E. Cuppen, M. Van-ham, D. Wansink, A. De-leeuw, B. Wieringa et al., The zyxin-related protein TRIP6 interacts with PDZ motifs in the adaptor protein RIL and the protein tyrosine phosphatase PTP-BL, European Journal of Cell Biology, vol.79, issue.4, pp.283-293, 2000.
DOI : 10.1078/S0171-9335(04)70031-X

K. Murthy, K. Clark, Y. Fortin, S. Shen, and D. Banville, ZRP-1, a Zyxin-related Protein, Interacts with the Second PDZ Domain of the Cytosolic Protein Tyrosine Phosphatase hPTP1E, Journal of Biological Chemistry, vol.274, issue.29, pp.20679-20687, 1999.
DOI : 10.1074/jbc.274.29.20679

Y. Boumber, Y. Kondo, X. Chen, L. Shen, V. Gharibyan et al., RIL, a LIM Gene on 5q31, Is Silenced by Methylation in Cancer and Sensitizes Cancer Cells to Apoptosis, Cancer Research, vol.67, issue.5, pp.1997-2005, 2007.
DOI : 10.1158/0008-5472.CAN-06-3093

Y. Zhang, Y. Tu, J. Zhao, K. Chen, and C. Wu, Reversion-induced LIM interaction with Src reveals a novel Src inactivation cycle, The Journal of Cell Biology, vol.9, issue.6, pp.785-792, 2009.
DOI : 10.1038/sj.leu.2404193

Y. Wang and T. Gilmore, Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1593, issue.2-3, pp.115-120, 2003.
DOI : 10.1016/S0167-4889(02)00349-X

URL : http://doi.org/10.1016/s0167-4889(02)00349-x

J. Yi, S. Kloeker, C. Jensen, S. Bockholt, H. Honda et al., Members of the Zyxin Family of LIM Proteins Interact with Members of the p130Cas Family of Signal Transducers, Journal of Biological Chemistry, vol.277, issue.11, pp.9580-9589, 2002.
DOI : 10.1074/jbc.M106922200

N. Takizawa, T. Smith, T. Nebl, J. Crowley, S. Palmieri et al., Supervillin modulation of focal adhesions involving TRIP6/ZRP-1, The Journal of Cell Biology, vol.241, issue.3, pp.447-458, 2006.
DOI : 10.1189/jlb.0903412

C. Bai, M. Ohsugi, Y. Abe, and T. Yamamoto, ZRP-1 controls Rho GTPase-mediated actin reorganization by localizing at cell-matrix and cell-cell adhesions, Journal of Cell Science, vol.120, issue.16, pp.2828-2837, 2007.
DOI : 10.1242/jcs.03477

E. Chastre, M. Abdessamad, A. Kruglov, E. Bruyneel, M. Bracke et al., TRIP6, a novel molecular partner of the MAGI-1 scaffolding molecule, promotes invasiveness, The FASEB Journal, vol.23, issue.3, pp.916-928, 2009.
DOI : 10.1096/fj.08-106344

Y. Lai, C. Chen, W. Lin, and F. Lin, c-Src-Mediated Phosphorylation of TRIP6 Regulates Its Function in Lysophosphatidic Acid-Induced Cell Migration, Molecular and Cellular Biology, vol.25, issue.14, pp.5859-5868, 2005.
DOI : 10.1128/MCB.25.14.5859-5868.2005

Y. Lai, W. Lin, and F. Lin, PTPL1/FAP-1 Negatively Regulates TRIP6 Function in Lysophosphatidic Acid-induced Cell Migration, Journal of Biological Chemistry, vol.282, issue.33, pp.24381-24387, 2007.
DOI : 10.1074/jbc.M701499200

K. Erdmann, J. Kuhlmann, V. Lessmann, L. Herrmann, V. Eulenburg et al., The Adenomatous Polyposis Coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain, Oncogene, vol.19, issue.34, pp.3894-3901, 2000.
DOI : 10.1038/sj.onc.1203725

C. Gross, R. Heumann, and K. Erdmann, The protein kinase C-related kinase PRK2 interacts with the protein tyrosine phosphatase PTP-BL via a novel PDZ domain binding motif, FEBS Letters, vol.11, issue.2-3, pp.101-104, 2001.
DOI : 10.1016/S0014-5793(01)02401-2

S. Sato, N. Fujita, and T. Tsuruo, Regulation of Kinase Activity of 3-Phosphoinositide-dependent Protein Kinase-1 by Binding to 14-3-3, Journal of Biological Chemistry, vol.277, issue.42, pp.39360-39367, 2002.
DOI : 10.1074/jbc.M205141200

A. Schmidt, J. Durgan, A. Magalhaes, and A. Hall, Rho GTPases regulate PRK2/PKN2 to control entry into mitosis and exit from cytokinesis, The EMBO Journal, vol.170, issue.6, pp.1624-1636, 2007.
DOI : 10.1038/sj.emboj.7601637

M. Van-ham, H. Croes, J. Schepens, J. Fransen, B. Wieringa et al., Cloning and characterization of mCRIP2, a mouse LIM-only protein that interacts with PDZ domain IV of PTP-BL, Genes to Cells, vol.9, issue.7, pp.631-644, 2003.
DOI : 10.1083/jcb.140.4.885

J. Saras, P. Franzen, P. Aspenstrom, U. Hellman, L. Gonez et al., A Novel GTPase-activating Protein for Rho Interacts with a PDZ Domain of the Protein-tyrosine Phosphatase PTPL1, Journal of Biological Chemistry, vol.272, issue.39, pp.24333-24338, 1997.
DOI : 10.1074/jbc.272.39.24333

B. Myagmar, M. Umikawa, T. Asato, K. Taira, M. Oshiro et al., PARG1, a protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2 effector, Biochemical and Biophysical Research Communications, vol.329, issue.3, pp.1046-1052, 2005.
DOI : 10.1016/j.bbrc.2005.02.069

T. Ripperger, N. Von-neuhoff, K. Kamphues, M. Emura, U. Lehmann et al., Promoter methylation of PARG1, a novel candidate tumor suppressor gene in mantle cell lymphomas, Haematologica, vol.92, issue.4, pp.460-468, 2007.
DOI : 10.3324/haematol.10337

D. Lin, G. Gish, Z. Songyang, and T. Pawson, The Carboxyl Terminus of B Class Ephrins Constitutes a PDZ Domain Binding Motif, Journal of Biological Chemistry, vol.274, issue.6, pp.3726-3733, 1999.
DOI : 10.1074/jbc.274.6.3726

H. Lee, T. Nishanian, K. Mood, Y. Bong, and I. Daar, EphrinB1 controls cell???cell junctions through the Par polarity complex, Nature Cell Biology, vol.125, issue.8, pp.979-986, 2008.
DOI : 10.1038/nature04116

J. Yanagisawa, M. Takahashi, H. Kanki, H. Yano-yanagisawa, T. Tazunoki et al., The Molecular Interaction of Fas and FAP-1: A TRIPEPTIDE BLOCKER OF HUMAN Fas INTERACTION WITH FAP-1 PROMOTES Fas-INDUCED APOPTOSIS, Journal of Biological Chemistry, vol.272, issue.13, pp.8539-8545, 1997.
DOI : 10.1074/jbc.272.13.8539

J. Saras, U. Engstrom, L. Gonez, and C. Heldin, Characterization of the Interactions between PDZ Domains of the Protein-tyrosine Phosphatase PTPL1 and the Carboxyl-terminal Tail of Fas, Journal of Biological Chemistry, vol.272, issue.34, pp.20979-20981, 1997.
DOI : 10.1074/jbc.272.34.20979

E. Cuppen, S. Nagata, B. Wieringa, and W. Hendriks, No Evidence for Involvement of Mouse Protein-tyrosine Phosphatase-BAS-like Fas-associated Phosphatase-1 in Fas-mediated Apoptosis, Journal of Biological Chemistry, vol.272, issue.48, pp.30215-30220, 1997.
DOI : 10.1074/jbc.272.48.30215

Y. Li, H. Kanki, T. Hachiya, T. Ohyama, S. Irie et al., Negative regulation of Fas-mediated apoptosis by FAP-1 in human cancer cells, International Journal of Cancer, vol.169, issue.4, pp.473-479, 2000.
DOI : 10.1002/1097-0215(20000815)87:4<473::AID-IJC3>3.0.CO;2-1

H. Ungefroren, M. Kruse, A. Trauzold, S. Roeschmann, C. Roeder et al., FAP-1 in pancreatic cancer cells: functional and mechanistic studies on its inhibitory role in CD95-mediated apoptosis, J Cell Sci, vol.114, pp.2735-2746, 2001.

V. Ivanov, B. Lopez, G. Maulit, T. Sato, D. Sassoon et al., FAP-1 Association with Fas (Apo-1) Inhibits Fas Expression on the Cell Surface, Molecular and Cellular Biology, vol.23, issue.10, pp.3623-3635, 2003.
DOI : 10.1128/MCB.23.10.3623-3635.2003

E. Foehr, G. Lorente, V. Vincent, K. Nikolich, and R. Urfer, FAS Associated Phosphatase (FAP-1) Blocks Apoptosis of Astrocytomas through Dephosphorylation of FAS, Journal of Neuro-Oncology, vol.15, issue.3, pp.241-248, 2005.
DOI : 10.1007/s11060-004-7202-x

T. Miyazaki, Y. Atarashi, S. Yasumura, I. Minatoya, K. Ogawa et al., Fas-associated phosphatase-1 promotes Fas-mediated apoptosis in human colon cancer cells: Novel function of FAP-1, Journal of Gastroenterology and Hepatology, vol.64, issue.1, pp.84-91, 2006.
DOI : 10.1111/j.1440-1746.2005.04155.x

W. Huang, C. Zhu, H. Wang, E. Horvath, and E. Eklund, The Interferon Consensus Sequence-binding Protein (ICSBP/IRF8) Represses PTPN13 Gene Transcription in Differentiating Myeloid Cells, Journal of Biological Chemistry, vol.283, issue.12, pp.7921-7935, 2008.
DOI : 10.1074/jbc.M706710200

Z. Xiao, W. Wu, N. Eagleton, H. Chen, J. Shao et al., Silencing Fas-associated phosphatase 1 expression enhances efficiency of chemotherapy for colon carcinoma with oxaliplatin, World J Gastroenterol, vol.16, pp.112-118, 2010.

O. Abaan, A. Levenson, O. Khan, P. Furth, A. Uren et al., PTPL1 is a direct transcriptional target of EWS-FLI1 and modulates Ewing's Sarcoma tumorigenesis, Oncogene, vol.20, issue.16, pp.2715-2722, 2005.
DOI : 10.1038/sj.onc.1208247

F. Vignon, M. Bouton, and H. Rochefort, Antiestrogens inhibit the mitogenic effect of growth factors on breast cancer cells in the total absence of estrogens, Biochemical and Biophysical Research Communications, vol.146, issue.3, pp.1502-1508, 1987.
DOI : 10.1016/0006-291X(87)90819-9

G. Freiss, F. Galtier, C. Puech, C. Aknin, T. Maudelonde et al., Anti-growth factor activities of benzothiophenes in human breast cancer cells, The Journal of Steroid Biochemistry and Molecular Biology, vol.94, issue.5, 2005.
DOI : 10.1016/j.jsbmb.2004.12.043

G. Freiss and F. Vignon, Antiestrogens increase protein tyrosine phosphatase activity in human breast cancer cells, Mol Endocrinol, vol.8, pp.1389-1396, 1994.

G. Freiss, C. Puech, and F. Vignon, Extinction of Insulin-Like Growth Factor-I Mitogenic Signaling by Antiestrogen-Stimulated Fas-Associated Protein Tyrosine Phosphatase-1 in Human Breast Cancer Cells, Molecular Endocrinology, vol.12, issue.4, pp.568-579, 1998.
DOI : 10.1210/mend.12.4.0088

G. Bompard, C. Puech, C. Prebois, F. Vignon, and G. Freiss, Protein-tyrosine Phosphatase PTPL1/FAP-1 Triggers Apoptosis in Human Breast Cancer Cells, Journal of Biological Chemistry, vol.277, issue.49, pp.47861-47869, 2002.
DOI : 10.1074/jbc.M208950200

M. Dromard, G. Bompard, M. Glondu-lassis, C. Puech, D. Chalbos et al., The Putative Tumor Suppressor Gene PTPN13/PTPL1 Induces Apoptosis through Insulin Receptor Substrate-1 Dephosphorylation, Cancer Research, vol.67, issue.14, pp.6806-6813, 2007.
DOI : 10.1158/0008-5472.CAN-07-0513

URL : https://hal.archives-ouvertes.fr/inserm-00165318

Z. Wang, D. Shen, D. Parsons, A. Bardelli, J. Sager et al., Mutational Analysis of the Tyrosine Phosphatome in Colorectal Cancers, Science, vol.304, issue.5674, pp.1164-1166, 2004.
DOI : 10.1126/science.1096096

J. Zhu, R. Chen, W. Yi, G. Cantin, C. Fearns et al., Protein tyrosine phosphatase PTPN13 negatively regulates Her2/ErbB2 malignant signaling, Oncogene, vol.27, issue.18, pp.2525-2531, 2008.
DOI : 10.1158/1078-0432.CCR-05-1383

S. Kawano, W. Ikeda, M. Kishimoto, H. Ogita, and Y. Takai, Silencing of ErbB3/ErbB2 Signaling by Immunoglobulin-like Necl-2, Journal of Biological Chemistry, vol.284, issue.35, pp.23793-23805, 2009.
DOI : 10.1074/jbc.M109.025155

S. Kawano, W. Ikeda, M. Kishimoto, H. Ogita, and Y. Takai, Silencing of ErbB3/ErbB2 Signaling by Immunoglobulin-like Necl-2, Journal of Biological Chemistry, vol.284, issue.35, 2009.
DOI : 10.1074/jbc.M109.025155

M. Lucci, R. Orlandi, T. Triulzi, E. Tagliabue, A. Balsari et al., Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors, Cell Oncol, vol.32, pp.361-372, 2010.

W. Spanos, J. Geiger, M. Anderson, G. Harris, A. Bossler et al., Deletion of the PDZ motif of HPV16 E6 preventing immortalization and anchorage-independent growth in human tonsil epithelial cells, Head & Neck, vol.80, issue.2, pp.139-147, 2008.
DOI : 10.1002/hed.20673

W. Spanos, A. Hoover, G. Harris, S. Wu, G. Strand et al., The PDZ Binding Motif of Human Papillomavirus Type 16 E6 Induces PTPN13 Loss, Which Allows Anchorage-Independent Growth and Synergizes with Ras for Invasive Growth, Journal of Virology, vol.82, issue.5, pp.2493-2500, 2008.
DOI : 10.1128/JVI.02188-07

A. Hoover, G. Strand, P. Nowicki, M. Anderson, P. Vermeer et al., Impaired PTPN13 phosphatase activity in spontaneous or HPV-induced squamous cell carcinomas potentiates oncogene signaling through the MAP kinase pathway, Oncogene, vol.27, issue.45, pp.3960-3970, 2009.
DOI : 10.1038/onc.2009.251

A. Palmer, M. Zimmer, K. Erdmann, V. Eulenburg, A. Porthin et al., EphrinB Phosphorylation and Reverse Signaling, Molecular Cell, vol.9, issue.4, pp.725-737, 2002.
DOI : 10.1016/S1097-2765(02)00488-4

URL : http://doi.org/10.1016/s1097-2765(02)00488-4

S. Mitra and D. Schlaepfer, Integrin-regulated FAK???Src signaling in normal and cancer cells, Current Opinion in Cell Biology, vol.18, issue.5, pp.516-523, 2006.
DOI : 10.1016/j.ceb.2006.08.011

M. Glondu-lassis, M. Dromard, M. Lacroix-triki, P. Nirde, C. Puech et al., PTPL1/PTPN13 Regulates Breast Cancer Cell Aggressiveness through Direct Inactivation of Src Kinase, Cancer Research, vol.70, issue.12, pp.5116-5126, 2010.
DOI : 10.1158/0008-5472.CAN-09-4368

URL : https://hal.archives-ouvertes.fr/inserm-00491450

H. Welters, A. Oknianska, K. Erdmann, G. Ryffel, and N. Morgan, The protein tyrosine phosphatase-BL, modulates pancreatic ??-cell proliferation by interaction with the Wnt signalling pathway, Journal of Endocrinology, vol.197, issue.3, pp.543-552, 2008.
DOI : 10.1677/JOE-07-0262

A. Kaminski, H. Welters, E. Kaminski, and N. Morgan, Human and rodent pancreatic ??-cells express IL-4 receptors and IL-4 protects against ??-cell apoptosis by activation of the PI3K and JAK/STAT pathways, Bioscience Reports, vol.8, issue.3, pp.169-175, 2010.
DOI : 10.1210/er.2007-0033

S. Mori, K. Murakami-mori, A. Jewett, S. Nakamura, and B. Bonavida, Resistance of AIDS-associated Kaposi s sarcoma cells to Fas-mediated apoptosis, Cancer Res, vol.56, pp.1874-1879, 1996.

H. Ungefroren, M. Voss, M. Jansen, C. Roeder, D. Henne-bruns et al., Human pancreatic adenocarcinomas express Fas and Fas ligand yet are resistant to Fas-mediated apoptosis, Cancer Res, vol.58, pp.1741-1749, 1998.

S. Lee, M. Shin, H. Lee, J. Bae, H. Lee et al., Expression of Fas and Fas-related molecules in human hepatocellular carcinoma, Human Pathology, vol.32, issue.3, pp.250-256, 2001.
DOI : 10.1053/hupa.2001.22769

M. Arai, M. Kannagi, M. Matsuoka, T. Sato, N. Yamamoto et al., Expression of FAP-1 (Fas-Associated Phosphatase) and Resistance to Fas-Mediated Apoptosis in T Cell Lines Derived from Human T Cell Leukemia Virus Type 1-Associated Myelopathy/Tropical Spastic Paraparesis Patients, AIDS Research and Human Retroviruses, vol.14, issue.3, pp.261-267, 1998.
DOI : 10.1089/aid.1998.14.261

I. Meinhold-heerlein, F. Stenner-liewen, H. Liewen, S. Kitada, M. Krajewska et al., Expression and Potential Role of Fas-Associated Phosphatase-1 in Ovarian Cancer, The American Journal of Pathology, vol.158, issue.4, pp.1335-1344, 2001.
DOI : 10.1016/S0002-9440(10)64084-9

A. Elnemr, T. Ohta, A. Yachie, M. Kayahara, H. Kitagawa et al., Human pancreatic cancer cells disable function of Fas receptors at several levels in Fas signal transduction pathway, International Journal of Oncology, vol.18, pp.311-316, 2001.
DOI : 10.3892/ijo.18.2.311

D. Tillman, F. Harwood, A. Gibson, and J. Houghton, Expression of genes that regulate Fas signalling and Fas-mediated apoptosis in colon carcinoma cells, Cell Death and Differentiation, vol.5, issue.5, pp.450-457, 1998.
DOI : 10.1038/sj.cdd.4400369

H. Hayashi, S. Tatebe, M. Osaki, A. Goto, K. Sato et al., Anti-Fas antibody-induced apoptosis in human colorectal carcinoma cell lines: role of the p53 gene, APOPTOSIS, vol.3, issue.6, pp.431-437, 1998.
DOI : 10.1023/A:1009662619907

J. Houghton, F. Harwood, A. Gibson, and D. Tillman, The fas signaling pathway is functional in colon carcinoma cells and induces apoptosis, Clin Cancer Res, vol.3, pp.2205-2209, 1997.

T. Hedlund, R. Duke, M. Schleicher, and G. Miller, Fas-mediated apoptosis in seven human prostate cancer cell lines: Correlation with tumor stage, The Prostate, vol.148, issue.2, pp.92-101, 1998.
DOI : 10.1002/(SICI)1097-0045(19980701)36:2<92::AID-PROS4>3.0.CO;2-G

H. Broome, C. Dargan, T. Brunner, and D. Green, Sensitivity of S49. 1 cells to anti-CD95 (Fas/Apo-1)-induced apoptosis: effects of CD95, Bcl-2 or Bcl-x transduction

Y. Komada, H. Inaba, Y. Zhou, X. Zhang, S. Tanaka et al., mRNA expression of Fas receptor (CD95)-associated proteins (Fas-associated phosphatase-1/FAP-1, Fas-associating protein with death domain/FADD, and receptor-interacting protein/RIP) in human leukaemia/lymphoma cell lines, British Journal of Haematology, vol.99, issue.2, pp.325-330, 1997.
DOI : 10.1046/j.1365-2141.1997.3903204.x

K. Kim, K. Lee, Y. Hong, and H. Park, Fas-mediated apoptosis and expression of related genes in human malignant hematopoietic cells, Experimental & Molecular Medicine, vol.32, issue.4, pp.246-254, 2000.
DOI : 10.1038/emm.2000.41

A. Hayakawa, J. Wu, Y. Kawamoto, Y. Zhou, S. Tanuma et al., Activation of caspase-8 is critical for sensitivity to cytotoxic anti-Fas antibody-induced apoptosis in human ovarian cancer cells, APOPTOSIS, vol.7, issue.2, pp.107-113, 2002.
DOI : 10.1023/A:1014302212321

D. Juric, S. Sale, R. Hromas, R. Yu, Y. Wang et al., Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures, Proceedings of the National Academy of Sciences, vol.102, issue.49, pp.17763-17768, 2005.
DOI : 10.1073/pnas.0509082102

F. Revillion, C. Puech, F. Rabenoelina, D. Chalbos, J. Peyrat et al., is an independent prognostic marker for overall survival in breast cancer, International Journal of Cancer, vol.8, issue.Part 2, pp.638-643, 2009.
DOI : 10.1002/ijc.23989

URL : https://hal.archives-ouvertes.fr/inserm-00340622

Y. Mita, Y. Yasuda, A. Sakai, H. Yamamoto, S. Toyooka et al., Missense polymorphisms of PTPRJ and PTPN13 genes affect susceptibility to a variety of human cancers, Journal of Cancer Research and Clinical Oncology, vol.27, issue.2, pp.249-259, 2010.
DOI : 10.1007/s00432-009-0656-7

J. Niu, Y. Huang, L. Wang, E. Sturgis, and Q. Wei, Genetic polymorphisms in the PTPN13 gene and risk of squamous cell carcinoma of head and neck, Carcinogenesis, vol.30, issue.12, pp.2053-2058, 2009.
DOI : 10.1093/carcin/bgp265

E. Jeong, S. Lee, N. Yoo, and S. Lee, Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas, Pathology, vol.40, issue.1, pp.31-34, 2008.
DOI : 10.1080/00313020701716441

J. Inazawa, T. Ariyama, T. Abe, T. Druck, M. Ohta et al., PTPN13, a Fas-Associated Protein Tyrosine Phosphatase, Is Located on the Long Arm of Chromosome 4 at Band q21.3, Genomics, vol.31, issue.2, pp.240-242, 1996.
DOI : 10.1006/geno.1996.0039

T. Sato, H. Saito, R. Morita, S. Koi, J. Lee et al., Allelotype of human ovarian cancer, Cancer Res, vol.51, pp.5118-5122, 1991.

W. Zhang, S. Hirohashi, H. Tsuda, Y. Shimosato, J. Yokota et al., Frequent Loss of Heterozygosity on Chromosomes 16 and 4 in Human Hepatocellular Carcinoma, Japanese Journal of Cancer Research, vol.335, issue.2, pp.108-111, 1990.
DOI : 10.1111/j.1349-7006.1990.tb02534.x

Y. Jou, C. Lee, Y. Chang, C. Hsiao, C. Chen et al., Clustering of Minimal Deleted Regions Reveals Distinct Genetic Pathways of Human Hepatocellular Carcinoma, Cancer Research, vol.64, issue.9, pp.3030-3036, 2004.
DOI : 10.1158/0008-5472.CAN-03-2320

J. Ying, H. Li, Y. Cui, A. Wong, C. Langford et al., Epigenetic disruption of two proapoptotic genes MAPK10/JNK3 and PTPN13/FAP-1 in multiple lymphomas and carcinomas through hypermethylation of a common bidirectional promoter, Leukemia, vol.304, issue.6, pp.1173-1175, 2006.
DOI : 10.1038/sj.leu.2404193

P. Heneberg, Use of Protein Tyrosine Phosphatase Inhibitors as Promising Targeted Therapeutic Drugs, Current Medicinal Chemistry, vol.16, issue.6, pp.706-733, 2009.
DOI : 10.2174/092986709787458407