Park, Adelaide 5042
Australia
Phone: 61 88 204 5135
Email: douglas.henderson@flinders.edu.au
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

36. Bruce Johnson, M.D.
Dana-Farber Cancer Institute
44 Binney Street, suite 1234
Boston, MA 02115
USA
Phone: 1 617 632 4790
Email: bruce_johnson@dfci.Harvard.edu

37. David Johnson, M.D.
Chair, Dept of Internal Medicine
UT Southwestern Medical Center at Dallas
5323 Harry Hines Blvd.
Dallas, TX 75390-9030
Phone: 1 214-648-3486
Fax: 1 214-348-3088
Email: david.johnson@utsouthwestern.edu

38. Professor Keith M Kerr,
Consultant Pathologist,
Department of Pathology,
Aberdeen Royal Infirmary,
Professor of Pulmonary Pathology,
Aberdeen University Medical School,
Foresterhill, Aberdeen,
Scotland, UK, AB25 2ZD
Telephone:
Office direct line 01224 552414
Secretary 01224 550948
Department Fax 01224 663002
Hospital 0845 456 6000 (pager 2862)
k.kerr@abdn.ac.uk

39. Keiko Kuriyama, M. D.
Department of Radiology,
National Hospital Organization Osaka National Hospital
Osaka 537-8511, Japan
keiko.kuriyama@nifty.com
kuriyama@ohn.go.jp
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

40. Jin Soo Lee, M.D.
National Cancer Center Korea
809 Madu 1-don, Ilsan gu
Goyang-si, Gyeonggido
411-469
Korea
Phone: 82 31 920 1601
Email: jslee@ncc.re.kr

41. Vincent Miller, M.D.
Thoracic Oncology Service
Memorial Sloan Kettering Cancer Center
1275 York Ave
New York, NY 10065
212-639-7243
millerv@mskcc.org

42. Iver Petersen, M.D., Ph.D.
Institute of pathology
Universitätsklinikum Friedrich-Schiller-University (FSU) Jena
Ziegelmühlenweg 1
07740 Jena
Germany
Tel. +49-3641-933 120
Tel. +49-3641-933 002 (Secretariat)
Fax +49-3641-933 111
Email: iver.petersen@med.uni-jena.de

43. Victor Roggli, M.D.
Duke University Medical Center
Davison Bldg., Room-M255
Owen Road
Durham, NC 27710
Phone: (919) 668-5440
Email: roggl002@mc.duke.edu
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

44. Rafael Rosell, M.D.
Hospital Univ. Germans Trias I Pujol, Ctra Canyet
Catalan Institute of Oncology
Medical Oncology Service, PO Box 72
Badalona, Barcelona E-08916
Spain
Phone: 34 93 497 8925
Fax: 34 93 497 8950
Email: rrosell@ico.scs.es

45. Nagahiro Saijo, M.D., Ph.D.
Professor
Medical Oncology Division
Kinki University School of Medicine
377-2 Ohno-Higashi, Osaka Sayama-Shi
Osaka 589-8511
Email: nsaijo@med.kindai.ac.jp

46. Erik Thunnissen, M.D.
VU Medical Center
Dept. of Pathology 1E15
De Boelelaan 1117, Amsterdam 1081 HV
The Netherlands
Phone: 31 24 365 8510
Email: e.thunnissen@vumc.nl

47. Ming Tsao, M.D.
Department of Pathology
Princess Margaret Hospital
610 University Avenue
Toronto, Ontario,
Canada M5G 2M9
Phone: 1 416 340 4737; 416-946-4426
Fax: 1 416 340 5517
Email: Ming.tsao@uhn.on.ca

48. David Yankelewitz, M.D.
Dept of Radiology
New York Presbyterian Hospital
Weill Medical College
New York, NY 10065
Travis WD, et al

APPENDIX 1

Lung Adenocarcinoma

Tel: 212-746-2526
dyankele@med.cornell.edu
APPENDIX 1

IASLC/ATS/ERS INTERNATIONAL MULTIDISCIPLINARY CLASSIFICATION OF LUNG ADENOCARCINOMA
Travis WD, et al

CONTENTS:
I: REVIEWER PANEL
II: CORE PANEL AND AUTHOR – CONTACT INFORMATION
I: REVIEWER PANEL FOR ADENOCARCINOMA CLASSIFICATION

Molecular
- David Carbone, USA
- Curtis Harris, USA
- John Iafrate, USA
- Jin Jen, USA
- Marc Ladanyi, USA
- Matthew Meyerson, USA
- William Pao, USA
- Gabriella Sozzi, Italy

Thoracic Medical Oncology/Respiratory Physicians
- Douglas Arenberg, USA
- Alex Chang, Singapore
- Wilfried Eberhardt, Germany
- Enriqueta Felip, Spain
- Dean Fennel, Ireland
- David Gandara, USA
- David Garfield, USA
- Nicolas Girard, France
- Jacek Jassem, Poland
- Mark Kris, USA
- Daniel Libby, USA
- Jan van Meerbeeck, The Netherlands
- Peter Postmus, The Netherlands
- Joan Schiller, USA
- Everett E. Vokes, USA
- Long Wu Yi, China
- Lanjun Zhang, China

Pathology
- Emilio Alvarez-Fernandez, Spain
- Marie-Christine Aubry, USA
- Alain Borczuk, USA
- Mary Beth Beasley, USA
- Sang-Ho Cho, Korea
- Teh-Ying Chou, Taiwan
- Vera Luiza Capelozzi, Brazil
- Lina Maria Carvalho, Portugal
- Yih-Leong Chang, Taiwan
- Lucian R. Chirieac, USA
- Belinda Clarke, Australia
- Thomas V. Colby, USA
- Edwina Duhig, Australia
- Teri Franks, USA
- Peter Göran Elemberger, Sweden
APPENDIX 1

Lung Adenocarcinoma

I: REVIEWER PANEL FOR ADENOCARCINOMA CLASSIFICATION (cont’d)

Pathology (cont’d)

Nirmila A. Jamhekar, India
Kirk Jones, USA
Sylvie Lantuejoul, France
Alex Lash, M.D., USA
Weihua Li, China
Eugene J. Mark, USA
Akiko Miyagi Maeshima, Japan
Joachim Majo, United Kingdom
Yoshihiro Matsuno, Japan
Yuko Minami, Japan
Andre Moreira, USA
Noriko Motoi, Japan
Siobhan Nicholson, Ireland
Daisuke Nonaka, USA
Mauro Papotti, Italy
Giuseppe Pelosi, Italy
Nicolai Petrovitchev, Russia
Natasha Rekhtman, USA
Mee Sook Roh, Korea
Giulio Rossi, Italy
Maoxin Wu, USA
Jennie Mae Wyatt, Australia
Haodong Xu, USA
Joanne Yi, USA
Akihiko Yoshida, Japan
Akihiko Yoshizawa, Japan
Maureen Zakowski, USA

Radiation

David Ball, Australia
Ritsuko Komaki, USA

Radiology

Maurizio Bellomi, Italy
Jeffrey Galvin, USA
Michelle Ginsberg, USA
Claudia Henschke, USA
Christian J. Herold, Austria
Jung-Gi Im, Korea
Francine Jacobson, USA
Ryutaro Kakinuma, Japan
Ella Kazarooni, USA
John Mayo, Canada
Heber MacMahon, USA
I: REVIEWER PANEL FOR ADENOCARCINOMA CLASSIFICATION (cont’d)

Radiology (cont’d)

David Naidich, USA
Kyung Soo Lee, USA
Bradley Sabloff, USA
Johny Verschakelen, Belgium

Surgery

Nasser K. Altorki, USA
Frank Detterbeck, USA
Peter Goldstraw, United Kingdom
David Harpole, USA
Akira Iyoda, Japan
David Jablons, USA
Riken Kawachi, Japan
Gilbert Massard, France
Steven J. Mentzer, USA
Bernward Passlick, Germany
Ugo Pastorino, Italy
Ramon Rami-Porta, Spain
Hiroyuki Sakurai, Japan
Kenji Suzuki, Japan
David A. Waller, United Kingdom
Yi-long Wu, China
Junji Yoshida, Japan

Systematic Review

Holger Schunemann, USA
II: CORE PANEL AND AUTHOR CONTACT INFORMATION

1 William Travis, M.D.
Memorial Sloan Kettering Cancer Center
Department of Pathology
1275 York Avenue
New York, NY 10065
Phone: 212 639 3325
Fax: 212-717-3576; 646 422 2016
Email: travisw@mskcc.org

2 Elisabeth Brambilla, M.D.
Chef de Service
Service de Pathologie Cellulaire
Centre Hospitalier Universitaire de Grenoble,
FRANCE; B.P. 217 – 38043
Tel: 011-33-4-76 76 75 75 or 011-33-4-76-76-54-86
FAX:011-33-4-76-76-59-49
Email: E Brambilla@chu-grenoble.fr

3 Masayuki Noguchi, M.D.
Dept. of Pathology
Institute of Basic Medical Sciences
University of Tsukuba
Tsukuba-shi, Ibaraki 305-8575
JAPAN
Tel: 81-298-53-3350 or 3750
Fax: 81-298-53-3150 or 3039
Email: nmasayuk@md.tsukuba.ac.jp

4 Andrew Nicholson, Brompton, London
Royal Brompton Hospital
Sydney Street
London, SW3 6NP
UK
Phone: 44 207 351 8423
Email: a.nicholson@rbh.nthames.nhs.uk
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

5 Kim Geisinger, M.D.
Dept. of Pathology
Wake Forest Univ./Medicine
Medical Center Blvd.
Winston-Salem, NC
27157-1072
Tel: 336-716-2608
Fax: 336 716 7595.
Email: kgeis@wfubmc.edu

6 Yasushi Yatabe, M.D.
Dept. of Pathology and Molecular Diagnostics,
Aichi Cancer Ctr.
1-1 Kanokoden, Chikusa-ku,
Nagoya 464-8681
Japan
Phone: +52-762-6111, ext. 3432
Fax: +52-763-5233
yyatabe@aichi-cc.jp

7. David Beer, Ph.D.
University of Michigan
B560 MSRBZ, Box 0686
Ann Arbor, MI 48109
Phone: 1 734 763 0325
Email: dgbeer@umich.edu

8 Charles A Powell, M.D.
Columbia University
630 West 168th Street
Box 91
New York, NY 10032
Phone: 212 305 3584
Email: cap6@columbia.edu
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

9 Gregory J. Riely, M.D.
Thoracic Oncology Service
Memorial Sloan Kettering Cancer Center
1275 York Ave
New York, NY 10065
212 639 3042
rielyg@mskcc.org

10 Paul E. Van Schil, M.D.
Univ. Hospital of Antwerp
Wilrykstraat 10
B-Edgem 2650
Belgium
Phone: 32 3 821 3785
Email: paul.van.schil@uza.be

11 Kavita Garg, M.D.
University of Colorado Hospital,
Anchutz Outpatient Pavilion (AOP),
Department of Radiology,
1635 N Ursula St,
Campus Box F726,
Aurora, CO 80010
Tel: 720-848-1314
Kavita.Garg@UCHSC.edu

12. John Austin, M.D.
Dept of Radiology
Columbia University
New York, NY
jha3@columbia.edu
(212) 305-2639

13. Hisao Asamura, M.D.
Dept. Of Thoracic Surgery
National Cancer Center Hospital and Research Institute
5-1-1 Tsukiji
Chuo-ku
Tokyo, JAPAN
Tel: 81 33 542 2511 X7005
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

14. Valerie Rusch, M.D.
Memorial Sloan Kettering Cancer Center
1275 York Avenue
New York, NY 10065
Phone: 212 639 8695
Email ruschv@mskcc.org

15. Fred Hirsch, M.D.
Univ. of Colorado Cancer Center
MS 811
PO Box 6511
Aurora, CO 80045
USA
Phone: 1 303 724 3155
Fax: 1 303 724 3162
Email: Fred.Hirsch@UCHSC.edu

16. Giorgio Scagliotti, M.D.
Head of the Thoracic Oncology unit
University of Torino
Department of Clinical and Biological Science
Regione Gonzole, 10
Orbassano, Torino I-10043
Italy
Phone: 39 011 902 6414
Fax: 39 011 903 8616
Email: Scagliotti@ihnet.it

17. Rudolf M. Huber, M.D.
University of Munich
Pneumologie- Innenstadt
Siemssenstrasse 1
Munich, Germany
Phone: 49 895 160 2590
Fax: 49 895 160 4905
Email: huber@med.uni-muenchen.de

18. Yuichi Ishikawa, M.D.
Dept. of Pathology
The JFCR Cancer Institute
3-10-6 Ariake
Koto-ku, Tokyo
Japan 135-8550
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

19. James Jett, M.D.
Mayo Clinic
Thoracic Diseases-E18
200 First St. S.W.
Rochester, MN 55905
Phone: 507-284-3764
Fax: 507-266-4372
Email: jett.james@mayo.edu

20. Tetsuya Mitsudomi, M.D.
Aichi Cancer Center Hospital
1-1, Kanokoden, Chikusa-ku
Nagoya-shi, Aichi 464-8681
Japan
Phone: 81 52 762 6111
Email: mitsudom@aichiccc.jp

21. Montserrat Sanchez-Cespedes, Ph.D.
Genes and Cancer Group
Programa de Epigenètica y Biología del Cáncer-PEBC
Institut d’Investigacions Biomediques Bellvitge (IDIBELL)
Hospital Duran i Reynals
Av. Gran Via de l’Hospital, 199-203
08907-L’Hospitalet de Llobregat-Barcelona
Tel: 34.93.260.7500 (ext 3164)/Fax: 34.93.260.72.19
E-mail: mscespedes@iconcologia.net

22. Jean-Paul Sculier, M.D.
Institut Jules Bordet
Dept. of Medicine
1 Rue Heger Bordet
Brussels B-1000
Belgium
Phone: 32 2 541 3185
Fax: 32 2 534 3756
Email: sculier@bordet.be
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

23. Takashi Takahashi, M.D.
Nagoya University
Graduate of School of Medicine
Div. of Molecular Carcinogenesis
65 Tsurumai-cho, Showa-ku
Nagoya City, Aichi 466-8550
Japan
Phone: 81 52 744 2454
Email: tak@med.nagoya-u.ac.jp

24. Masahiro Tsuboi, M.D.
Tokyo Medical University
6-7-1, Nishishinjuku,
Shinjuku-ku, Tokyo 160-0023
Japan
Phone: 81 33 342 6111 x5070
Email: mtsuboi@za2.so-net.ne.jp; tsuboi0120@aol.com

25. Johan Vansteenkiste, M.D.
University Hospitals Leuven
Department of Pulmonology
UZ Gasthuisberg
Herestraat 49
B-3000 Leuven
Belgium
Phone : (32) 16 34 68 02
Fax : (32) 16 34 68 03
Email : Johan.vansteenkiste@uz.kuleuven.ac.be

26 Ignacio Wistuba, M.D.
Associate Professor
UT-MD Anderson Cancer Center
Departments of Pathology and
Thoracic/Head and Neck Medical Oncology
1515 Holcombe Blvd. Unit 85
Houston, TX 77030-4009
Phone: 1 713-563-9184
Fax: 1 713 7920309
Email: iiwistuba@mdanderson.org
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

27. Pan-Chyr Yang/Taiwan
National Taiwan University College of Medicine
Dept of Internal Medicine
#7 Chung-Shan S Rd
Taipei, TAIWAN 10043
Ph: 886-2-23562185
Fax: 886-2-23582867
Email: pcyang@ntu.edu.tw

28. Denise Aberle, M.D.
Prof V Chair
UCLA
Department of Radiology
BOX 951721, BL-428 CHS
Los Angeles, CA 90095-1721
Phone: 310-794-8996
Fax: 310-794-8657
Email: daberle@mednet.ucla.edu

29. Christian Brambilla, M.D.
University Hospital
Dept. Of Pneumology
Hopital de Grenoble BP217
Grenoble Cedex 9, 38043
France
Phone: 33 47 676 5591
Fax: 33 47 676 5364
Email: Chbrambilla@chu-grenoble.fr

30. Douglas B. Flieder, Philadelphia
Fox Chase Cancer Center
333 Cottman Avenue
Philadelphia, PA 19111
Phone: 215 728 4092
Email: douglas.flieder@fccc.edu
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

31. Wilbur Franklin, M.D.
Dept of Pathology
UCHSC at Fitzsimons
RC-1 South Tower Campus
PO Box 6511, Box 8104
Aurora, CO 80045
Phone: 1 303 724 3080
Email: wilbur.franklin@uchsc.edu

32. Adi Gazdar, M.D.
Hamon Cancer Center
UT Southwestern Medical Ctr.
5323 Harry Hines Blvd., Rm NB8-206
Dallas, TX 75235-8593
Phone: 1 214 648 4921
Email: adi.gazdar@utsouthwestern.edu

33. Michael K. Gould, MD, MS
Pulmonary Medicine
UCLA
Los Angeles, CA
650/315-3950 (cell)
michael.gould32@gmail.com
Michael.Gould@va.gov

34. Philip S. Hasleton, M.D.
Dept of Histopathology
Central Manchester University Hospital
Manchester, UK
philiphasleton@gmail.com

35. Douglas W. Henderson, M.D.
Flinders Medical Centre
Bedford Park, Adelaide 5042
Australia
Phone: 61 88 204 5135
Email: douglas.henderson@flinders.edu.au
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

36. Bruce Johnson, M.D.
Dana-Farber Cancer Institute
44 Binney Street, suite 1234
Boston, MA 02115
USA
Phone: 1 617 632 4790
Email: bruce_johnson@dfci.Harvard.edu

37. David Johnson, M.D.
Chair, Dept of Internal Medicine
UT Southwestern Medical Center at Dallas
5323 Harry Hines Blvd.
Dallas, TX 75390-9030
Phone: 1 214-648-3486
Fax: 1 214-348-3088
Email: david.johnson@utsouthwestern.edu

38. Professor Keith M Kerr,
Consultant Pathologist,
Department of Pathology,
Aberdeen Royal Infirmary,
Professor of Pulmonary Pathology,
Aberdeen University Medical School,
Foresterhill, Aberdeen,
Scotland, UK, AB25 2ZD
Telephone:
Office direct line 01224 552414
Secretary 01224 550948
Department Fax 01224 663002
Hospital 0845 456 6000 (pager 2862)
k.kerr@abdn.ac.uk

39. Keiko Kuriyama, M. D.
Department of Radiology,
National Hospital Organization Osaka National Hospital
Osaka 537-8511, Japan
keiko.kuriyama@nifty.com
kuriyama@onh.go.jp
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

40. Jin Soo Lee, M.D.
National Cancer Center Korea
809 Madu 1-don, Ilsan gu
Goyang-si, Gyeonggido
411-469
Korea
Phone: 82 31 920 1601
Email: jslee@ncc.re.kr

41. Vincent Miller, M.D.
Thoracic Oncology Service
Memorial Sloan Kettering Cancer Center
1275 York Ave
New York, NY 10065
212-639-7243
millerv@mskcc.org

42. Iver Petersen, M.D., Ph.D.
Institute of pathology
Universitätsklinikum
Friedrich-Schiller-University (FSU) Jena
Ziegelmühlenweg 1
07740 Jena
Germany
Tel. +49-3641-933 120
Tel. +49-3641-933 002 (Secretariat)
Fax +49-3641-933 111
Email: iver.petersen@med.uni-jena.de

43. Victor Roggli, M.D.
Duke University Medical Center
Davison Bldg., Room-M255
Owen Road
Durham, NC 27710
Phone: (919) 668-5440
Email: rogl002@mc.duke.edu
II: CORE PANEL AND AUTHOR CONTACT INFORMATION (cont’d)

44. Rafael Rosell, M.D.
Hospital Univ. Germans Trias I Pujol, Ctra Canyet
Catalan Institute of Oncology
Medical Oncology Service, PO Box 72
Badalona, Barcelona E-08916
Spain
Phone: 34 93 497 8925
Fax: 34 93 497 8950
Email: rrosell@ico.scs.es

45. Nagahiro Saijo, M.D., Ph.D.
Professor
Medical Oncology Division
Kinki University School of Medicine
377-2 Ohno-Higashi, Osaka-Sayama-Shi
Osaka 589-8511
Email: nsaijo@med.kindai.ac.jp

46. Erik Thunnissen, M.D.
VU Medical Center
Dept. of Pathology 1E15
De Boelelaan 1117, Amsterdam 1081 HV
The Netherlands
Phone: 31 24 365 8510
Email: e.thunnissen@vumc.nl

47. Ming Tsao, M.D.
Department of Pathology
Princess Margaret Hospital
610 University Avenue
Toronto, Ontario,
Canada M5G 2M9
Phone: 1 416 340 4737; 416-946-4426
Fax: 1 416 340 5517
Email: Ming.tsao@uhn.on.ca

48. David Yankelewitz, M.D.
Dept of Radiology
New York Presbyterian Hospital
Weill Medical College
New York, NY 10065
APPENDIX 2

IASLC/ATS/ERS INTERNATIONAL MULTIDISCIPLINARY CLASSIFICATION OF LUNG ADENOCARCINOMA
Travis WD, et al

CONTENTS:

I: MAJOR QUESTIONS
 Overall project
 Pathology
 Oncology
 Radiology
 Molecular
 Surgery

II: LITERATURE SEARCH BY LIBRARIAN
 Search Strategy for Embase Search
 Search Strategy for Pubmed Search

III: MANAGEMENT OF LITERATURE IN ENDNOTE

IV: ADDITION OF ARTICLES WITH UPDATED SEARCHES

V: ELIGIBILITY CRITERIA

VI: DATA FIELDS FOR EXCEL FILE IDENTIFIED FOR FINAL ARTICLE LIST

VII: REVIEW OF ARTICLES DURING DEVELOPMENT OF DOCUMENT AND TABLES
I: MAJOR QUESTIONS

Questions For Overall Project

1) What approach to classification of lung adenocarcinomas is the most meaningful from the perspective of: Pathological categorization, Molecular characterization, Radiologic interpretation, surgical treatment, and therapeutic drug development?

2) How can these classifications be best integrated in a reproducible and clinically relevant and practical way?

3) Define the minimum data required to characterize the pathology, molecular, radiology, clinical/oncology, and surgical data for future clinical pathology work, research that includes pathological evaluation, clinical trials and in publications.

4) Are there clinical, molecular, radiologic, and pathologic differences in adenocarcinomas from different parts of the world: i.e. Asian versus Western countries – that may impact on classification?

Pathology Questions

1. Should we keep the terminology of BAC? What is BAC and how is it different from other types of adenocarcinoma?

2. How can we define a “minimally invasive” BAC for best correlation with prognosis and progression and clinical impact?

3. How should the 2004 classification of adenocarcinoma be improved such as better stratification of mixed subtype, addition of micropapillary and/or other subtypes, separation of mucinous BAC from nonmucinous BAC, deletion of some subtypes such as clear cell or signet ring?

4. What are the currently recognized histologic associations with molecular, clinical, surgical and radiologic findings?

5. What are the important issues in diagnosis of adenocarcinoma based on cytology and small biopsy specimens, i.e. morphologic criteria, appropriate terminology and use of special stains?

6. What are the currently recognized histologic associations with molecular, clinical, surgical and radiologic findings?
I: MAJOR QUESTIONS (cont’d)

Oncology Questions

1) What are the predictive and prognostic significance of EGFR and K-RAS mutations or other molecular markers in adenocarcinoma?
2) How should small biopsy/cytology specimens be managed optimally for diagnosis and molecular testing?
3) What is the evidence that classification beyond adenocarcinoma per se provides useful information for the medical oncologist?
4) Is there any histologic, IHC feature in adenocarcinoma associated with a different survival outcome?
5) Is neuroendocrine differentiation relevant for treatment or predicting prognosis?
6) Does mucinous BAC have a different prognosis, molecular profile and response to therapy compared with nonmucinous BAC?

Radiology Question

In patients with adenocarcinoma and its putative precursor lesion(s), what are the radiographic features (e.g. size, number, location, attenuation characteristics, lobulation, growth rates) that are associated with histopathologic subtypes (AAH, BAC, BAC with invasion), uptake on FDG-PET imaging, clinical characteristics, molecular markers, and prognosis?

Molecular Question

In patients with adenocarcinoma, what are the specific molecularly-defined gene-expression signatures that are associated with different histopathologic subtypes?

Surgery Questions

1) Should atypical adenomatous hyperplasia (AAH) be classified as the pre-invasive lesion of adenocarcinoma? (HA)
2) How can the term BAC be better defined as it is used in different ways: non-invasive, mucinous vs non-mucinous?
3) What should be the surgical mode for the resection of BAC? (HA)
4) Can “adenocarcinoma with mixed subtypes” be better defined to better stratify clinically meaningful categories according to histologic subtypes?
5) What are the staging implications of a new classification? i.e. the T-category for non-mucinous BAC, T1 or Tis; and how can a histologic classification better address satellite nodules?
6) Is it possible for the classification to better define patients eligible for limited resection?
II: LITERATURE SEARCH BY LIBRARIAN

Search Strategy For Embase Search

Emtree terms: the terms below should be included so long as these terms are inclusive and not exclusive – so any paper missing these terms would be excluded)

Under lung tumor:
 lung adenoma

Under lung (in addition to bronchiole):
 lung surfactant

Under immunohistochemistry:
 immunoperoxidase staining

Under histology:
 histochemistry
 immunohistology

Under pathology (in addition to general pathology):

Under cytology:
 aspiration cytology
 cytochemistry
 cytodiagnosis
 cytometry

Under classification:
 clinical classification
 disease classification

Under gene amplification:
 amplicon
 amplified fragment length polymorphism
 inverse polymerase chain reaction
 ligase chain reaction
 multiplex polymerase chain reaction
 nucleic acid amplification
 nucleic acid sequence based amplification
 polymerase chain reaction
 real time polymerase chain reaction
 reverse transcription polymerase chain reaction
 sequence characterized amplified region
 telomeric repeat amplification protocol

Under proteomics
For chromogenic in situ hybridization (CISH)
 genomic in situ hybridization

Be sure we have fluorescence in situ hybridization (FISH)

For genes, erbB2
 epidermal growth factor receptor 2

For EML4-ALK
II: LITERATURE SEARCH BY LIBRARIAN (cont’d)

Search Strategy For Pubmed Search

Primary Search Terms

1) (lung or pulmonary or bronchogenic or bronchus or bronchial or bronchi or lung cancer or bronchogenic carcinoma or non small cell lung cancer or nonsmall cell lung cancer or nsclc or pulmonary blastoma).mp.

2) (adenocarcinoma or adenocarcinomas).mp.

3) 1 and 2

4) adenocarcinoma/ or adenocarcinoma, clear cell/ or adenocarcinoma, mucinous/ or adenocarcinoma, papillary/ or carcinoma, papillary, follicular/ or adenocarcinoma, sebaceous/ or carcinoma, acinar cell/ or carcinoma, endometrioid/ or carcinoma, hepatocellular/ or carcinoma, neuroendocrine./ or carcinoma, signet ring cell/ or cystadenocarcinoma/ or cystadenocarcinoma, mucinous/ or cystadenocarcinoma, papillary/ or cystadenocarcinoma, serous/

5) lung neoplasms/ or carcinoma, bronchogenic/ or carcinoma, non-small-cell lung/ or pulmonary blastoma/ or lung/ or bronchi/

6) 4 and 5

7) (bronchioloalveolar or BAC or bronchiolo-alveolar or bronchoalveolar or broncho-alveolar).mp. or adenocarcinoma, bronchioloalveolar/

8) (atypical adenomatous hyperplasia or atypical alveolar hyperplasia).mp. and (lung or pulmonary or bronchial).mp.

9) (bronchioloalveolar adenoma or bronchiolo-alveolar adenoma or bronchoalveolar adenoma or broncho-alveolar adenoma).mp.

10) (mucinous.mp. and (bronchoalveolar or bronchiolo-alveolar or bronchoalveolar or broncho-alveolar or BAC).mp.))

11) 3 or 6 or 7 or 8 or 9 or 10
II: LITERATURE SEARCH BY LIBRARIAN (cont’d)

Search Strategy For Pubmed Search (cont’d)

And

Secondary Search Terms

12) (immunohistochemistry or immunohistochemical or histology or histological or histologic or histologically or histopathology or histopathologic or histopathological or clinicopathologic or clinicopathological or pathology or pathologic or pathological or cytology or cytologic or cytological).mp.

13) immunohistochemistry/ or histology/ or pathology/ or pathology, clinical/ (?) or pathology, surgical/ (?) or cytology/

14) anatomy histology.fs. or pathology.fs. or cytology.fs.

15) (classification or classify or classified or subclassification or sub-classification or subclassify or sub-classify or subtype or subtypes or sub-type or sub-types or subgroup or subgroups).mp.

16) classification/ or classification.fs.

17) 12 or 13 or 14 or 15 or 16

Or

Genetics/Molecular

18) molecular.mp. or genetics.mp. or ex genetics/ or genetics.fs. or mutation.mp. or ex mutation/

19) amplification.mp. or gene amplification/ or methylation.mp. or methylation/ or dna methylation/

20) dna.mp. or ex dna/ or rna.mp. or ex rna/ or micro-rna.mp. or micro-rnas.mp. or micrornas/

21) FISH.mp. or fluorescence in situ hybridization.mp. or hybridization, in-situ fluorescence/ or chromosome painting/ or spectral karyotyping/
APPENDIX 2 Lung Adenocarcinoma

22) CISH.mp. or chromogenic in situ hybridization.mp.

II: LITERATURE SEARCH BY LIBRARIAN (cont’d)

Search Strategy For Pubmed Search (cont’d)

23) sequence deletion.mp. or sequence deletion/ or chromosome deletion/ or gene deletion/

24) gene profiling.mp. or gene expression profiling/

25) proteomics.mp. or proteomics/

26) egfr.mp.

27) k-ras.mp. or ki-ras.mp. or kras.mp.

28) p53.mp. or p-53.mp. or genes, p53/

29) BRAF.mp. or BRAF protein, human.nm. or proto-oncogene proteins b-raf/

30) HER2.mp. or HER-2.mp or genes, erbB2/

31) C-MET.mp. or met.mp. or cmet.mp. or hepatocyte growth factor/ or proto-oncogene proteins c-met/

32) EML4-ALK.mp. or EML4-ALK fusion protein, human.nm.

33) LKB1.mp.

34) PIK3CA.mp. or PIK3CA protein, human.nm.

35) ERCC1.mp. or ERCC1 protein, human.nm.

36) RRM1.mp. or RRM1 protein, human.nm.

37) BRCA1.mp. or BRCA1 protein/ or genes, BRCA1/

38) thymidylate synthetase.mp. or thymidylate synthase/

39) TGFBRII.mp. or ex transforming growth factor-beta/

40) 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39
III: MANAGEMENT OF LITERATURE IN ENDNOTE

Articles Imported Into Endnote X2, Then X3, Then X4

The Pubmed and EMBASE searches were imported into Endnote with a total of 10949 articles.

Removal Of Duplicates
All duplicates were discarded resulting in 10516 articles.

Abstract Review To Eliminate Irrelevant Articles
After review of all the abstracts, the list of potential candidate articles was reduced to 450.

Eligibility Criteria Evaluation
After the eligibility criteria review was completed using the Survey Monkey program, a final total of 270 articles was selected for the systematic review.

Articles Sorted Using Endnote Custom Group Feature
Using the Custom Group Feature in Endnote, articles were sorted into “Included” and “Excluded” groups. The Included groups were: cytology, immunology, molecular, oncology, radiation, radiology and surgery. All included articles were put into the pathology group as a pathologist was required to review every article.

IV: ADDITION OF ARTICLES WITH UPDATED SEARCHES

Search Updated In June Of 2009
In June of 2009, the search was updated using the same search strategy from 2008 with PUBMED and EMBASE. Another 1007 articles were added for a total of 11523. After a similar process was executed, eliminating duplicates, disqualifying articles based on abstract review and evaluation of 118 added articles for eligibility criteria, another 42 articles were added to the systematic review for a total of 312 articles.

Addition Of Articles Identified Outside Of Searches

Articles were also identified by searching the files of the core or reviewer panel members.
V. ELIGIBILITY CRITERIA –

All this was distributed in amounts of 10-100 articles to approximately 60 participants throughout the world using the Survey Monkey web-based software program (www.surveymonkey.com).

Each article was reviewed by two project participants to determine if it addressed:

1) At least 20 adca patients
2) Fewer than 5% subjects with histology other than adenoca; or provided separate results & baseline characteristics for subjects with adenoca
3) Study examines prognostic significance of clinical, radiologic, molecular, surgical or pathologic subsets of lung adenoca
4) Only answer if answered #3 for question 4 - otherwise go to question 6); Study does not examine prognostic significance, but primary or secondary objective of study is relevant to technical issues regarding use of immunohistochemistry or molecular testing of lung adenocarcinoma in small specimens for pathologic or genetic testing
 a. Small biopsies: immunohistochemistry
 b. Small biopsies: molecular testing
 c. Other
5) If any of the previous questions has a NO mark, exclude the study and select the “exclude” box. Otherwise, chose the “include” drop down box
VI: DATA FIELDS FOR EXCEL FILE IDENTIFIED FOR FINAL ARTICLE LIST

All articles were reviewed by a pathologist, oncologist, molecular biologist, radiologist and thoracic surgeon to identify what information was in the articles (see pdf file of Excel file).

GENERAL ARTICLE INFORMATION
Endnote Record Number
Author
Year
Journal
Citation
Comment

STUDY CHARACTERISTICS
Type of publication
Study Design
Prospective/Retrospective
RCT truly randomized
Concealment of randomization
Followup complete
Consistency of results
Imprecision or sparseness of data
Publication bias – negative studies published?
Directness or generalizability of evidence
Large magnitude of effect
Plausible confounders would decrease effect when an effect is present or increase an effect if effect is absent
Dose response relationship
Control group
Training & validation sets
Statistical methods
Survival analysis
VI: DATA FIELDS FOR EXCEL FILE IDENTIFIED FOR FINAL ARTICLE LIST (CONT’D)

ONCOLOGY
Age
Gender
Age correlation
Gender correlation
Race
Induction therapy
Adjuvant therapy
Tumor size
Clinical T Stage
Pathologic T Stage
Clinical N stage
Pathologic N stage
Clinical M Stage
Pathologic M stage
Overall clinical stage
Overall pathologic stage
Smoking correlation
Therapy response correlation
Survival correlation
Clinical pathologic correlations
Remark
Smoking
Previous smokers, when quit
Definition of never smoker
Pack year
Quality
Biochemical validation
Chemotherapy
Iressa
Tarceva
Pemetrexed
Other
Outcome therapy
Bronchorrhea
Radiation
VI: DATA FIELDS FOR EXCEL FILE IDENTIFIED FOR FINAL ARTICLE LIST (CONT’D): PATHOLOGY

How adenocarcinomas classified?
Pure adenocarcinoma
Study size – number of adenocarcinomas
Other histology included?
1999/2004 WHO subtyping
Subtypes correlated with clinical
Subtypes correlated with prognosis
Subtypes correlated with molecular
Subtypes correlated with radiology
Topic BAC
Minimally invasive BAC
Topic acinar
Topic papillary
Topic solid
Topic mixed subtype
Topic micropapillary
Topic rare subtype
Rare subtype
Any correlation with subtyping
Major histologic finding comment
Topic AAH
Grade
Detailed grading criteria
Nuclear grade
Architecture grade
Any correlation with grade
Histology reproducibility
Is it clear what specimen types were included?
Cytology
Small biopsy
Core biopsy
FNA
Bronchial biopsy
Surgical resection
IHC squamous vs adenoca
TTF1 adenoca
TTF1 non adenoca
P63 adenoca
P63 nonadenoca
34BE12 adenoca
34BE12 nonadenoca
CK5/6 adenoca
CK5/6 nonadenoca
Surfactant adenoca
Surfactant nonadenoca
Chromogranin
Synaptophysin
CD56

VI: DATA FIELDS FOR EXCEL FILE IDENTIFIED FOR FINAL ARTICLE LIST (CONT’D):

RADIOLOGY
CT
Contrast CT
CT collimation interval
PET SUV
CXR
Central vs peripheral
Smoking correlation
Correlation by size
Correlation with GGO
Correlation with mixed subtype
Correlation with solid
Correlation with BAC consolidation
Multiple nodules
Lobe of lung
Radiology- molecular correlation
Radiology histology: specific correlation comment

MOLECULAR
Any molecular correlation histologic subtypes
Mutation histologic correlation
Gene expression histologic correlation
Copy number histologic correlation
Specific molecular histologic correlation
Molecular histology: specific correlation comment (text)
EGFR mutation
EGFR amplification
EGFR expression
EGFR correlation
KRAS correlations
Is there a gene marker that defines subgroups
Pathways addressed
Molecular heterogeneity

SURGERY
Method of diagnosis – specified for all patients
Sublobar resection
Lobe vs lung resection
Any data on frozen section
Nodal staging
Histology surgery correlation
Multiple nodule data

VII: REVIEW OF ARTICLES DURING DEVELOPMENT OF DOCUMENT AND TABLES

Each member of the writing committee was provided with the master excel file of selected references. This allowed them to make directed searches of the data for the writing of their sections and development of tables for the document.