X. Liu, P. Sajda, and P. Saha, Complete Volumetric Decomposition of Individual Trabecular Plates and Rods and Its Morphological Correlations With Anisotropic Elastic Moduli in Human Trabecular Bone, Journal of Bone and Mineral Research, vol.90, issue.Suppl 1, pp.223-235, 2008.
DOI : 10.1359/jbmr.071009

M. Matsuura, F. Eckstein, and E. Lochmuller, The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations, Biomechanics and Modeling in Mechanobiology, vol.32, issue.12, pp.27-42, 2008.
DOI : 10.1007/s10237-006-0073-7

J. Currey, The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone, Journal of Biomechanics, vol.21, issue.2, pp.131-139, 1988.
DOI : 10.1016/0021-9290(88)90006-1

H. Follet, G. Boivin, and C. Rumelhart, The degree of mineralization is a determinant of bone strength: a study on human calcanei, Bone, vol.34, issue.5, pp.783-789, 2004.
DOI : 10.1016/j.bone.2003.12.012

URL : https://hal.archives-ouvertes.fr/inserm-00557244

A. Boskey, L. Spevak, and R. Weinstein, Spectroscopic markers of bone quality in alendronate-treated postmenopausal women, Osteoporosis International, vol.25, issue.5, pp.793-800, 2009.
DOI : 10.1007/s00198-008-0725-9

T. Wenzel, M. Schaffler, and D. Fyhrie, In vivo trabecular microcracks in human vertebral bone, Bone, vol.19, issue.2, pp.89-95, 1996.
DOI : 10.1016/8756-3282(96)88871-5

D. Vashishth, J. Koontz, and S. Qiu, In vivo diffuse damage in human vertebral trabecular bone, Bone, vol.26, issue.2, pp.147-152, 2000.
DOI : 10.1016/S8756-3282(99)00253-7

N. Fazzalari, M. Forwood, and B. Manthey, Three-dimensional confocal images of microdamage in cancellous bone, Bone, vol.23, issue.4, pp.373-378, 1998.
DOI : 10.1016/S8756-3282(98)00111-2

N. Fazzalari, M. Forwood, and K. Smith, Assessment of Cancellous Bone Quality in Severe Osteoarthrosis: Bone Mineral Density, Mechanics, and Microdamage, Bone, vol.22, issue.4, pp.381-388, 1998.
DOI : 10.1016/S8756-3282(97)00298-6

N. Fazzalari, J. Kuliwaba, and M. Forwood, Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution, Bone, vol.31, issue.6, pp.697-702, 2002.
DOI : 10.1016/S8756-3282(02)00906-7

M. Arlot, B. Burt-pichat, and J. Roux, Microarchitecture Influences Microdamage Accumulation in Human Vertebral Trabecular Bone, Journal of Bone and Mineral Research, vol.354, issue.Suppl 1, pp.1613-1618, 2008.
DOI : 10.1359/jbmr.080517

D. Fyhrie and M. Schaffler, Failure mechanisms in human vertebral cancellous bone, Bone, vol.15, issue.1, pp.105-109, 1994.
DOI : 10.1016/8756-3282(94)90900-8

D. Burr, M. Forwood, and D. Fyhrie, Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress Fractures, Journal of Bone and Mineral Research, vol.13, issue.Suppl 1, pp.6-15, 1997.
DOI : 10.1359/jbmr.1997.12.1.6

O. Brien, F. Brennan, O. Kennedy, and O. , Microcracks in cortical bone: how do they affect bone biology, Curr Osteoporos Rep, vol.3, pp.39-45, 2005.

T. Diab, K. Condon, and D. Burr, Age-related change in the damage morphology of human cortical bone and its role in bone fragility, Bone, vol.38, issue.3, pp.427-431, 2006.
DOI : 10.1016/j.bone.2005.09.002

T. Norman and Z. Wang, Microdamage of human cortical bone: Incidence and morphology in long bones, Bone, vol.20, issue.4, pp.375-379, 1997.
DOI : 10.1016/S8756-3282(97)00004-5

M. Allen, K. Iwata, and R. Phipps, Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate, Bone, vol.39, issue.4, pp.872-879, 2006.
DOI : 10.1016/j.bone.2006.04.028

S. Tang and D. Vashishth, Non-enzymatic glycation alters microdamage formation in human cancellous bone, Bone, vol.46, issue.1, pp.148-154, 2010.
DOI : 10.1016/j.bone.2009.09.003

M. Saito and K. Marumo, Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus, Osteoporosis International, vol.43, issue.Suppl, pp.195-214, 2010.
DOI : 10.1007/s00198-009-1066-z

S. Viguet-carrin, P. Garnero, and P. Delmas, The role of collagen in bone strength, Osteoporosis International, vol.17, issue.3, pp.319-336, 2006.
DOI : 10.1007/s00198-005-2035-9

S. Blouin, H. Thaler, and C. Korninger, Bone matrix quality and plasma homocysteine levels, Bone, vol.44, issue.5, pp.959-964, 2009.
DOI : 10.1016/j.bone.2008.12.023

M. Saito, K. Fujii, and K. Marumo, Degree of Mineralization-related Collagen Crosslinking in the Femoral Neck Cancellous Bone in Cases of Hip Fracture and Controls, Calcified Tissue International, vol.196, issue.1, pp.160-168, 2006.
DOI : 10.1007/s00223-006-0035-1

P. Garnero, O. Borel, and E. Gineyts, Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone, Bone, vol.38, issue.3, pp.300-309, 2006.
DOI : 10.1016/j.bone.2005.09.014

D. Vashishth, G. Gibson, and J. Khoury, Influence of nonenzymatic glycation on biomechanical properties of cortical bone, Bone, vol.28, issue.2, pp.195-201, 2001.
DOI : 10.1016/S8756-3282(00)00434-8

S. Viguet-carrin, J. Roux, and M. Arlot, Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae, Bone, vol.39, issue.5, pp.1073-1079, 2006.
DOI : 10.1016/j.bone.2006.05.013

H. Oxlund, M. Barckman, and G. Ortoft, Reduced concentrations of collagen cross-links are associated with reduced strength of bone, Bone, vol.17, issue.4, pp.365-371, 1995.
DOI : 10.1016/8756-3282(95)00328-B

S. Tang, U. Zeenath, and D. Vashishth, Effects of non-enzymatic glycation on cancellous bone fragility, Bone, vol.40, issue.4, pp.1144-1151, 2007.
DOI : 10.1016/j.bone.2006.12.056

X. Banse, T. Sims, and A. Bailey, Mechanical Properties of Adult Vertebral Cancellous Bone: Correlation With Collagen Intermolecular Cross-Links, Journal of Bone and Mineral Research, vol.15, issue.Suppl 39, pp.1621-1628, 2002.
DOI : 10.1359/jbmr.2002.17.9.1621

C. Hernandez, S. Tang, and B. Baumbach, Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links, Bone, vol.37, issue.6, pp.825-832, 2005.
DOI : 10.1016/j.bone.2005.07.019

X. Wang, X. Shen, and X. Li, Age-related changes in the collagen network and toughness of bone, Bone, vol.31, issue.1, pp.1-7, 2002.
DOI : 10.1016/S8756-3282(01)00697-4

C. Ford and T. Keaveny, The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation, Journal of Biomechanics, vol.29, issue.10, pp.1309-1317, 1996.
DOI : 10.1016/0021-9290(96)00062-0

T. Keaveny, T. Pinilla, and R. Crawford, Systematic and random errors in compression testing of trabecular bone, Journal of Orthopaedic Research, vol.27, issue.1, pp.101-110, 1997.
DOI : 10.1002/jor.1100150115

E. Morgan and T. Keaveny, Dependence of yield strain of human trabecular bone on anatomic site, Journal of Biomechanics, vol.34, issue.5, pp.569-577, 2001.
DOI : 10.1016/S0021-9290(01)00011-2

E. Morgan, O. Yeh, and W. Chang, Nonlinear Behavior of Trabecular Bone at Small Strains, Journal of Biomechanical Engineering, vol.123, issue.1, pp.1-9, 2001.
DOI : 10.1115/1.1338122

G. Boivin, Y. Bala, and A. Doublier, The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients, Bone, vol.43, issue.3, pp.532-538, 2008.
DOI : 10.1016/j.bone.2008.05.024

G. Boivin and P. Meunier, The Degree of Mineralization of Bone Tissue Measured by Computerized Quantitative Contact Microradiography, Calcified Tissue International, vol.70, issue.6, pp.503-511, 2002.
DOI : 10.1007/s00223-001-2048-0

S. Viguet-carrin, H. Follet, and E. Gineyts, Association between collagen cross-links and trabecular microarchitecture properties of human vertebral bone, Bone, vol.46, issue.2, pp.342-347, 2010.
DOI : 10.1016/j.bone.2009.10.001

URL : https://hal.archives-ouvertes.fr/inserm-00557216

S. Viguet-carrin, E. Gineyts, C. Bertholon, and P. Delmas, Simple and sensitive method for quantification of fluorescent enzymatic mature and senescent crosslinks of collagen in bone hydrolysate using single-column high performance liquid chromatography, Journal of Chromatography B, vol.877, issue.1-2, pp.1-7, 2009.
DOI : 10.1016/j.jchromb.2008.10.043

E. Cendre, D. Mitton, and J. Roux, High-Resolution Computed Tomography for Architectural Characterization of Human Lumbar Cancellous Bone: Relationships with Histomorphometry and Biomechanics, Osteoporosis International, vol.10, issue.5, pp.353-360, 1999.
DOI : 10.1007/s001980050240

S. Haddock, O. Yeh, and P. Mummaneni, Similarity in the fatigue behavior of trabecular bone across site and species, Journal of Biomechanics, vol.37, issue.2, pp.181-187, 2004.
DOI : 10.1016/S0021-9290(03)00245-8

F. Hou, S. Lang, and S. Hoshaw, Human vertebral body apparent and hard tissue stiffness, Journal of Biomechanics, vol.31, issue.11, pp.1009-1015, 1998.
DOI : 10.1016/S0021-9290(98)00110-9

L. Rapillard, M. Charlebois, and P. Zysset, Compressive fatigue behavior of human vertebral trabecular bone, Journal of Biomechanics, vol.39, issue.11, pp.2133-2139, 2006.
DOI : 10.1016/j.jbiomech.2005.04.033

M. Stauber, L. Rapillard, and G. Van-lenthe, Importance of Individual Rods and Plates in the Assessment of Bone Quality and Their Contribution to Bone Stiffness, Journal of Bone and Mineral Research, vol.90, issue.(5 Suppl), pp.586-595, 2006.
DOI : 10.1359/jbmr.060102

D. Kopperdahl and T. Keaveny, Yield strain behavior of trabecular bone, Journal of Biomechanics, vol.31, issue.7, pp.601-608, 1998.
DOI : 10.1016/S0021-9290(98)00057-8

D. Kopperdahl, E. Morgan, and T. Keaveny, Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone, Journal of Orthopaedic Research, vol.27, issue.4, pp.801-805, 2002.
DOI : 10.1016/S0736-0266(01)00185-1

P. Augat, T. Link, and T. Lang, Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations, Medical Engineering & Physics, vol.20, issue.2, pp.124-131, 1998.
DOI : 10.1016/S1350-4533(98)00001-0

S. Donahue and S. Galley, Microdamage in Bone: Implications for Fracture, Repair, Remodeling, and Adaptation, Critical Reviews??? in Biomedical Engineering, vol.34, issue.3, pp.215-271, 2006.
DOI : 10.1615/CritRevBiomedEng.v34.i3.20

K. Hasegawa, H. Takahashi, and Y. Koga, Mechanical properties of osteopenic vertebral bodies monitored by acoustic emission, Bone, vol.14, issue.5, pp.737-743, 1993.
DOI : 10.1016/8756-3282(93)90205-O

Y. Yeni, F. Hou, and T. Ciarelli, Trabecular Shear Stresses Predict In Vivo Linear Microcrack Density but not Diffuse Damage in Human Vertebral Cancellous Bone, Annals of Biomedical Engineering, vol.31, issue.6, pp.726-732, 2003.
DOI : 10.1114/1.1569264

Y. Yeni, F. Hou, and D. Vashishth, Trabecular shear stress in human vertebral cancellous bone:, Journal of Biomechanics, vol.34, issue.10, pp.1341-1346, 2001.
DOI : 10.1016/S0021-9290(01)00089-6

P. Zioupos and J. Currey, The extent of microcracking and the morphology of microcracks in damaged bone, Journal of Materials Science, vol.19, issue.4, pp.978-986, 1994.
DOI : 10.1007/BF00351420

G. Boivin, P. Chavassieux, and A. Santora, Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women, Bone, vol.27, issue.5, pp.687-694, 2000.
DOI : 10.1016/S8756-3282(00)00376-8

G. Boivin and P. Meunier, Effects of bisphosphonates on matrix mineralization, J Musculoskeletal Neuronal Interact, vol.2, pp.538-543, 2002.

P. Roschger, S. Rinnerthaler, and J. Yates, Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women, Bone, vol.29, issue.2, pp.185-191, 2001.
DOI : 10.1016/S8756-3282(01)00485-9

R. Zoehrer, P. Roschger, and E. Paschalis, Effects of 3- and 5-Year Treatment With Risedronate on Bone Mineralization Density Distribution in Triple Biopsies of the Iliac Crest in Postmenopausal Women, Journal of Bone and Mineral Research, vol.32, issue.Suppl 2, pp.1106-1112, 2006.
DOI : 10.1359/jbmr.060401

D. Eyre, I. Dickson, V. Ness, and K. , Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues, Biochemical Journal, vol.252, issue.2, pp.495-500, 1988.
DOI : 10.1042/bj2520495

M. Saito, K. Marumo, and K. Fujii, Single-Column High-Performance Liquid Chromatographic???Fluorescence Detection of Immature, Mature, and Senescent Cross-Links of Collagen, Analytical Biochemistry, vol.253, issue.1, pp.26-32, 1997.
DOI : 10.1006/abio.1997.2350

M. Saito, K. Fujii, and S. Soshi, Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture, Osteoporosis International, vol.40, issue.Suppl, pp.986-995, 2006.
DOI : 10.1007/s00198-006-0087-0

S. Viguet-carrin, D. Panus, and Z. Mason, Collagen crosslink concentration influences the fatigue behavior of human vertebral trabecular bone, 2010.