R. B. Ashman, S. C. Cowin, W. C. Van-buskirk, and J. C. Rice, A continuous wave technique for the measurement of the elastic properties of cortical bone, Journal of Biomechanics, vol.17, issue.5, pp.349-361, 1984.
DOI : 10.1016/0021-9290(84)90029-0

T. D. Brown, F. Jr, and A. B. , Mechanical Property Distributions in the Cancellous Bone of the Human Proximal Femur, Acta Orthopaedica Scandinavica, vol.7, issue.1-6, pp.429-437, 1980.
DOI : 10.3109/17453678008990819

E. Cendre, D. Mitton, J. P. Roux, M. E. Arlot, F. Duboeuf et al., High-Resolution Computed Tomography for Architectural Characterization of Human Lumbar Cancellous Bone: Relationships with Histomorphometry and Biomechanics, Osteoporosis International, vol.10, issue.5, pp.353-360, 1999.
DOI : 10.1007/s001980050240

J. E. Compston, N. J. Garrahan, P. I. Croucher, C. D. Wright, and K. Yamaguchi, Quantitative analysis of trabecular bone structure, Bone, vol.14, issue.3, pp.187-192, 1993.
DOI : 10.1016/8756-3282(93)90139-2

S. C. Cowin, The relationship between the elasticity tensor and the fabric tensor, Mechanics of Materials, vol.4, issue.2, pp.137-147, 1985.
DOI : 10.1016/0167-6636(85)90012-2

R. P. Crawford, C. E. Cann, and T. M. Keaveny, Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography, Bone, vol.33, issue.4, pp.744-750, 2003.
DOI : 10.1016/S8756-3282(03)00210-2

R. P. Crawford, W. S. Rosenberg, and T. M. Keaveny, Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions, Journal of Biomechanical Engineering, vol.125, issue.4, pp.434-438, 2003.
DOI : 10.1115/1.1589772

D. Dagan, M. Be-'ery, and A. Gefen, Single-trabecula building block for large-scale finite element models of cancellous bone, Medical & Biological Engineering & Computing, vol.18, issue.4, pp.549-556, 2004.
DOI : 10.1007/BF02350998

H. Follet, G. Boivin, C. Rumelhart, and P. J. Meunier, The degree of mineralization is a determinant of bone strength: a study on human calcanei, Bone, vol.34, issue.5, pp.783-789, 2004.
DOI : 10.1016/j.bone.2003.12.012

URL : https://hal.archives-ouvertes.fr/inserm-00557244

H. Follet, K. Bruyere-garnier, F. Peyrin, J. P. Roux, M. E. Arlot et al., Relationship between compressive properties of human os calcis cancellous bone and microarchitecture assessed from 2D and 3D synchrotron microtomography, Bone, vol.36, issue.2, pp.340-351, 2005.
DOI : 10.1016/j.bone.2004.10.011

URL : https://hal.archives-ouvertes.fr/inserm-00557240

A. Gefen and R. Seliktar, Comparison of the trabecular architecture and the isostatic stress flow in the human calcaneus, Medical Engineering & Physics, vol.26, issue.2, pp.119-129, 2004.
DOI : 10.1016/j.medengphy.2003.10.003

R. W. Goulet, S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown et al., The relationship between the structural and orthogonal compressive properties of trabecular bone, Journal of Biomechanics, vol.27, issue.4, pp.375-389, 1994.
DOI : 10.1016/0021-9290(94)90014-0

X. E. Guo and C. H. Kim, Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation, Bone, vol.30, issue.2, pp.404-411, 2002.
DOI : 10.1016/S8756-3282(01)00673-1

S. J. Hollister, J. M. Brennan, and N. Kikuchi, A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress, Journal of Biomechanics, vol.27, issue.4, pp.433-444, 1994.
DOI : 10.1016/0021-9290(94)90019-1

S. V. Jaecques, H. Van-oosterwyck, L. Muraru, T. Van-cleynenbreugel, D. Smet et al., Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone, Biomaterials, vol.25, issue.9, pp.1683-1696, 2004.
DOI : 10.1016/S0142-9612(03)00516-7

N. C. Jensen, L. P. Madsen, and F. Linde, Topographical distribution of trabecular bone strength in the human os calcanei, Journal of Biomechanics, vol.24, issue.1, pp.49-55, 1991.
DOI : 10.1016/0021-9290(91)90325-H

I. A. Kapandji, Physiologie articulaire : sche´massche´mas commente´scommente´s de me´caniqueme´canique humaine Tronc et rachis: le rachis dans son ensemble, la ceinture pelvienne et les articulations sacro-iliaques, le rachis lombaire, le rachis dorsal et la respiration, le rachis cervical,5è me e´ditione´dition, Maloine, p.255, 1994.

T. M. Keaveny, R. E. Borchers, L. J. Gibson, and W. C. Hayes, Trabecular bone modulus and strength can depend on specimen geometry, Journal of Biomechanics, vol.26, issue.8, pp.991-1000, 1993.
DOI : 10.1016/0021-9290(93)90059-N

T. M. Keaveny, E. F. Morgan, G. L. Niebur, and O. C. Yeh, Biomechanics of Trabecular Bone, Annual Review of Biomedical Engineering, vol.3, issue.1, pp.307-333, 2001.
DOI : 10.1146/annurev.bioeng.3.1.307

D. L. Kopperdahl, E. F. Morgan, and T. M. Keaveny, Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone, Journal of Orthopaedic Research, vol.27, issue.4, pp.801-805, 2002.
DOI : 10.1016/S0736-0266(01)00185-1

A. J. Ladd and J. H. Kinney, Numerical errors and uncertainties in finite-element modeling of trabecular bone, Journal of Biomechanics, vol.31, issue.10, pp.941-945, 1998.
DOI : 10.1016/S0021-9290(98)00108-0

A. J. Ladd, J. H. Kinney, D. L. Haupt, and S. A. Goldstein, Finite-element modeling of trabecular bone: Comparison with mechanical testing and determination of tissue modulus, Journal of Orthopaedic Research, vol.8, issue.5, pp.622-628, 1998.
DOI : 10.1002/jor.1100160516

C. M. Langton, C. F. Njeh, R. Hodgskinson, and J. D. Currey, Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation, Bone, vol.18, issue.6, pp.495-503, 1996.
DOI : 10.1016/8756-3282(96)00086-5

T. C. Lee, R. L. Kashyap, and C. N. Chu, Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms, CVGIP: Graphical Models and Image Processing, vol.56, issue.6, pp.462-478, 1994.
DOI : 10.1006/cgip.1994.1042

E. Lespessailles, A. Jullien, E. Eynard, R. Harba, G. Jacquet et al., Biomechanical properties of human os calcanei, Journal of Biomechanics, vol.31, issue.9, pp.817-824, 1998.
DOI : 10.1016/S0021-9290(98)00074-8

O. Lindahl, Mechanical Properties of Dried Defatted Spongy Bone, Acta Orthopaedica Scandinavica, vol.39, issue.1, pp.11-19, 1976.
DOI : 10.3109/17453677608998966

F. Linde, P. Norgaard, I. Hvid, A. Odgaard, and K. Soballe, Mechanical properties of trabecular bone. Dependency on strain rate, Journal of Biomechanics, vol.24, issue.9, pp.803-809, 1991.
DOI : 10.1016/0021-9290(91)90305-7

D. Mitton, E. Cendre, J. P. Roux, M. E. Arlot, G. Peix et al., Mechanical Properties of Ewe Vertebral Cancellous Bone Compared With Histomorphometry and High-Resolution Computed Tomography Parameters, Bone, vol.22, issue.6, pp.651-658, 1998.
DOI : 10.1016/S8756-3282(98)00036-2

E. F. Morgan, H. H. Bayraktar, and T. M. Keaveny, Trabecular bone modulus???density relationships depend on anatomic site, Journal of Biomechanics, vol.36, issue.7, pp.897-904, 2003.
DOI : 10.1016/S0021-9290(03)00071-X

G. L. Niebur, M. J. Feldstein, J. C. Yuen, T. J. Chen, and T. M. Keaveny, High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone, Journal of Biomechanics, vol.33, issue.12, pp.1575-1583, 2000.
DOI : 10.1016/S0021-9290(00)00149-4

G. L. Niebur, J. C. Yuen, A. J. Burghardt, and T. M. Keaveny, Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions, Journal of Biomechanics, vol.34, issue.5, pp.699-706, 2001.
DOI : 10.1016/S0021-9290(01)00003-3

G. L. Niebur, M. J. Feldstein, and T. M. Keaveny, Biaxial Failure Behavior of Bovine Tibial Trabecular Bone, Journal of Biomechanical Engineering, vol.124, issue.6, pp.699-705, 2002.
DOI : 10.1115/1.1517566

A. Odgaard and F. Linde, The underestimation of Young's modulus in compressive testing of cancellous bone specimens, Journal of Biomechanics, vol.24, issue.8, pp.691-698, 1991.
DOI : 10.1016/0021-9290(91)90333-I

F. Peyrin, M. Salome, P. Cloetens, A. M. Laval-jeantet, E. Ritman et al., Micro-CT examinations of trabecular bone samples at different resolutions: 14, 7 and 2 micron level, Technology and Health Care, vol.6, pp.5-6, 1998.

F. Peyrin, M. Salome, S. Nuzzo, P. Cloetens, A. M. Laval-jeantet et al., Perspectives in three-dimensional analysis of bone samples using synchrotron radiation microtomography, Cell and Molecular Biology, issue.6, pp.46-1089, 2000.

W. Pistoia, B. Van-rietbergen, A. Laib, and P. Ruegsegger, High-Resolution Three-Dimensional-pQCT Images Can Be an Adequate Basis for In-Vivo ??FE Analysis of Bone, Journal of Biomechanical Engineering, vol.123, issue.2, pp.176-183, 2001.
DOI : 10.1115/1.1352734

W. Pistoia, B. Van-rietbergen, E. M. Lochmuller, C. A. Lill, F. Eckstein et al., Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images, Bone, vol.30, issue.6, pp.842-848, 2002.
DOI : 10.1016/S8756-3282(02)00736-6

R. Putz and R. J. Pabst, Atlas d'anatomie humaine, p.416, 1994.

M. Salome, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-jeantet et al., A synchrotron radiation microtomography system for the analysis of trabecular bone samples, Medical Physics, vol.8, issue.2, pp.2194-2204, 1999.
DOI : 10.1118/1.598736

C. A. Simmons and J. A. Hipp, Method-Based Differences in the Automated Analysis of the Three-Dimensional Morphology of Trabecular Bone, Journal of Bone and Mineral Research, vol.31, issue.Suppl 1, pp.942-947, 1997.
DOI : 10.1359/jbmr.1997.12.6.942

J. S. Stolken and J. H. Kinney, On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure, Bone, vol.33, issue.4, pp.494-504, 2003.
DOI : 10.1016/S8756-3282(03)00214-X

J. F. Thovert, J. Salles, and P. M. Adler, Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation, Journal of Microscopy, vol.135, issue.1, pp.65-79, 1993.
DOI : 10.1111/j.1365-2818.1993.tb03324.x

C. H. Turner, S. C. Cowin, J. Y. Rho, R. B. Ashman, and J. C. Rice, The fabric dependence of the orthotropic elastic constants of cancellous bone, Journal of Biomechanics, vol.23, issue.6, pp.549-561, 1990.
DOI : 10.1016/0021-9290(90)90048-8

B. Van-rietbergen, H. Weinans, R. Huiskes, and A. Odgaard, A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models, Journal of Biomechanics, vol.28, issue.1, pp.69-81, 1995.
DOI : 10.1016/0021-9290(95)80008-5

B. Van-rietbergen, H. Weinans, B. J. Polman, and R. Huiskes, COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS EMPLOYING VOXEL DATA, International Journal for Numerical Methods in Engineering, vol.28, issue.16, pp.2743-2767, 1996.
DOI : 10.1002/(SICI)1097-0207(19960830)39:16<2743::AID-NME974>3.0.CO;2-A

B. Van-rietbergen, J. Kabel, A. Odgaard, and R. Huiskes, Determination of Trabecular Bone Tissue Elastic Properties by Comparison of Experimental and Finite Element Results, Material Identification Using Mixed Numerical Experimental Methods, 1997.
DOI : 10.1007/978-94-009-1471-1_19

B. Van-rietbergen, H. Weinans, and R. Huiskes, Prospects of computer models for the prediction of osteoporotic bone fracture risk, Studies in Health Technology and Informatics, vol.40, pp.25-32, 1997.

B. Van-rietbergen, S. Majumdar, W. Pistoia, D. C. Newitt, M. Kothari et al., Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images, Technology and Health Care, vol.6, pp.5-6, 1998.

J. K. Weaver and J. Chalmers, Cancellous Bone, The Journal of Bone & Joint Surgery, vol.48, issue.2, pp.289-298, 1966.
DOI : 10.2106/00004623-196648020-00007

O. C. Yeh and T. M. Keaveny, Biomechanical effects of intraspecimen variations in trabecular architecture: a three-dimensional finite element study, Bone, vol.25, issue.2, pp.223-228, 1999.
DOI : 10.1016/S8756-3282(99)00092-7