O. Doppelt, F. Moriaud, F. Delfaud, A. G. De-brevern, L. Slabinski et al., Analysis of HSP90 related folds with MED-SuMo classification approach The challenge of protein structure determination--lessons from structural genomics Functional annotation strategy for protein structures The pleated sheet, a new layer configuration of polypeptide chains The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain, Drug Design, Development and Therapy Protein Sci Bioinformation Proc Natl Acad Sci Proc Natl Acad Sci, vol.9, issue.37, pp.2472-82, 1951.

R. A. Sayle, E. J. Milner-white, C. Perez-iratxeta, M. A. Andrade-navarro, A. G. Murzin et al., RASMOL: biomolecular graphics for all K2D2: estimation of protein secondary structure from circular dichroism spectra SCOP: a structural classification of proteins database for the investigation of sequences and structures Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Trends Biochem Sci BMC Struct Biol J Mol Biol Biopolymers, vol.20, issue.22, pp.536-576, 1983.

D. Frishman and P. Argos, Knowledge-based protein secondary structure assignment, Proteins: Structure, Function, and Genetics, vol.206, issue.4, pp.566-79, 1995.
DOI : 10.1002/prot.340230412

R. Srinivasan and G. D. Rose, A physical basis for protein secondary structure, Proceedings of the National Academy of Sciences, vol.96, issue.25, pp.14258-63, 1999.
DOI : 10.1073/pnas.96.25.14258

M. V. Cubellis, F. Cailliez, and S. C. Lovell, Secondary structure assignment that accurately reflects physical and evolutionary characteristics, BMC Bioinformatics, vol.6, issue.Suppl 4, p.8, 2005.
DOI : 10.1186/1471-2105-6-S4-S8

J. Martin, G. Letellier, A. Marin, J. Taly, A. G. De-brevern et al., Protein secondary structure assignment revisited: a detailed analysis of different assignment methods, BMC Structural Biology, vol.5, issue.1, p.17, 2005.
DOI : 10.1186/1472-6807-5-17

URL : https://hal.archives-ouvertes.fr/inserm-00090199

D. Eisenberg, The discovery of the ??-helix and ??-sheet, the principal structural features of proteins, Proceedings of the National Academy of Sciences, vol.100, issue.20, pp.11207-11217, 2003.
DOI : 10.1073/pnas.2034522100

J. S. Richardson and D. C. Richardson, Amino acid preferences for specific locations at the ends of alpha helices, Science, vol.240, issue.4859, pp.1648-52, 1988.
DOI : 10.1126/science.3381086

L. Pal, P. Chakrabarti, and G. Basu, Sequence and Structure Patterns in Proteins from an Analysis of the Shortest Helices: Implications for Helix Nucleation, Journal of Molecular Biology, vol.326, issue.1, pp.273-91, 2003.
DOI : 10.1016/S0022-2836(02)01338-4

L. Regan, Protein Structure: Born to be beta, Current Biology, vol.4, issue.7, pp.656-664, 1994.
DOI : 10.1016/S0960-9822(00)00147-0

S. Wiley and . Editor, Protein Structure Prediction, pp.5-35

M. Tyagi, A. Bornot, B. Offmann, and A. G. De-brevern, Analysis of loop boundaries using different local structure assignment methods, Protein Science, vol.34, issue.9, 2009.
DOI : 10.1002/pro.198

URL : https://hal.archives-ouvertes.fr/inserm-00392504

S. D. Khare and N. V. Dokholyan, Molecular Mechanisms of Polypeptide Aggregation in Human Diseases, Current Protein & Peptide Science, vol.8, issue.6, pp.573-582, 2007.
DOI : 10.2174/138920307783018703

R. Aurora and G. D. Rose, Helix capping, Protein Science, vol.31, issue.1, pp.21-38, 1998.
DOI : 10.1002/pro.5560070103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2143812

E. Kruus, P. Thumfort, C. Tang, and N. S. Wingreen, Gibbs sampling and helix-cap motifs, Nucleic Acids Research, vol.33, issue.16, pp.5343-53, 2005.
DOI : 10.1093/nar/gki842

URL : http://doi.org/10.1093/nar/gki842

J. Garnier, D. J. Osguthorpe, and B. Robson, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, Journal of Molecular Biology, vol.120, issue.1, pp.97-120, 1978.
DOI : 10.1016/0022-2836(78)90297-8

B. Rost and C. Sander, Improved prediction of protein secondary structure by use of sequence profiles and neural networks., Proceedings of the National Academy of Sciences, vol.90, issue.16, pp.7558-62, 1993.
DOI : 10.1073/pnas.90.16.7558

D. T. Jones, Protein secondary structure prediction based on position-specific scoring matrices, Journal of Molecular Biology, vol.292, issue.2, pp.195-202, 1999.
DOI : 10.1006/jmbi.1999.3091

G. Pollastri and A. Mclysaght, Porter: a new, accurate server for protein secondary structure prediction, Bioinformatics, vol.21, issue.8, pp.1719-1739, 2005.
DOI : 10.1093/bioinformatics/bti203

G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles, Proteins: Structure, Function, and Genetics, vol.47, issue.2, pp.228-263, 2002.
DOI : 10.1002/prot.10082

L. Pal, G. Basu, and P. Chakrabarti, Variants of 310-helices in proteins, Proteins: Structure, Function, and Genetics, vol.32, issue.3, pp.571-580, 2002.
DOI : 10.1002/prot.10184

L. Pal, B. Dasgupta, and P. Chakrabarti, 310-Helix adjoining ??-helix and ??-strand: Sequence and structural features and their conservation, Biopolymers, vol.12, issue.3, pp.147-62, 2005.
DOI : 10.1002/bip.20266

L. Fourrier, C. Benros, and A. G. De-brevern, Use of a structural alphabet for analysis of short loops connecting repetitive structures, BMC Bioinformatics, vol.5, issue.1, p.58, 2004.
DOI : 10.1186/1471-2105-5-58

URL : https://hal.archives-ouvertes.fr/inserm-00112104

N. Eswar, C. Ramakrishnan, and N. Srinivasan, Stranded in isolation: structural role of isolated extended strands in proteins, Protein Engineering Design and Selection, vol.16, issue.5, pp.331-340, 2003.
DOI : 10.1093/protein/gzg046

S. Y. Park, K. Yamane, S. Adachi, Y. Shiro, K. E. Weiss et al., Thermophilic cytochrome P450 (CYP119) from Sulfolobus solfataricus: high resolution structure and functional properties, Journal of Inorganic Biochemistry, vol.91, issue.4, pp.491-501, 2002.
DOI : 10.1016/S0162-0134(02)00446-4

W. L. Delano and C. M. Venkatachalam, The PyMOL Molecular Graphics System DeLano Scientific Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units, Biopolymers, vol.6, pp.1425-1461, 1968.

E. G. Hutchinson and J. M. Thornton, A revised set of potentials for ??-turn formation in proteins, Protein Science, vol.3, issue.12, pp.2207-2223, 1994.
DOI : 10.1002/pro.5560031206

S. Wiley and . Editor, Protein Structure Prediction, pp.5-36

P. F. Fuchs and A. J. Alix, High accuracy prediction of ??-turns and their types using propensities and multiple alignments, Proteins: Structure, Function, and Bioinformatics, vol.55, issue.4, pp.828-867, 2005.
DOI : 10.1002/prot.20461

C. Zheng and L. Kurgan, Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments, BMC Bioinformatics, vol.9, issue.1, p.430, 2008.
DOI : 10.1186/1471-2105-9-430

O. Koch and G. Klebe, Turns revisited: A uniform and comprehensive classification of normal, open, and reverse turn families minimizing unassigned random chain portions, Proteins: Structure, Function, and Bioinformatics, vol.74, issue.Part 5, pp.353-67, 2009.
DOI : 10.1002/prot.22185

M. Meissner, O. Koch, G. Klebe, and G. Schneider, Prediction of turn types in protein structure by machine-learning classifiers, Proteins: Structure, Function, and Bioinformatics, vol.8, issue.2, pp.344-52, 2009.
DOI : 10.1002/prot.22164

J. Makowska, S. Rodziewicz-motowidlo, K. Baginska, J. A. Vila, A. Liwo et al., Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins, Proceedings of the National Academy of Sciences, vol.103, issue.6, 2006.
DOI : 10.1073/pnas.0510549103

B. J. Stapley and T. P. Creamer, A survey of left-handed polyproline II helices, Protein Science, vol.117, issue.3, pp.587-95, 1999.
DOI : 10.1110/ps.8.3.587

J. M. Hicks and V. L. Hsu, The extended left-handed helix: A simple nucleic acid-binding motif, Proteins: Structure, Function, and Bioinformatics, vol.69, issue.2, pp.330-338, 2004.
DOI : 10.1002/prot.10630

S. A. Hollingsworth, D. S. Berkholz, and P. A. Karplus, On the occurrence of linear groups in proteins, Protein Science, vol.44, issue.6, pp.1321-1326, 2009.
DOI : 10.1002/pro.133

S. M. King and W. C. Johnson, Assigning secondary structure from protein coordinate data, Proteins: Structure, Function, and Genetics, vol.234, issue.3, pp.313-333, 1999.
DOI : 10.1002/(SICI)1097-0134(19990515)35:3<313::AID-PROT5>3.0.CO;2-1

G. Labesse, N. Colloc-'h, J. Pothier, and J. P. Mornon, P-SEA: a new efficient assignment of secondary structure from C?? trace of proteins, Bioinformatics, vol.13, issue.3, pp.291-296, 1997.
DOI : 10.1093/bioinformatics/13.3.291

F. Dupuis, J. F. Sadoc, and J. P. Mornon, Protein secondary structure assignment through Vorono?? tessellation, Proteins: Structure, Function, and Bioinformatics, vol.13, issue.3, pp.519-547, 2004.
DOI : 10.1002/prot.10566

P. K. Vlasov, A. V. Vlasova, V. G. Tumanyan, and N. G. Esipova, A tetrapeptide-based method for polyproline II-type secondary structure prediction, Proteins: Structure, Function, and Bioinformatics, vol.16, issue.4, pp.763-771, 2005.
DOI : 10.1002/prot.20670

M. Kuhn, J. Meiler, and D. Baker, Strand-loop-strand motifs: Prediction of hairpins and diverging turns in proteins, Proteins: Structure, Function, and Bioinformatics, vol.99, issue.Suppl 5, pp.282-290, 2004.
DOI : 10.1002/prot.10589

M. Kumar, M. Bhasin, N. K. Natt, and G. P. Raghava, BhairPred: prediction of ??-hairpins in a protein from multiple alignment information using ANN and SVM techniques, Nucleic Acids Research, vol.33, issue.Web Server, pp.154-163, 2005.
DOI : 10.1093/nar/gki588

X. Z. Hu and Q. Z. Li, Prediction of the ??-Hairpins in Proteins Using Support Vector Machine, The Protein Journal, vol.54, issue.2, pp.115-137, 2008.
DOI : 10.1007/s10930-007-9114-z

A. V. Efimov, A structural tree for ??-helical proteins containing ??-??-corners and its application to protein classification, FEBS Letters, vol.8, issue.1-2, pp.167-70, 1996.
DOI : 10.1016/0014-5793(96)00720-X

S. Wiley and . Editor, Protein Structure Prediction, pp.5-37

J. Wojcik, J. P. Mornon, and J. Chomilier, New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification, Journal of Molecular Biology, vol.289, issue.5, pp.1469-90, 1999.
DOI : 10.1006/jmbi.1999.2826

N. Fernandez-fuentes, E. Querol, F. X. Aviles, M. J. Sternberg, and B. Oliva, Prediction of the conformation and geometry of loops in globular proteins: Testing ArchDB, a structural classification of loops, Proteins: Structure, Function, and Bioinformatics, vol.16, issue.Suppl 6, pp.746-57, 2005.
DOI : 10.1002/prot.20516

M. Bansal, S. Kumar, and R. Velavan, HELANAL: A Program to Characterize Helix Geometry in Proteins, Journal of Biomolecular Structure and Dynamics, vol.31, issue.5, pp.811-820, 2000.
DOI : 10.1107/S0021889891004399

J. P. Cartailler and H. Luecke, Structural and Functional Characterization of ?? Bulges and Other Short Intrahelical Deformations, Structure, vol.12, issue.1, pp.133-177, 2004.
DOI : 10.1016/j.str.2003.12.001

E. J. Milner-white, Beta-bulges within loops as recurring features of protein structure, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.911, issue.2, pp.261-266, 1987.
DOI : 10.1016/0167-4838(87)90017-3

J. S. Richardson, E. D. Getzoff, and D. C. Richardson, The beta bulge: a common small unit of nonrepetitive protein structure., Proceedings of the National Academy of Sciences, vol.75, issue.6, pp.2574-2582, 1978.
DOI : 10.1073/pnas.75.6.2574

C. A. Andersen, A. G. Palmer, S. Brunak, and B. Rost, Continuum Secondary Structure Captures Protein Flexibility, Structure, vol.10, issue.2, pp.175-84, 2002.
DOI : 10.1016/S0969-2126(02)00700-1

M. N. Fodje and S. Karadaghi, Occurrence, conformational features and amino acid propensities for the ??-helix, Protein Engineering Design and Selection, vol.15, issue.5, pp.353-361, 2002.
DOI : 10.1093/protein/15.5.353

F. M. Richards and C. E. Kundrot, Identification of structural motifs from protein coordinate data: Secondary structure and first-level supersecondary structure, Proteins: Structure, Function, and Genetics, vol.72, issue.2, pp.71-84, 1988.
DOI : 10.1002/prot.340030202

I. Majumdar, S. S. Krishna, and N. V. Grishin, PALSSE: A program to delineate linear secondary structural elements from protein structures, BMC Bioinformatics, vol.6, issue.202, 2005.

M. Parisien and F. Major, A New Catalog of Protein ?eta-Sheets, Proteins, 2005.

J. Martin, J. F. Gibrat, R. , and F. , Analysis of an optimal hidden Markov model for secondary structure prediction, BMC Structural Biology, vol.6, issue.1, p.25, 2006.
DOI : 10.1186/1472-6807-6-25

A. G. De-brevern, C. Benros, and S. Hazout, Structural Alphabet: From a Local Point of View to a Global Description of Protein 3D Structures, pp.128-187, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00134564

B. Offmann, M. Tyagi, and A. G. De-brevern, Local Protein Structures, Current Bioinformatics, vol.2, issue.3, pp.165-202, 2007.
DOI : 10.2174/157489307781662105

URL : https://hal.archives-ouvertes.fr/inserm-00175058

M. Tyagi, V. S. Gowri, N. Srinivasan, A. G. De-brevern, and B. Offmann, A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications, Proteins: Structure, Function, and Bioinformatics, vol.272, issue.1, pp.32-41, 2006.
DOI : 10.1002/prot.21087

URL : https://hal.archives-ouvertes.fr/inserm-00133760

R. Unger, D. Harel, S. Wherland, and J. L. Sussman, A 3D building blocks approach to analyzing and predicting structure of proteins, Proteins: Structure, Function, and Genetics, vol.5, issue.4, pp.355-73, 1989.
DOI : 10.1002/prot.340050410

S. Wiley and . Editor, Protein Structure Prediction, pp.5-38

R. Unger, D. Harel, S. Wherland, and J. L. Sussman, Analysis of dihedral angles distribution: The doublets distribution determines polypeptides conformations, Biopolymers, vol.5, issue.5-6, pp.499-508, 1990.
DOI : 10.1002/bip.360300503

M. J. Rooman and S. J. Wodak, Identification of predictive sequence motifs limited by protein structure data base size, Nature, vol.335, issue.6185, pp.45-54, 1988.
DOI : 10.1038/335045a0

M. J. Rooman, J. Rodriguez, and S. J. Wodak, Automatic definition of recurrent local structure motifs in proteins, Journal of Molecular Biology, vol.213, issue.2, pp.327-363, 1990.
DOI : 10.1016/S0022-2836(05)80194-9

M. J. Rooman, J. Rodriguez, and S. J. Wodak, Relations between protein sequence and structure and their significance, Journal of Molecular Biology, vol.213, issue.2, pp.337-50, 1990.
DOI : 10.1016/S0022-2836(05)80195-0

S. J. Prestrelski, D. M. Byler, and M. N. Liebman, Generation of a substructure library for the description and classification of protein secondary structure. II. Application to spectra-structure correlations in fourier transform infrared spectroscopy, Proteins: Structure, Function, and Genetics, vol.39, issue.4, pp.440-50, 1992.
DOI : 10.1002/prot.340140405

S. J. Prestrelski, A. L. Williams, . Jr, and M. N. Liebman, Generation of a substructure library for the description and classification of protein secondary structure. I. Overview of the methods and results, Proteins: Structure, Function, and Genetics, vol.14, issue.4, pp.430-439, 1992.
DOI : 10.1002/prot.340140404

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.59-69, 1982.
DOI : 10.1007/BF00337288

T. Kohonen, J. Schuchhardt, G. Schneider, J. Reichelt, D. Schomburg et al., Self-Organizing Maps Local structural motifs of protein backbones are classified by self-organizing neural networks, Protein Eng, vol.9, pp.833-875, 1996.

J. S. Fetrow, S. R. Horner, W. Oehrl, D. L. Schaak, T. L. Boose et al., Analysis of the structure and stability of omega loop A replacements in yeast iso-1-cytochrome c, Protein Science, vol.4, issue.1, pp.197-210, 1997.
DOI : 10.1002/pro.5560060122

C. Bystroff and D. Baker, Prediction of local structure in proteins using a library of sequence-structure motifs, Journal of Molecular Biology, vol.281, issue.3, pp.565-77, 1998.
DOI : 10.1006/jmbi.1998.1943

R. Schneider, A. De-daruvar, and C. Sander, The HSSP database of protein structure-sequence alignments, Nucleic Acids Research, vol.25, issue.1, pp.226-256, 1997.
DOI : 10.1093/nar/25.1.226

C. Bystroff and D. Baker, Blind predictions of local protein structure in CASP2 targets using the I-sites library, Proteins, pp.167-71, 1997.

C. Bystroff, V. Thorsson, and D. Baker, HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins, Journal of Molecular Biology, vol.301, issue.1, pp.173-90, 2000.
DOI : 10.1006/jmbi.2000.3837

A. C. Camproux, P. Tuffery, J. P. Chevrolat, J. F. Boisvieux, and S. Hazout, Hidden Markov model approach for identifying the modular framework of the protein backbone, Protein Engineering Design and Selection, vol.12, issue.12, pp.1063-73, 1999.
DOI : 10.1093/protein/12.12.1063

A. C. Camproux, A. G. De-brevern, S. Hazout, and P. Tufféry, Exploring the use of a structural alphabet for structural prediction of protein loops, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), vol.106, issue.1-2, pp.28-35, 2001.
DOI : 10.1007/s002140100261

URL : https://hal.archives-ouvertes.fr/inserm-00134555

J. Maupetit, R. Gautier, and P. Tuffery, SABBAC: online Structural Alphabet-based protein BackBone reconstruction from Alpha-Carbon trace, Nucleic Acids Research, vol.34, issue.Web Server, pp.147-51, 2006.
DOI : 10.1093/nar/gkl289

J. Martin, A. G. De-brevern, and A. C. Camproux, local structure approach: A case study on Outer Membrane Proteins, Proteins: Structure, Function, and Bioinformatics, vol.76, issue.1, pp.92-109, 2008.
DOI : 10.1002/prot.21659

URL : https://hal.archives-ouvertes.fr/inserm-00176452

S. Wiley and . Editor, Protein Structure Prediction, pp.5-39

C. Micheletti, F. Seno, and A. Maritan, Recurrent oligomers in proteins: An optimal scheme reconciling accurate and concise backbone representations in automated folding and design studies, Proteins: Structure, Function, and Genetics, vol.105, issue.4, pp.662-74, 2000.
DOI : 10.1002/1097-0134(20000901)40:4<662::AID-PROT90>3.0.CO;2-F

C. G. Hunter and S. Subramaniam, Protein fragment clustering and canonical local shapes, Proteins: Structure, Function, and Bioinformatics, vol.281, issue.4, pp.580-588, 2003.
DOI : 10.1002/prot.10309

A. G. De-brevern, C. Etchebest, and S. Hazout, Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.271-87, 2000.
DOI : 10.1002/1097-0134(20001115)41:3<271::AID-PROT10>3.0.CO;2-Z

URL : https://hal.archives-ouvertes.fr/inserm-00132821

C. G. Hunter and S. Subramaniam, Protein local structure prediction from sequence, Proteins: Structure, Function, and Bioinformatics, vol.7, issue.Suppl 1, pp.572-581, 2003.
DOI : 10.1002/prot.10310

O. Sander, I. Sommer, and T. Lengauer, Local protein structure prediction using discriminative models, BMC Bioinformatics, vol.7, issue.1, p.14, 2006.
DOI : 10.1186/1471-2105-7-14

J. M. Yang and C. H. Tung, Protein structure database search and evolutionary classification, Nucleic Acids Research, vol.34, issue.13, pp.3646-59, 2006.
DOI : 10.1093/nar/gkl395

URL : http://doi.org/10.1093/nar/gkl395

C. H. Tung, J. W. Huang, and J. M. Yang, Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database, Genome Biology, vol.8, issue.3, p.31, 2007.
DOI : 10.1186/gb-2007-8-3-r31

C. H. Tung and J. M. Yang, fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies, Nucleic Acids Research, vol.35, issue.Web Server, pp.438-481, 2007.
DOI : 10.1093/nar/gkm288

S. Y. Ku and Y. J. Hu, Protein structure search and local structure characterization, BMC Bioinformatics, vol.9, issue.1, p.349, 2008.
DOI : 10.1186/1471-2105-9-349

J. Yang, Comprehensive description of protein structures using protein folding shape code, Proteins: Structure, Function, and Bioinformatics, vol.1, issue.Suppl 7, pp.1497-518, 2008.
DOI : 10.1002/prot.21932

A. G. De-brevern, New assessment of Protein Blocks, In Silico Biology, vol.5, pp.283-289, 2005.

G. Wang, R. L. Dunbrack, and . Jr, PISCES: a protein sequence culling server, Bioinformatics, vol.19, issue.12, pp.1589-91, 2003.
DOI : 10.1093/bioinformatics/btg224

V. S. Gowri, S. B. Pandit, P. S. Karthik, N. Srinivasan, and S. Balaji, Integration of related sequences with protein three-dimensional structural families in an updated version of PALI database, Nucleic Acids Research, vol.31, issue.1, pp.486-494, 2003.
DOI : 10.1093/nar/gkg063

M. Tyagi, P. Sharma, C. S. Swamy, F. Cadet, N. Srinivasan et al., Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet, Nucleic Acids Research, vol.34, issue.Web Server, pp.119-142, 2006.
DOI : 10.1093/nar/gkl199

URL : https://hal.archives-ouvertes.fr/inserm-00133751

M. Tyagi, A. G. De-brevern, N. Srinivasan, and B. Offmann, Protein structure mining using a structural alphabet, Proteins: Structure, Function, and Bioinformatics, vol.5, issue.2, pp.920-957, 2008.
DOI : 10.1002/prot.21776

URL : https://hal.archives-ouvertes.fr/inserm-00176443

G. Kurisu, Y. Kai, and S. Harada, Structure of the zinc-binding site in the crystal structure of a zinc endoprotease from Streptomyces caespitosus at 1 ?? resolution, Journal of Inorganic Biochemistry, vol.82, issue.1-4, pp.225-233, 2000.
DOI : 10.1016/S0162-0134(00)00136-7

A. G. De-brevern, H. Valadie, S. Hazout, and C. Etchebest, Extension of a local backbone description using a structural alphabet: A new approach to the sequence-structure relationship, Protein Science, vol.40, issue.(1/2), pp.2871-86, 2002.
DOI : 10.1110/ps.0220502

URL : https://hal.archives-ouvertes.fr/inserm-00143374

A. G. De-brevern and S. Hazout, Hybrid Protein Model (HPM): a method to compact protein 3D-structure information and physicochemical properties, Proceedings Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000, pp.49-54, 2000.
DOI : 10.1109/SPIRE.2000.878179

S. Wiley and . Editor, Protein Structure Prediction, pp.5-40

A. G. De-brevern and S. Hazout, Compacting local protein folds with a "hybrid protein model", Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), vol.106, issue.1-2, pp.36-47, 2001.
DOI : 10.1007/s002140000227

A. G. De-brevern and S. Hazout, 'Hybrid Protein Model' for optimally defining 3D protein structure fragments, Bioinformatics, vol.19, issue.3, pp.345-53, 2003.
DOI : 10.1093/bioinformatics/btf859

URL : https://hal.archives-ouvertes.fr/inserm-00133632

C. Benros, A. G. De-brevern, C. Etchebest, and S. Hazout, Assessing a novel approach for predicting local 3D protein structures from sequence, Proteins: Structure, Function, and Bioinformatics, vol.30, issue.23, pp.865-80, 2006.
DOI : 10.1002/prot.20815

URL : https://hal.archives-ouvertes.fr/inserm-00133180

C. Benros, S. Hazout, and A. G. De-brevern, Extension of a local backbone description using a structural alphabetHybrid Protein Model": a new clustering approach for 3D local structures, Bioinformatics, pp.36-45, 2002.

C. Benros, A. G. De-brevern, and S. Hazout, Hybrid protein model (HPM): a method for building a library of overlapping local structural prototypes. Sensitivity study and improvements of the training, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718), pp.53-72, 2003.
DOI : 10.1109/NNSP.2003.1318004

URL : https://hal.archives-ouvertes.fr/inserm-00133639

A. Bornot, C. Etchebest, and A. G. De-brevern, A new prediction strategy for long local protein structures using an original description, Proteins: Structure, Function, and Bioinformatics, vol.19, issue.1/2, 2009.
DOI : 10.1002/prot.22370

URL : https://hal.archives-ouvertes.fr/inserm-00348740

A. G. De-brevern, C. Benros, R. Gautier, H. Valadie, S. Hazout et al., Local backbone structure prediction of proteins, In Silico Biol, vol.4, pp.381-387, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00132872

C. Etchebest, C. Benros, S. Hazout, and A. G. De-brevern, A structural alphabet for local protein structures: Improved prediction methods, Proteins: Structure, Function, and Bioinformatics, vol.20, issue.4, pp.810-827, 2005.
DOI : 10.1002/prot.20458

URL : https://hal.archives-ouvertes.fr/inserm-00143564

A. G. De-brevern, C. Etchebest, C. Benros, and S. Hazout, ???Pinning strategy???: a novel approach for predicting the backbone structure in terms of protein blocks from sequence, Journal of Biosciences, vol.289, issue.1, pp.51-72, 2007.
DOI : 10.1007/s12038-007-0006-3

M. Tyagi, A. Bornot, B. Offmann, and A. G. De-brevern, Protein short loop prediction in terms of a structural alphabet, Computational Biology and Chemistry, vol.33, issue.4, 2009.
DOI : 10.1016/j.compbiolchem.2009.06.002

URL : https://hal.archives-ouvertes.fr/inserm-00396485

A. G. De-brevern, H. Wong, C. Tournamille, Y. Colin, L. Van-kim et al., A structural model of a seven-transmembrane helix receptor: The Duffy antigen/receptor for chemokine (DARC), Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1724, issue.3, pp.288-306, 2005.
DOI : 10.1016/j.bbagen.2005.05.016

URL : https://hal.archives-ouvertes.fr/inserm-00143373

A. G. De-brevern, L. Autin, Y. Colin, O. Bertrand, and C. Etchebest, In Silico Studies on DARC, silico studies on DARC, pp.289-303, 2009.
DOI : 10.2174/1871526510909030289

URL : https://hal.archives-ouvertes.fr/inserm-00366309

A. G. De-brevern, Editorial [Hot Topic: In Silico (Guest Editor: Alexandre G. de Brevern)], Infectious Disorders - Drug Targets, vol.9, issue.3, pp.246-253, 2009.
DOI : 10.2174/1871526510909030246

B. Oliva, P. A. Bates, E. Querol, F. X. Aviles, and M. J. Sternberg, An automated classification of the structure of protein loops, Journal of Molecular Biology, vol.266, issue.4, pp.814-844, 1997.
DOI : 10.1006/jmbi.1996.0819

A. S. Yang and L. Y. Wang, Local structure-based sequence profile database for local and global protein structure predictions, Bioinformatics, vol.18, issue.12, pp.1650-1657, 2002.
DOI : 10.1093/bioinformatics/18.12.1650

A. S. Yang and L. Y. Wang, Local structure prediction with local structure-based sequence profiles, Bioinformatics, vol.19, issue.10, pp.1267-74, 2003.
DOI : 10.1093/bioinformatics/btg151

S. Wiley and . Editor, Protein Structure Prediction, pp.5-41

Q. Li, C. Zhou, H. O. Liu, and U. H. Hansmann, Fragment-based local statistical potentials derived by combining an alphabet of protein local structures with secondary structures and solvent accessibilities LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach, J Chem Inf Model, vol.48, pp.1903-1911, 2008.

N. C. Fitzkee, P. J. Fleming, H. Gong, N. Panasik, . Jr et al., Are proteins made from a limited parts list?, Trends in Biochemical Sciences, vol.30, issue.2, pp.73-80, 2005.
DOI : 10.1016/j.tibs.2004.12.005

R. Bonneau, C. E. Strauss, and D. Baker, Improving the performance of rosetta using multiple sequence alignment information and global measures of hydrophobic core formation, Proteins: Structure, Function, and Genetics, vol.232, issue.1, pp.1-11, 2001.
DOI : 10.1002/1097-0134(20010401)43:1<1::AID-PROT1012>3.0.CO;2-A

Q. W. Dong, X. L. Wang, and L. Lin, Methods for optimizing the structure alphabet sequences of proteins, Computers in Biology and Medicine, vol.37, issue.11, pp.1610-1616, 2007.
DOI : 10.1016/j.compbiomed.2007.03.002

A. G. De-brevern, A. Camproux, S. Hazout, C. Etchebest, and P. Tuffery, Protein structural alphabets: beyond the secondary structure description, In Recent Research Developments in Protein Engineering, pp.319-331, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00133650

C. Etchebest, C. Benros, A. Bornot, A. C. Camproux, and A. G. De-brevern, A reduced amino acid alphabet for understanding and designing protein adaptation to mutation, European Biophysics Journal, vol.92, issue.8, pp.1059-69, 2007.
DOI : 10.1007/s00249-007-0188-5

URL : https://hal.archives-ouvertes.fr/inserm-00155390

A. Thomas, S. Deshayes, M. Decaffmeyer, M. H. Van-eyck, B. Charloteaux et al., Prediction of peptide structure: How far are we?, Proteins: Structure, Function, and Bioinformatics, vol.98, issue.4, pp.889-97, 2006.
DOI : 10.1002/prot.21151

M. Dudev and C. Lim, Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites, BMC Bioinformatics, vol.8, issue.1, p.212, 2007.
DOI : 10.1186/1471-2105-8-106

R. Karchin, M. Cline, Y. Mandel-gutfreund, and K. Karplus, Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry, Proteins: Structure, Function, and Bioinformatics, vol.323, issue.1/2, pp.504-518, 2003.
DOI : 10.1002/prot.10369

A. Bornot, B. Offmann, and A. G. De-brevern, How flexible protein structures are? New questions on the protein structure plasticity, BIOFORUM Europe, vol.11, pp.24-25, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00189079