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Abstract. Antiremodeling agents reduce bone loss in
part through direct actions on osteoclasts. Their effects
on osteoblasts and bone formation activity are less clear
and may differ at sites undergoing modeling vs.
remodeling. Skeletally mature intact beagles, 1—2 years
old at the start of the study, were treated daily
with clinically relevant doses of alendronate (0.10 or
0.20 mg/kg), risedronate (0.05 or 0.10 mg/kg), raloxifene
(0.50 mg/kg), or vehicle (1 mL/kg). Dynamic bone for-
mation parameters were histologically assessed on
periosteal, endocortical/trabecular, and intracortical
bone envelopes of the rib. Raloxifene significantly in-
creased periosteal surface mineral apposition rate
(MAR), a measure of osteoblast activity, compared to
all other treatments (+ 108 to +175%, P < 0.02), while
having no significant effect on MAR at either the en-
docortical/trabecular or intracortical envelope. Alendr-
onate (both 0.10 and 0.20 doses) and risedronate (only
the 0.10 dose) significantly (P < 0.05) suppressed MAR
on the endocortical/trabecular envelope, while none of
the bisphosphonate doses significantly altered MAR at
either the periosteal or intracortical envelopes compared
to vehicle. Based on these results, we conclude that (1) at
clinically relevant doses the two classes of antiremodel-
ing agents, bisphosphonates and selective estrogen
receptor modulators, exert differential effects on osteo-
blast activity in the canine rib and (2) this effect depends
on whether modeling or remodeling is the predominant
mechanism of bone formation.
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Antiremodeling agents significantly reduce vertebral
fracture risk in part through their direct effects on os-
teoclasts. By inducing osteoclast apoptosis and sup-
pressing activity/proliferation/differentiation [1—5], the
number of newly initiated remodeling sites is reduced
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[6]. Due to the coupling of resorption and formation
activities during remodeling, antiremodeling agents ef-
fect a systemic decrease in bone-formation activity [7, §].
It is unclear whether these agents have separate
effects on osteoblasts independent of their suppression
of remodeling.

Numerous studies have attempted to determine
the effects of antiremodeling agents on osteoblasts.
In vitro data show positive effects of bisphosphonates on
osteoblast proliferation and differentiation [9—11] as
well as suppression of apoptosis [12, 13]. These data are
contrasted by in vivo animal studies that have shown
bisphosphonate suppression of mineral apposition rate
(MAR), indicative of reduced osteoblast activity, at
both modeling and remodeling sites [14—17]. Selective
estrogen receptor modulators (SERMs) suppress osteo-
blast apoptosis [18] and increase osteoblast differentia-
tion [19] and proliferation [20] in vitro. In vivo, SERMs
have produced conflicting results with respect to effects
on MAR [21-23].

Antiremodeling agents could exert differential effects
on osteoblasts depending on whether the cells are in-
volved in remodeling or modeling bone-formation activ-
ity. Remodeling-associated formation activity, the
predominant form on endocortical, trabecular, and in-
tracortical envelopes [24, 25], is coupled to osteoclasts.
Antiremodeling agents may indirectly reduce the indi-
vidual activity of osteoblasts through reductions in basic
multicellular unit-level osteoclast activity (i.e., reduced
erosion depth) [26]. These agents may also directly influ-
ence osteoblasts in vivo. This effect would be most evident
at sites undergoing modeling, where formation occurs
without previous resorption. Modeling is the predomi-
nant mechanism of formation activity on periosteal sur-
faces, although it can occur on other surfaces [24, 25].

The goal of this study was to determine the effect of
bisphosphonates (alendronate and risedronate) and a
SERM (raloxifene) on MAR, an indicator of osteoblast
activity. Following 1-year treatment of intact beagle
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dogs with clinically relevant doses of these agents, ribs
were histologically assessed for bone formation vari-
ables. MAR was used as an indicator of osteoblast
activity and assessed separately at sites that predomi-
nantly undergo remodeling (endocortical/trabecular and
intracortical envelopes) or modeling (periosteal)
bone formation. We hypothesized that these three
antiremodeling agents would suppress osteoblast activ-
ity (MAR) at both modeling and remodeling sites.

Materials and Methods
Animals

Seventy-two skeletally mature female beagles (1.3 £ 0.02
years old) were purchased from Marshall Farms (North Rose,
NY). Upon arrival, lateral X-rays of all dogs were obtained to
confirm skeletal maturity (closed proximal tibia and lumbar
vertebra growth plates). Animals were housed two per cage in
environmentally controlled rooms at Indiana University
School of Medicine’s Association for Assessment and
Accreditation of Laboratory Animal Care-accredited facility
and provided standard dog chow and water. All procedures
were approved prior to the study by the Indiana University
School of Medicine Animal Care and Use Committee.

Experimental Design

Following 2 weeks of acclimatization, animals were assigned to
treatment groups (n = 12/group) by matching body weights.
All dogs were treated daily for 1 year with oral doses of vehicle
(saline, 1.0 mL/kg), risedronate sodium (0.05 or 0.10 mg/kg;
Procter & Gamble Pharmaceuticals, Norwich, NY), alendro-
nate sodium (0.10 or 0.20 mg/kg; Merck, RAHWAY, NJ), or
raloxifene (0.50 mg/kg; Lilly Research Labs, Indianapolis, IN).
The bisphosphonate doses (risedronate 0.10 and alendronate
0.20) are equivalent to those used for treatment of postmen-
opausal osteoporosis (on a mg/kg basis), and the lower doses
of each drug correspond to approximately half the clinical
treatment dose. The raloxifene dose was chosen to produce
serum levels approximately equivalent to those documented in
postmenopausal women. Risedronate and alendronate were
dissolved in saline; raloxifene was diluted in 10% hydroxy-
propyl-B-cyclodextrin made with distilled water. All agents
were administered orally with a syringe each morning after an
overnight fast and at least 2 hours prior to feeding. Prior to
necropsy, animals were injected with calcein (0.20 mL/kg,
intravenous) using a 2-12-2-5 labeling schedule (» = 9 ani-
mals/group) or a 2-5-2-5 (n = 3 animals/group). The shorter
interlabel duration was due to a scheduling error. Animals
were killed after 1 year by intravenous administration of so-
dium pentobarbital (0.22 mg/kg). After death, the right ninth
rib (~20 mm) was dissected, placed in 10% neutral buffered
formalin for 72 hours, and then transferred to 70% ethanol for
processing.

Histology

Using an automatic tissue processor (Shandon/Lipshaw,
Pittsburgh, PA), specimens were cycled through a graded series
of ethanols, cleared using xylene, and infiltrated with methyl
methacrylate (MMA; Aldrich, Milwaukee, WI) using routine
embedding procedures. Transverse sections (80—100 pm) were
cut using a diamond wire saw (Histosaw; Delaware Diamond
Knives, Wilmington, DE). Histological measurements were
made using a semiautomatic analysis system (Bioquant OS-
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Fig. 1. Photomicrograph of rib cross section. Calcein labeling
was separately quantified on periosteal (P), endocortical/tra-
becular (E/T), and intracortical (I) bone envelopes. Scale
bar = 1 mm.

TEO 7.20.10; Bioquant Image Analysis, Nashville, TN) at-
tached to a microscope equipped with an ultraviolet light
source (Nikon Optiphot 2; Nikon, Tokyo, Japan). Measure-
ments were made on one cross section per animal (Fig. 1).
Periosteal, endocortical/trabecular (mineral surface/bone sur-
face [MS/BS], MAR, bone formation rate [BFR]/BS), and
intracortical (MAR, labeled osteon number, activation fre-
quency) dynamic bone formation parameters were separately
analyzed as previously described [16] and conformed to stan-
dard ASBMR nomenclature [27]. Endocortical and trabecular
surfaces were analyzed as a single entity because it was not
possible to consistently define the boundary between two
surfaces across all tissue sections.

Statistics

Statistical tests were performed using SAS software (SAS
Institute, Cary, NC). Differences among treatment groups
were evaluated using one-way analysis of variance. When a
significant overall F value (P < 0.05) was present, differences
between individual group means were tested using Fisher’s
protected least-significant difference post-hoc test. For all tests,
P < 0.05 was considered statistically significant. Data are
presented as mean + standard error.

Results

The two classes of drugs, bisphosphonates (alendronate
and risedronate) and SERMs (raloxifene), exerted
envelope-specific effects on MAR of nonovariectomized
dog ribs (Table 1, Fig. 2). Raloxifene-treated animals
had significantly higher MAR (+108%, P = 0.019) on
the periosteal surface compared to animals treated with
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Table 1. Rib bone-formation parameters on periosteal, endocortical/trabecular, and intracortical envelopes
Risedronate Alendronate
Vehicle Raloxifene (0.05 (0.10 (0.10 (0.20
(I mL/kg/day) (0.5 mg/kg/day) mg/kg/day) mg/kg/day) mg/keg/day) mg/kg/day) P
Periosteal
MS/BS (%) 77 £ 1.5 17.6 = 2.5 140 £ 23 13.6 =+ 3.9 16.1 £2.7 13.8 £ 2.8 0.22
BFR (um?®/pm?/day) 5.4 + 1.8 20.8 + 4.1* 8.0 £ 3.2 9.6 £ 3.5 11.1 £ 3.2 94 + 3.6 0.05
Endocortical/trabecular
MS/BS (%) 22.1 + 33 26.6 + 3.2° 16.6 + 3.5 94 +23° 9.0 £+ 24° 7.5 £ 1.6° < 0.0001
BFR (um®/um?/day) 28.7 + 4.8 36.7 + 4.9° 18.6 £ 55 4.7 2.7 6.0 2.6 6.5+ 1.6 < 0.0001
Intracortical
MAR (um/day) 093 + 0.14 098 + 0.14 1.07 +£ 0.09 097 + 0.14 1.02 + 0.06 0.89 + 0.13 0.89
L.On.N (n/mm?) 143 + 0.21 1.80 + 0.42 1.88 £ 0.27 145 £ 031 2.10 £ 049 1.59 £ 0.45 0.78
Ac.f (n/year) 13.9 + 3.1 14.8 + 3.1 151 £29 13.0 +£ 3.3 170 £ 42 129 £ 3.5 0.96
Data are means =+ standard error of n = 12/group. P < 0.05 ¢ vehicle,
VS. risedronate 0.05, and

# all other treatments,
® all bisphosphonate-treated groups,

vehicle (Fig. 2). Neither alendronate nor risedronate
significantly altered periosteal MAR at either treatment
dose compared to vehicle-treated animals. Periosteal
surface MAR was significantly higher in raloxifene-
treated animals compared to all bisphosphonate-treated
groups (+112% to +175%, all P < 0.05). Endocortical/
trabecular MAR was similar between vehicle- and ra-
loxifene-treated animals but significantly higher in
raloxifene-treated animals compared to all bisphospho-
nate-treated groups (+53% to +464%, all P < 0.05)
(Fig. 2). MAR was significantly lower than vehicle in
animals treated with alendronate at the 0.10 dose
(—59%) and the 0.20 dose (—41%), as well as risedronate
at the 0.10 dose (—80%). There was no difference in
MAR between vehicle and the lower dose of risedronate
(0.05) on the endocortical/trabecular surface. Intracor-
tical MAR was not altered by any of the treatments.

Periosteal mineralizing surface (MS/BS) was not
significantly different (P = 0.22) among the treatment
groups (Table 1). On the endocortical/trabecular sur-
face, there was no significant effect of raloxifene on MS/
BS compared to vehicle. However, raloxifene-treated
animals had significantly higher MS/BS on this surface
compared to all bisphosphonate-treated groups (+ 60%
to +254%, all P < 0.05). Endocortical/trabecular MS/
BS was significantly lower than vehicle in groups treated
with alendronate (both 0.10 and 0.20 doses) or risedr-
onate (only the 0.10 dose). Labeled osteon number, the
surrogate to MS/BS within the intracortical envelope,
was not significantly altered by any of the treatments
(Table 1).

Periosteal surface BFR was significantly higher in
raloxifene-treated animals compared to both vehicle
(+285%, P < 0.003) and all bisphosphonate-treated
groups (Table 1). There was no significant difference
between vehicle and any of the bisphosphonate-treated

L.On.N, labeled osteon number; Ac.f, activation frequency.
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Fig. 2. Envelope-specific effects of antiremodeling agents on
MAR of dog ribs following 1-year treatment with clinically
relevant doses of raloxifene, alendronate, or risedronate. (A)
Periosteal MAR. (B) Endocortical/trabecular envelope MAR.
Data presented as mean + standard error. P < 0.05 vs. “all
other treatments, all bisphosphonate-treated groups, “vehicle,
drisedronate 0.05, °risedronate 0.10.

groups. Endocortical/trabecular surface BFR was un-
changed with raloxifene compared to vehicle; bis-
phosphonate-treated animals (alendronate 0.10 and



258

0.20, risedronate 0.10) had significantly lower BFR
compared to vehicle. Intracortical activation frequency
was not different among the groups.

Discussion

In addition to direct effects on osteoclasts, antiremod-
eling agents may influence osteoblasts. It is well accepted
that these agents reduce bone formation, but whether
this is due to a decrease in the number of formation
sites, a decrease in formation at each individual site, or
both is unclear. In vitro studies have shown that both
bisphosphonates and SERMs have direct positive effects
on osteoblasts [9—13, 18—20]; however, in vivo data have
produced conflicting results. Our data show that fol-
lowing 1-year treatment of intact dogs with clinically
relevant doses, raloxifene significantly stimulates osteo-
blast activity on periosteal surfaces without an effect on
endocortical/trabecular surfaces. In contrast to raloxif-
ene, bisphosphonates do not alter periosteal osteoblast
activity while significantly suppressing MAR on
endocortical/trabecular surfaces.

In the mature skeleton, periosteal bone formation
occurs predominantly through formation without prior
resorption [24]. Our data show that raloxifene signifi-
cantly increases osteoblast activity (assessed by MAR)
on the rib periosteal surface compared to vehicle-treated
animals. This is consistent with in vitro data showing that
raloxifene can positively affect osteoblast activity. In
culture, raloxifene stimulates type 1 collagen secretion
and alkaline phosphatase activity [19, 20] and suppresses
osteoblast apoptosis [18]. In our study, there was no
significant effect of raloxifene (positive or negative) on
MAR within either the endocortical/trabecular or in-
tracortical envelopes of the rib, both sites that predom-
inantly undergo coupled formation and resorption in the
adult skeleton. These data suggest that raloxifene has a
direct stimulatory effect on osteoblasts associated with
formation on a surface that primarily undergoes mod-
eling, while this effect is negated on surfaces that
primarily undergo remodeling-associated formation
activity.

The mechanism through which raloxifene stimulates
osteoblast activity on the periosteal surface is unclear.
Estrogen receptor-o (ERa) is more highly expressed in
cortical bone [28] and appears to be a major regulator of
bone modeling on the periosteal surface. Mice lacking
ERo receptors exhibit reduced periosteal diameter
[29, 30] and an attenuation of loading-induced periosteal
formation [31]. Animals and cells lacking ERP are
minimally affected with respect to periosteal geometry
or cellular activity [32]; this receptor appears to play a
greater role in endocortical and trabecular sites. Our
findings may be explained by the selective modulation of
ERa or ERP by raloxifene, which may differentially
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regulate osteoblast-related genes [33] at the various bone
envelopes depending on the ER population expressed. It
is also possible that factors associated with osteoclasts
and/or resorption offset the positive effect of raloxifene
at remodeling sites.

Periosteal expansion significantly increases bone
strength [34]. The relationship between periosteal
dimensions and bone strength is exponential; increases
of periosteal radii enhance section modulus (an estima-
tor of bone strength) by the fourth power [35]. Thus,
small increases in periosteal apposition are mechanically
advantageous as limited amounts of new bone can
substantially increase fracture resistance and can
mechanically offset loss of endocortical/trabecular bone.
The increases in MAR (and BFR) with raloxifene would
be expected to significantly increase nonvertebral bone
cross-sectional area and reduce nonvertebral fracture
risk, yet neither of these effects has been confirmed in
clinical trials. Raloxifene did not enhance periosteal
expansion beyond that of placebo-treated postmeno-
pausal women after 3 years [36], although the technique
used to assess bone size (dual-energy X-ray absorpti-
ometry) may not have sufficient resolution to detect
small differences. Additionally, clinical trials with ra-
loxifene have not shown a significant reduction in non-
vertebral fractures [37] (in contrast to both risedronate
[38] and alendronate [39]). Increased trabecular BMD
with bisphosphonates is largely responsible for the re-
duced fracture risk. Because raloxifene is a less potent
antiremodeling agent, it has less effect on trabecular
BMD, which may explain its failure to significantly
reduce nonvertebral fracture risk. Still, it is entirely
possible that periosteal expansion, although known to
increase bone strength, is not sufficient with raloxifene
treatment to decrease fracture risk in the absence of a
more significant trabecular bone mineral density
response.

Bisphosphonate treatment (either alendronate or
risedronate) did not significantly alter periosteal surface
MAR but did significantly suppress MAR on endocor-
tical/trabecular surfaces. These effects on different bone
surfaces are consistent with previous studies in dogs
[16, 17, 40, 41] and nonhuman primates [42]. In growing
[14] and skeletally mature [15] rats, however, treatment
with either alendronate or risedronate significantly
suppresses osteoblast activity on both periosteal
and endocortical surfaces. Our data suggest that bis-
phosphonates negatively influence the work rate of os-
teoblasts  associated  with  remodeling-associated
formation. High concentrations of bisphosphonates are
known to be liberated from the bone matrix during
resorption, and osteoblasts have been shown to inter-
nalize bisphosphonates [43]. Since bisphosphonates
cannot be metabolized, sufficient uptake in osteoblasts
would compromise their function via inhibition of pro-
tein prenylation [44]. We therefore hypothesize that
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decreases in formation with bisphosphonates are due to
both a decrease in the number of forming sites and the
osteoblast activity at each site. However, human data
quantifying MAR with bisphosphonate treatment gen-
erally show no effect at any bone envelope [6, 26, 45, 46].
Although these human data are limited by relatively
small sample sizes and confined to the iliac crest, until
similar drug effects on osteoblast activity can be con-
firmed in humans our interpretations remain hypothet-
ical.

Periosteal bone formation can be a compensatory
mechanism to maintain bone strength in situations
where bone loss occurs from trabecular and endocortical
surfaces [47]. At their respective clinical doses, raloxifene
is known to suppress remodeling less than the bis-
phosphoantes [48]. In these same dogs, vertebral bone
turnover was suppressed ~70% with alendronate (0.20)
and risedronate (0.10) and only ~20% with raloxifene
compared to vehicle [49]. It is therefore possible that
bisphosphonates did not increase periosteal formation
in our study because the suppression of remodeling on
endocortical/trabecular surfaces was sufficient to in-
crease bone mass to some critical level. If this were the
case, one might expect that a bisphosphonate dose that
had less suppressive effect on the endocortical/trabecu-
lar surface would have a more significant anabolic effect
on the periosteal surface. However, we did not find this
to be the case as the lower dose of risedronate (0.05)
suppressed endocortical/trabecular bone formation sig-
nificantly less than the higher dose (0.10), yet the two
had similar periosteal bone formation parameters. These
data suggest that the level of turnover suppression on
the endocortical/trabecular surface is not a main deter-
minant of periosteal osteoblast activity.

Our data describing bisphosphonate suppression of
MAR at remodeling sites may provide some explanation
for results from clinical trials using combination treat-
ments. Treatment with alendronate, either concurrently
or sequentially with teriparatide, blunts teriparatide-in-
duced increases in bone formation biomarkers and bone
mineral density of postmenopausal women [50, 51] and
men with low bone mass [52]. This blunting was
hypothesized to be related to the reduction in the
number of remodeling sites by alendronate, leaving few
active formation sites for teriparatide to stimulate.
Based on our data, an alternative hypothesis may be
that bisphosphonate suppression of osteoblast activity
directly offsets the osteoblast stimulatory effect of
teriparatide. Additionally, a suppressive effect of bis-
phosphonates on remodeling-associated bone-formation
activity could help explain the failure to consistently find
increased trabecular bone volume in bisphosphonate
clinical trials [6, 53].

One aim of this study was to compare the effects of
raloxifene and bisphosphonates at doses corresponding
to those used for treatment of postmenopausal women.
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Poststudy analyses of serum from three raloxifene-
treated dogs, for reasons unrelated to this study, re-
vealed that the serum concentration of raloxifene was
approximately half that predicted from the original
dosing calculations. These serum levels were still within
the range quantified in postmenopausal women receiv-
ing the 60 mg/day dose of raloxifene (Lilly, unpublished
data). We therefore compared the raloxifene dose to
both the clinical and half-clinical dose of each bis-
phosphonate. Based on the similarity among the four
different bisphosphonate-treated groups with respect to
periosteal MAR, the significantly greater MAR with
raloxifene appears to represent a true difference in the
biological activity of the drug administered at clini-
cally relevant doses. We cannot discount the possibility,
however, that bisphosphonate doses lower than those
used in this study could potentially stimulate periosteal
formation to levels comparable with raloxifene.

The current study has various limitations that should
be noted. We analyzed only one bone site of intact,
nonovariectomized beagle dogs and therefore cannot be
certain whether similar changes would occur in the ab-
sence of estrogen (i.e., postmenopausal women) or at
other bone sites. The endocortical/trabecular surfaces
were not separately assessed as the boundaries are dif-
ficult to differentiate and in our experience the surfaces
respond in similar ways. Although raloxifene dosing
levels provided serum values within the range quantified
in postmenopausal women receiving the 60 mg/day dose
of raloxifene, we cannot discount the possibility that
administering the drug at a higher dose would produce
different results. Although there are no data to suggest
the raloxifene carrier has any effect on bone formation
(10% hydroxypropyl-B-cyclodextrin), we cannot exclude
this possibility. Finally, although all growth plates are
generally closed in the dog by 12 months [54], we did not
assess the rib growth plates prior to treatment and
therefore do not know whether continued growth oc-
curred in the ribs of these animals during the course of
the study.

In conclusion, we have shown that 1 year of treat-
ment with clinically relevant doses of antiremodeling
agents significantly influences osteoblast activity in the
rib of beagle dogs. Raloxifene stimulates modeling-
associated osteoblast activity on the periosteal surface
while maintaining remodeling-associated activity on
endocortical/trabecular surfaces at levels similar to un-
treated controls. In contrast, bisphosphonates suppress
remodeling-associated osteoblast activity on the endo-
cortical/trabecular surface while having no significant
effect on periosteal osteoblast activity.
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