Skip to Main content Skip to Navigation
Journal articles

Targeted delivery of a proapoptotic peptide to tumors in vivo.

Abstract : RGD peptides recognize the α(v)β(3) integrin, a receptor that is overexpressed on the surface of both tumor blood vessels and cancerous cells. These peptides are powerful tools that act as single antiangiogenic molecules, but recently also have been used for tumor imaging and drug targeting. We designed the molecule RAFT-(c[-RGDfK-])(4), a constrained and chemically defined entity that can be produced at clinical-grade quality. This scaffold was covalently coupled via a labile bridge to the proapoptotic peptide (KLAKLAK)(2) (RAFT-RGD-KLA). A fluorescent, activatable probe was also introduced, allowing intracellular localization. At 2.5 µM, this molecule induced the intracellular release of an active KLA peptide, which in turn caused mitochondrial depolarization and cell death in vitro in tumor cells. In a mouse model, the RAFT-RGD-KLA peptide was found to prevent the growth of remote subcutaneous tumors. This study demonstrated that the antitumor peptide is capable of killing tumor cells in an RGD-dependent manner, thus lowering the nonspecific cytotoxic effects expected to occur when using cationic cytotoxic peptides. Thus, this chemistry is suitable for the design of complex, multifunctional molecules that can be used for both imaging and therapeutics, representing the next generation of perfectly controlled, targeted drug-delivery systems.
Document type :
Journal articles
Complete list of metadata

Cited literature [25 references]  Display  Hide  Download
Contributor : Amandine Hurbin Connect in order to contact the contributor
Submitted on : Tuesday, December 27, 2011 - 12:03:01 PM
Last modification on : Tuesday, December 7, 2021 - 12:44:02 PM
Long-term archiving on: : Wednesday, March 28, 2012 - 2:20:17 AM


Files produced by the author(s)




Sandrine Dufort, Lucie Sancey, Amandine Hurbin, Stéphanie Foillard, Didier Boturyn, et al.. Targeted delivery of a proapoptotic peptide to tumors in vivo.. Journal of Drug Targeting, Informa Healthcare, 2011, 19 (7), pp.582-8. ⟨10.3109/1061186X.2010.542245⟩. ⟨inserm-00559542⟩



Record views


Files downloads