W. L. Mcguire, K. B. Horwitz, O. H. Pearson, and A. Segaloff, Current status of estrogen and progesterone receptors in breast cancer, Cancer, vol.196, issue.6, pp.2934-2947, 1977.
DOI : 10.1002/1097-0142(197706)39:6<2934::AID-CNCR2820390680>3.0.CO;2-P

V. J. Bardou, G. Arpino, R. M. Elledge, C. K. Osborne, and G. M. Clark, Progesterone Receptor Status Significantly Improves Outcome Prediction Over Estrogen Receptor Status Alone for Adjuvant Endocrine Therapy in Two Large Breast Cancer Databases, Journal of Clinical Oncology, vol.21, issue.10, pp.1973-1979, 2003.
DOI : 10.1200/JCO.2003.09.099

S. Massarweh and R. Schiff, Unraveling the Mechanisms of Endocrine Resistance in Breast Cancer: New Therapeutic Opportunities, Clinical Cancer Research, vol.13, issue.7, pp.1950-1954, 2007.
DOI : 10.1158/1078-0432.CCR-06-2540

R. B. Riggins, R. S. Schrecengost, M. S. Guerrero, and A. H. Bouton, Pathways to tamoxifen resistance, Cancer Letters, vol.256, issue.1, pp.1-24, 2007.
DOI : 10.1016/j.canlet.2007.03.016

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533271

J. M. Hoskins, L. A. Carey, and H. L. Mcleod, CYP2D6 and tamoxifen: DNA matters in breast cancer, Nature Reviews Cancer, vol.58, issue.8, pp.576-586, 2009.
DOI : 10.1038/nrc2683

N. Heldring, A. Pike, and S. Andersson, Estrogen Receptors: How Do They Signal and What Are Their Targets, Physiological Reviews, vol.87, issue.3, pp.905-931, 2007.
DOI : 10.1152/physrev.00026.2006

X. J. Yang and E. Seto, HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention, Oncogene, vol.265, issue.37, pp.5310-5318, 2007.
DOI : 10.1016/S1535-6108(04)00114-X

X. J. Yang and E. Seto, The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men, Nature Reviews Molecular Cell Biology, vol.110, issue.3, pp.206-218, 2008.
DOI : 10.1038/nrm2346

A. Vannini, C. Volpari, P. Gallinari, P. Jones, C. Steinkühler et al., Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8???substrate complex, EMBO reports, vol.19, issue.9, pp.879-884, 2007.
DOI : 10.1016/S0959-437X(03)00015-7

A. Schuetz, J. Min, and A. Allali-hassani, Human HDAC7 Harbors a Class IIa Histone Deacetylase-specific Zinc Binding Motif and Cryptic Deacetylase Activity, Journal of Biological Chemistry, vol.283, issue.17, pp.11355-11363, 2008.
DOI : 10.1074/jbc.M707362200

R. Ficner, Novel Structural Insights into Class I and II Histone Deacetylases, Current Topics in Medicinal Chemistry, vol.9, issue.3, pp.235-240, 2009.
DOI : 10.2174/156802609788085304

M. Haberland, R. L. Montgomery, and E. N. Olson, The many roles of histone deacetylases in development and physiology: implications for disease and therapy, Nature Reviews Genetics, vol.144, issue.1, pp.32-42, 2009.
DOI : 10.1038/nrg2485

O. Witt, H. E. Deubzer, T. Milde, and I. Oehme, HDAC family: What are the cancer relevant targets?, Cancer Letters, vol.277, issue.1, pp.8-21, 2009.
DOI : 10.1016/j.canlet.2008.08.016

W. Weichert, HDAC expression and clinical prognosis in human malignancies, Cancer Letters, vol.280, issue.2, pp.168-176, 2009.
DOI : 10.1016/j.canlet.2008.10.047

P. A. Marks and R. Breslow, Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug, Nature Biotechnology, vol.125, issue.1, pp.84-90, 2007.
DOI : 10.1038/nbt1272

J. Tan, S. Cang, Y. Ma, R. L. Petrillo, and D. Liu, Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents, Journal of Hematology & Oncology, vol.3, issue.1, 2010.
DOI : 10.1186/1756-8722-3-5

URL : http://doi.org/10.1186/1756-8722-3-5

S. Cang, Y. Ma, and D. Liu, New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer, Journal of Hematology & Oncology, vol.2, issue.1, 2009.
DOI : 10.1186/1756-8722-2-22

T. Liu, S. Kuljaca, A. Tee, and G. M. Marshall, Histone deacetylase inhibitors: Multifunctional anticancer agents, Cancer Treatment Reviews, vol.32, issue.3, pp.157-165, 2006.
DOI : 10.1016/j.ctrv.2005.12.006

W. S. Xu, R. B. Parmigiani, and P. A. Marks, Histone deacetylase inhibitors: molecular mechanisms of action, Oncogene, vol.3, issue.37, pp.5541-5552, 2007.
DOI : 10.1016/j.bbrc.2005.12.144

J. E. Bolden, M. J. Peart, and R. W. Johnstone, Anticancer activities of histone deacetylase inhibitors, Nature Reviews Drug Discovery, vol.106, issue.9, pp.769-784, 2006.
DOI : 10.1038/nrd2133

S. Minucci and P. G. Pelicci, Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer, Nature Reviews Cancer, vol.105, issue.1, pp.38-51, 2006.
DOI : 10.1038/nrc1779

S. Balasubramanian, E. Verner, and J. J. Buggy, Isoform-specific histone deacetylase inhibitors: The next step?, Cancer Letters, vol.280, issue.2, pp.211-221, 2009.
DOI : 10.1016/j.canlet.2009.02.013

L. Stimson and N. B. Thangue, Biomarkers for predicting clinical responses to HDAC inhibitors, Cancer Letters, vol.280, issue.2, pp.177-183, 2009.
DOI : 10.1016/j.canlet.2009.03.016

P. N. Munster, D. Marchion, and S. Thomas, Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker, British Journal of Cancer, vol.8, issue.7, pp.1044-1050, 2009.
DOI : 10.1038/81671

L. Ellis, Y. Pan, and G. K. Smyth, Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous Tcell lymphoma HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy, Clinical Cancer Research Proceedings of the National Academy of Sciences of the United States of America, vol.14, issue.107 14, pp.4500-4510, 2008.

J. Suzuki, Y. Y. Chen, and G. K. Scott, Protein Acetylation and Histone Deacetylase Expression Associated with Malignant Breast Cancer Progression, Clinical Cancer Research, vol.15, issue.9, pp.3163-3171, 2009.
DOI : 10.1158/1078-0432.CCR-08-2319

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746548

C. A. Krusche, P. Wulfing, and C. Kersting, Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis, Breast Cancer Research and Treatment, vol.107, issue.1, pp.15-23, 2005.
DOI : 10.1007/s10549-004-1668-2

Z. Zhang, H. Yamashita, and T. Toyama, Quantitation of HDAC1 mRNA Expression in Invasive Carcinoma of the Breast*, Breast Cancer Research and Treatment, vol.279, issue.1, pp.11-16, 2005.
DOI : 10.1007/s10549-005-6001-1

X. Hu, H. M. Stern, and L. Ge, Genetic Alterations and Oncogenic Pathways Associated with Breast Cancer Subtypes, Molecular Cancer Research, vol.7, issue.4, pp.511-522, 2009.
DOI : 10.1158/1541-7786.MCR-08-0107

C. Sotiriou, P. Wirapati, and S. Loi, Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis, JNCI Journal of the National Cancer Institute, vol.98, issue.4, pp.262-272, 2006.
DOI : 10.1093/jnci/djj052

L. H. Saal, P. Johansson, and K. Holm, Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity, Proceedings of the National Academy of Sciences, vol.104, issue.18, pp.7564-7569, 2007.
DOI : 10.1073/pnas.0702507104

A. H. Bild, G. Yao, and J. T. Chang, Oncogenic pathway signatures in human cancers as a guide to targeted therapies, Nature, vol.6, issue.7074, pp.353-357, 2006.
DOI : 10.1038/nature04296

K. Chin, S. Devries, and J. Fridlyand, Genomic and transcriptional aberrations linked to breast cancer pathophysiologies, Cancer Cell, vol.10, issue.6, pp.529-541, 2006.
DOI : 10.1016/j.ccr.2006.10.009

URL : http://doi.org/10.1016/j.ccr.2006.10.009

S. Gruvberger, M. Ringner, and Y. Chen, Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns, Cancer Research, vol.61, issue.16, pp.5979-5984, 2001.

A. V. Ivshina, J. George, and O. Senko, Genetic Reclassification of Histologic Grade Delineates New Clinical Subtypes of Breast Cancer, Cancer Research, vol.66, issue.21, pp.10292-10301, 2006.
DOI : 10.1158/0008-5472.CAN-05-4414

A. J. Minn, G. P. Gupta, and P. M. Siegel, Genes that mediate breast cancer metastasis to lung, Nature, vol.436, issue.7050, pp.518-524, 2005.
DOI : 10.1038/nature03799

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283098

M. J. Van-de-vijver, Y. D. He, L. J. Van, and . Veer, A Gene-Expression Signature as a Predictor of Survival in Breast Cancer, New England Journal of Medicine, vol.347, issue.25, 1999.
DOI : 10.1056/NEJMoa021967

Y. Wang, J. G. Klijn, and Y. Zhang, Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer, The Lancet, vol.365, issue.9460, pp.671-679, 2005.
DOI : 10.1016/S0140-6736(05)70933-8

M. West, C. Blanchette, and H. Dressman, Predicting the clinical status of human breast cancer by using gene expression profiles, Proceedings of the National Academy of Sciences, vol.98, issue.20, pp.11462-11467, 2001.
DOI : 10.1073/pnas.201162998

K. Yu, K. Ganesan, L. D. Miller, and P. Tan, A Modular Analysis of Breast Cancer Reveals a Novel Low-Grade Molecular Signature in Estrogen Receptor-Positive Tumors, Clinical Cancer Research, vol.12, issue.11, pp.3288-3296, 2006.
DOI : 10.1158/1078-0432.CCR-05-1530

B. J. Boersma, M. Reimers, and M. Yi, A stromal gene signature associated with inflammatory breast cancer, International Journal of Cancer, vol.100, issue.6, pp.1324-1332, 2008.
DOI : 10.1002/ijc.23237

I. Hedenfalk, D. Duggan, and Y. Chen, Gene-Expression Profiles in Hereditary Breast Cancer, New England Journal of Medicine, vol.344, issue.8, pp.539-548, 2001.
DOI : 10.1056/NEJM200102223440801

X. Lu, X. Lu, Z. C. Wang, J. D. Iglehart, X. Zhang et al., Predicting features of breast cancer with gene expression patterns, Breast Cancer Research and Treatment, vol.93, issue.12, pp.191-201, 2008.
DOI : 10.1007/s10549-007-9596-6

C. M. Perou, T. Sørile, and M. B. Eisen, Molecular portraits of human breast tumours, Nature, vol.406, issue.6797, pp.747-752, 2000.
DOI : 10.1038/35021093

A. L. Richardson, Z. C. Wang, and A. D. Nicolo, X chromosomal abnormalities in basal-like human breast cancer, Cancer Cell, vol.9, issue.2, pp.121-132, 2006.
DOI : 10.1016/j.ccr.2006.01.013

T. Sorlie, C. M. Perou, and R. Tibshirani, Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proceedings of the National Academy of Sciences, vol.98, issue.19, pp.10869-10874, 2001.
DOI : 10.1073/pnas.191367098

J. R. Pollack, T. Sorlie, and C. M. Perou, Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors, Proceedings of the National Academy of Sciences, vol.99, issue.20, pp.12963-12968, 2002.
DOI : 10.1073/pnas.162471999

T. Sorlie, R. Tibshirani, and J. Parker, Repeated observation of breast tumor subtypes in independent gene expression data sets, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8418-8423, 2003.
DOI : 10.1073/pnas.0932692100

C. Desmedt, F. Piette, and S. Loi, Strong Time Dependence of the 76-Gene Prognostic Signature for Node-Negative Breast Cancer Patients in the TRANSBIG Multicenter Independent Validation Series, Clinical Cancer Research, vol.13, issue.11, pp.3207-3214, 2007.
DOI : 10.1158/1078-0432.CCR-06-2765

C. Ginestier, N. Cervera, and P. Finetti, Prognosis and Gene Expression Profiling of 20q13-Amplified Breast Cancers, Clinical Cancer Research, vol.12, issue.15, pp.4533-4544, 2006.
DOI : 10.1158/1078-0432.CCR-05-2339

URL : https://hal.archives-ouvertes.fr/hal-01431971

K. R. Hess, K. Anderson, and W. F. Symmans, Pharmacogenomic Predictor of Sensitivity to Preoperative Chemotherapy With Paclitaxel and Fluorouracil, Doxorubicin, and Cyclophosphamide in Breast Cancer, Journal of Clinical Oncology, vol.24, issue.26, pp.4236-4244, 2006.
DOI : 10.1200/JCO.2006.05.6861

E. Huang, S. H. Cheng, and H. Dressman, Gene expression predictors of breast cancer outcomes, The Lancet, vol.361, issue.9369, pp.1590-1596, 2003.
DOI : 10.1016/S0140-6736(03)13308-9

P. M. Haverty, J. Fridlyand, and L. Li, High-resolution genomic and expression analyses of copy number alterations in breast tumors, Genes, Chromosomes and Cancer, vol.22, issue.6, pp.530-542, 2008.
DOI : 10.1002/gcc.20558

P. K. Julka, R. T. Chacko, and S. Nag, A phase II study of sequential neoadjuvant gemcitabine plus doxorubicin followed by gemcitabine plus cisplatin in patients with operable breast cancer: prediction of response using molecular profiling, British Journal of Cancer, vol.2001, issue.8, pp.1327-1335, 2008.
DOI : 10.1158/1078-0432.CCR-04-0085

C. Sotiriou, S. Y. Neo, and L. M. Mcshane, Breast cancer classification and prognosis based on gene expression profiles from a population-based study, Proceedings of the National Academy of Sciences, vol.100, issue.18, pp.10393-10398, 2003.
DOI : 10.1073/pnas.1732912100

H. Zhao, A. Langerod, and Y. Ji, Different Gene Expression Patterns in Invasive Lobular and Ductal Carcinomas of the Breast, Molecular Biology of the Cell, vol.15, issue.6, pp.2523-2536, 2004.
DOI : 10.1091/mbc.E03-11-0786

Z. Zhang, H. Yamashita, and T. Toyama, HDAC6 Expression Is Correlated with Better Survival in Breast Cancer, Clinical Cancer Research, vol.10, issue.20, pp.6962-6968, 2004.
DOI : 10.1158/1078-0432.CCR-04-0455

S. Saji, M. Kawakami, and S. I. Hayashi, Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer, Oncogene, vol.10, issue.28, pp.4531-4539, 2005.
DOI : 10.1038/sj.onc.1208646

S. F. Chin, A. E. Teschendorff, and J. C. Marioni, Highresolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer, Genome Biology, vol.8, issue.10 R215, 2007.

Y. Nikolsky, E. Sviridov, and J. Yao, Genome-Wide Functional Synergy between Amplified and Mutated Genes in Human Breast Cancer, Cancer Research, vol.68, issue.22, pp.9532-9540, 2008.
DOI : 10.1158/0008-5472.CAN-08-3082

A. Inoue, N. Yoshida, and Y. Omoto, Development of cDNA microarray for expression profiling of estrogen-responsive genes, Journal of Molecular Endocrinology, vol.29, issue.2, pp.175-192, 2002.
DOI : 10.1677/jme.0.0290175

Y. S. Lee, K. H. Lim, and X. Guo, The Cytoplasmic Deacetylase HDAC6 Is Required for Efficient Oncogenic Tumorigenesis, Cancer Research, vol.68, issue.18, pp.7561-7569, 2008.
DOI : 10.1158/0008-5472.CAN-08-0188

N. Yoshida, Y. Omoto, and A. Inoue, Prediction of prognosis of estrogen receptor-positive breast cancer with combination of selected estrogen-regulated genes, Cancer Science, vol.61, issue.6, pp.496-502, 2004.
DOI : 10.1073/pnas.201162998

C. L. Hanigan, M. Van-engeland, and A. P. De-bruine, An Inactivating Mutation in HDAC2 Leads to Dysregulation of Apoptosis Mediated by APAF1, Gastroenterology, vol.135, issue.5, pp.1654-1664, 2008.
DOI : 10.1053/j.gastro.2008.07.078

T. Davis, C. Kennedy, Y. E. Chiew, C. L. Clarke, and A. Defazio, Histone deacetylase inhibitors decrease proliferation and modulate cell cycle gene expression in normal mammary epithelial cells, Clinical Cancer Research, vol.6, issue.11, pp.4334-4342, 2000.

D. M. Vigushin, S. Ali, and P. E. Pace, Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo, Clinical Cancer Research, vol.7, issue.4, pp.971-976, 2001.

R. Margueron, V. Duong, A. Castet, and V. Cavailles, Histone deacetylase inhibition and estrogen signalling in human breast cancer cells, Biochemical Pharmacology, vol.68, issue.6, pp.1239-1246, 2004.
DOI : 10.1016/j.bcp.2004.04.031

R. Margueron, A. Licznar, G. Lazennec, F. Vignon, and V. Cavailles, Oestrogen receptor alpha increases p21(WAF1/CIP1) gene expression and the antiproliferative activity of histone deacetylase inhibitors in human breast cancer cells, Journal of Endocrinology, vol.179, issue.1, pp.41-53, 2003.
DOI : 10.1677/joe.0.1790041

J. P. Alao, A. V. Stavropoulou, E. W. Lam, R. C. Coombes, and D. M. Vigushin, Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells, Molecular Cancer, vol.5, issue.8, 2006.

M. Ocker and R. Schneider-stock, Histone deacetylase inhibitors: Signalling towards p21cip1/waf1, The International Journal of Biochemistry & Cell Biology, vol.39, issue.7-8, pp.1367-1374, 2007.
DOI : 10.1016/j.biocel.2007.03.001

J. P. Alao, E. W. Lam, and S. Ali, Histone Deacetylase Inhibitor Trichostatin A Represses Estrogen Receptor ??-Dependent Transcription and Promotes Proteasomal Degradation of Cyclin D1 in Human Breast Carcinoma Cell Lines, Clinical Cancer Research, vol.10, issue.23, pp.8094-8104, 2004.
DOI : 10.1158/1078-0432.CCR-04-1023

V. Duong, C. Bret, and L. Altucci, Specific Activity of Class II Histone Deacetylases in Human Breast Cancer Cells, Molecular Cancer Research, vol.6, issue.12, pp.1908-1919, 2008.
DOI : 10.1158/1541-7786.MCR-08-0299

URL : https://hal.archives-ouvertes.fr/inserm-00351047

M. De-los-santos, O. Martinez-iglesias, and A. Aranda, Anti-estrogenic actions of histone deacetylase inhibitors in MCF-7 breast cancer cells, Endocrine Related Cancer, vol.14, issue.4, pp.1021-1028, 2007.
DOI : 10.1677/ERC-07-0144

L. Travaglini, L. Vian, M. Billi, F. Grignani, and C. Nervi, Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status, The International Journal of Biochemistry & Cell Biology, vol.41, issue.1, pp.225-234, 2009.
DOI : 10.1016/j.biocel.2008.08.019

L. Fuino, P. Bali, and S. Wittmann, Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine , and epothilone B, Molecular Cancer Therapeutics, vol.2, issue.10, pp.971-984, 2003.

V. Chopin, R. A. Toillon, N. Jouy, and X. L. Bourhis, P21WAF1/CIP1 is dispensable for G1 arrest, but indispensable for apoptosis induced by sodium butyrate in MCF-7 breast cancer cells, Oncogene, vol.23, issue.1, pp.21-29, 2004.
DOI : 10.1038/sj.onc.1207020

P. Bali, M. Pranpat, and R. Swaby, Activity of Suberoylanilide Hydroxamic Acid Against Human Breast Cancer Cells with Amplification of Her-2, Clinical Cancer Research, vol.11, issue.17, pp.6382-6389, 2005.
DOI : 10.1158/1078-0432.CCR-05-0344

D. Sharma, J. Blum, X. Yang, N. Beaulieu, A. R. Macleod et al., Release of Methyl CpG Binding Proteins and Histone Deacetylase 1 from the Estrogen Receptor ?? (ER) Promoter upon Reactivation in ER-Negative Human Breast Cancer Cells, Molecular Endocrinology, vol.19, issue.7, pp.1740-1751, 2005.
DOI : 10.1210/me.2004-0011

X. F. Liu and M. K. Bagchi, Recruitment of Distinct Chromatin-modifying Complexes by Tamoxifen-complexed Estrogen Receptor at Natural Target Gene Promoters in Vivo, Journal of Biological Chemistry, vol.279, issue.15, pp.15050-15058, 2004.
DOI : 10.1074/jbc.M311932200

E. Biçaku, D. C. Marchion, M. L. Schmitt, and P. N. Munster, Selective Inhibition of Histone Deacetylase 2 Silences Progesterone Receptor-Mediated Signaling, Cancer Research, vol.68, issue.5, pp.1513-1519, 2008.
DOI : 10.1158/0008-5472.CAN-07-2822

H. Kawai, H. Li, S. Avraham, S. Jiang, and H. K. Avraham, Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor ?, International Journal of Cancer, vol.60, issue.33, pp.353-358, 2003.
DOI : 10.1002/ijc.11403

R. Metivier, G. Penot, and M. R. Hubner, Estrogen Receptor-?? Directs Ordered, Cyclical, and Combinatorial Recruitment of Cofactors on a Natural Target Promoter, Cell, vol.115, issue.6, pp.751-763, 2003.
DOI : 10.1016/S0092-8674(03)00934-6

Y. Shang and M. Brown, Molecular Determinants for the Tissue Specificity of SERMs, Science, vol.295, issue.5564, pp.2465-2468, 2002.
DOI : 10.1126/science.1068537

H. Leong, J. R. Sloan, P. D. Nash, and G. L. Greene, Recruitment of Histone Deacetylase 4 to the N-Terminal Region of Estrogen Receptor ??, Molecular Endocrinology, vol.19, issue.12, pp.2930-2942, 2005.
DOI : 10.1210/me.2005-0178

E. Van-rooij, J. Fielitz, and L. B. Sutherland, Myocyte Enhancer Factor 2 and Class II Histone Deacetylases Control a Gender-Specific Pathway of Cardioprotection Mediated by the Estrogen Receptor, Circulation Research, vol.106, issue.1, pp.155-165, 2010.
DOI : 10.1161/CIRCRESAHA.109.207084

K. Azuma, T. Urano, and K. Horie-inoue, Association of Estrogen Receptor ?? and Histone Deacetylase 6 Causes Rapid Deacetylation of Tubulin in Breast Cancer Cells, Cancer Research, vol.69, issue.7, pp.2935-2940, 2009.
DOI : 10.1158/0008-5472.CAN-08-3458

W. Fiskus, Y. Ren, and A. Mohapatra, Hydroxamic Acid Analogue Histone Deacetylase Inhibitors Attenuate Estrogen Receptor-?? Levels and Transcriptional Activity: A Result of Hyperacetylation and Inhibition of Chaperone Function of Heat Shock Protein 90, Clinical Cancer Research, vol.13, issue.16, pp.4882-4890, 2007.
DOI : 10.1158/1078-0432.CCR-06-3093

S. Malik, S. Jiang, and J. P. Garee, Histone Deacetylase 7 and FoxA1 in Estrogen-Mediated Repression of RPRM, Molecular and Cellular Biology, vol.30, issue.2, pp.399-412, 2010.
DOI : 10.1128/MCB.00907-09

Y. Yao, H. Li, Y. Gu, N. E. Davidson, and Q. Zhou, Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling, Carcinogenesis, vol.31, issue.3, pp.382-387, 2009.
DOI : 10.1093/carcin/bgp308

V. Chopin, C. Slomianny, H. Hondermarck, and X. L. Bourhis, Synergistic induction of apoptosis in breast cancer cells by cotreatment with butyrate and TNF-alpha, TRAIL, or anti-Fas agonist antibody involves enhancement of death receptors' signaling and requires P21waf1, Experimental Cell Research, vol.298, issue.2, pp.560-573, 2004.
DOI : 10.1016/j.yexcr.2004.04.038

S. Nakata, T. Yoshida, M. Horinaka, T. Shiraishi, M. Wakada et al., Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells, Oncogene, vol.23, issue.37, pp.6261-6271, 2004.
DOI : 10.1038/sj.onc.1207830

T. R. Singh, S. Shankar, and R. K. Srivastava, HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma, Oncogene, vol.8, issue.29, pp.4609-4623, 2005.
DOI : 10.1016/S0006-2952(03)00509-4

A. J. Frew, R. K. Lindemann, and B. P. Martin, Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist, Proceedings of the National Academy of Sciences, vol.105, issue.32, pp.11317-11322, 2008.
DOI : 10.1073/pnas.0801868105

S. Shankar, R. Davis, K. P. Singh, R. Kurzrock, D. D. Ross et al., Suberoylanilide hydroxamic acid (Zolinza/vorinostat) sensitizes TRAIL-resistant breast cancer cells orthotopically implanted in BALB/c nude mice, Molecular Cancer Therapeutics, vol.8, issue.6, pp.1596-1605, 2009.
DOI : 10.1158/1535-7163.MCT-08-1004

Y. Hirokawa, M. Arnold, H. Nakajima, J. Zalcberg, and H. Maruta, Signal therapy of breast cancers by the HDAC inhibitor FK228 that blocks the activation of PAK1 and abrogates the tamoxifen-resistance, Cancer Biology & Therapy, vol.4, issue.9, pp.956-960, 2005.
DOI : 10.4161/cbt.4.9.1911

J. Fan, W. J. Yin, and J. S. Lu, ER?? negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor, Journal of Cancer Research and Clinical Oncology, vol.14, issue.9, pp.883-890, 2008.
DOI : 10.1007/s00432-008-0354-x

D. Palmieri, P. R. Lockman, and F. C. Thomas, Vorinostat Inhibits Brain Metastatic Colonization in a Model of Triple-Negative Breast Cancer and Induces DNA Double-Strand Breaks, Clinical Cancer Research, vol.15, issue.19, pp.6148-6157, 2009.
DOI : 10.1158/1078-0432.CCR-09-1039

R. Margueron, V. Duong, and S. Bonnet, Histone deacetylase inhibition and estrogen receptor alpha levels modulate the transcriptional activity of partial antiestrogens, Journal of Molecular Endocrinology, vol.32, issue.2, pp.583-594, 2004.
DOI : 10.1677/jme.0.0320583

A. Defazio, Y. E. Chiew, C. Donoghue, C. S. Lee, and R. L. Sutherland, Effect of sodium butyrate on estrogen receptor and epidermal growth factor receptor gene expression in human breast cancer cell lines, Journal of Biological Chemistry, vol.267, issue.25, pp.18008-18012, 1992.

G. Reid, R. Metivier, and C. Y. Lin, Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor ??, in response to deacetylase inhibition by valproic acid and trichostatin A, Oncogene, vol.50, issue.31, pp.4894-4907, 2005.
DOI : 10.1210/me.9.4.443

URL : https://hal.archives-ouvertes.fr/hal-00016099

W. Rocha, R. Sanchez, and J. Deschenes, Opposite effects of histone deacetylase inhibitors on glucocorticoid and estrogen signaling in human endometrial ishikawa cells, Molecular Pharmacology, vol.68, issue.6, pp.1852-1862, 2005.

M. Kos, G. Reid, S. Denger, and F. Gannon, Minireview: Genomic Organization of the Human ER?? Gene Promoter Region, Molecular Endocrinology, vol.15, issue.12, pp.2057-2063, 2001.
DOI : 10.1210/me.15.12.2057

P. Pryzbylkowski, O. Obajimi, and J. C. Keen, Trichostatin A and 5 Aza-2??? deoxycytidine decrease estrogen receptor mRNA stability in ER positive MCF7 cells through modulation of HuR, Breast Cancer Research and Treatment, vol.19, issue.1, pp.15-25, 2008.
DOI : 10.1007/s10549-007-9751-0

C. M. Klinge, Estrogen Regulation of MicroRNA Expression, Current Genomics, vol.10, issue.3, pp.169-183, 2009.
DOI : 10.2174/138920209788185289

A. E. Fliss, S. Benzeno, J. Rao, and A. J. Caplan, Control of estrogen receptor ligand binding by Hsp90, The Journal of Steroid Biochemistry and Molecular Biology, vol.72, issue.5, pp.223-230, 2000.
DOI : 10.1016/S0960-0760(00)00037-6

L. Whitesell and S. L. Lindquist, HSP90 and the chaperoning of cancer, Nature Reviews Cancer, vol.344, issue.10, pp.761-772, 2005.
DOI : 10.1038/nrc1716

X. Yi, W. Wei, S. Y. Wang, Z. Y. Du, Y. J. Xu et al., Histone deacetylase inhibitor SAHA induces ER?? degradation in breast cancer MCF-7 cells by CHIP-mediated ubiquitin pathway and inhibits survival signaling, Biochemical Pharmacology, vol.75, issue.9, pp.1697-1705, 2008.
DOI : 10.1016/j.bcp.2007.10.035

S. H. Kim, H. J. Kang, H. Na, and M. O. Lee, Trichostatin A enhances acetylation as well as protein stability of ERalpha through induction of p300 protein, Breast Cancer Research, vol.12, issue.2 R22, 2010.

X. Yang, A. T. Ferguson, and S. J. Nass, Transcriptional activation of estrogen receptor ? in human breast cancer cells by histone deacetylase inhibition, Cancer Research, vol.60, issue.24, pp.6890-6894, 2000.

N. Fortunati, S. Bertino, and L. Costantino, Valproic acid restores ER?? and antiestrogen sensitivity to ER??-negative breast cancer cells, Molecular and Cellular Endocrinology, vol.314, issue.1, pp.17-22, 2010.
DOI : 10.1016/j.mce.2009.09.011

X. Yang, D. L. Phillips, A. T. Ferguson, W. G. Nelson, J. G. Herman et al., Synergistic activation of functional estrogen receptor (ER)-? by DNA methyltransferase and histone deacetylase inhibition in human ER-?-negative breast cancer cells, Cancer Research, vol.61, issue.19, pp.7025-7029, 2001.

J. C. Keen, L. Yan, and K. M. Mack, A Novel Histone Deacetylase Inhibitor, Scriptaid, Enhances Expression of Functional Estrogen Receptor ?? (ER) in ER negative human breast cancer cells in combination with 5-aza 2???-deoxycytidine, Breast Cancer Research and Treatment, vol.293, issue.3, pp.177-186, 2003.
DOI : 10.1023/A:1026146524737

G. W. Woodfield, M. J. Hitchler, Y. Chen, F. E. Domann, and R. J. , Interaction of TFAP2C with the Estrogen Receptor-?? Promoter Is Controlled by Chromatin Structure, Clinical Cancer Research, vol.15, issue.11, pp.3672-3679, 2009.
DOI : 10.1158/1078-0432.CCR-08-2343

Q. Zhou, P. Atadja, and N. E. Davidson, Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation, Cancer Biology & Therapy, vol.6, issue.1, pp.64-69, 2007.
DOI : 10.4161/cbt.6.1.3549

Q. Zhou, P. G. Shaw, and N. E. Davidson, Inhibition of histone deacetylase suppresses EGF signaling pathways by destabilizing EGFR mRNA in ER-negative human breast cancer cells, Breast Cancer Research and Treatment, vol.278, issue.2, pp.443-451, 2009.
DOI : 10.1007/s10549-008-0148-5

O. I. Yap, G. Bhat, L. Liu, and T. O. , Epigenetic modifications of the estrogen receptor ? gene in epithelial ovarian cancer cells, Anticancer Research, vol.29, issue.1, pp.139-144, 2009.

T. J. Walton, G. Li, R. Seth, S. E. Mcardle, M. C. Bishop et al., DNA demethylation and histone deacetylation inhibition co-operate to re-express estrogen receptor beta and induce apoptosis in prostate cancer cell-lines, The Prostate, vol.229, issue.2, pp.210-222, 2008.
DOI : 10.1002/pros.20673

E. R. Jang, S. J. Lim, and E. S. Lee, The histone deacetylase inhibitor trichostatin A sensitizes estrogen receptor ??-negative breast cancer cells to tamoxifen, Oncogene, vol.23, issue.9, pp.1724-1736, 2004.
DOI : 10.1038/sj.onc.1207315

V. Duong, A. Licznar, and R. Margueron, ER?? and ER?? expression and transcriptional activity are differentially regulated by HDAC inhibitors, Oncogene, vol.60, issue.12, pp.1799-1806, 2006.
DOI : 10.1038/sj.onc.1209102

H. Faus and B. Haendler, Post-translational modifications of??steroid receptors, Biomedicine & Pharmacotherapy, vol.60, issue.9, pp.520-528, 2006.
DOI : 10.1016/j.biopha.2006.07.082

M. Fu, C. Wang, and A. T. Reutens, p300 and p300/cAMP-response Element-binding Protein-associated Factor Acetylate the Androgen Receptor at Sites Governing Hormone-dependent Transactivation, Journal of Biological Chemistry, vol.275, issue.27, pp.20853-20860, 2000.
DOI : 10.1074/jbc.M000660200

A. L. Jacob, J. Lund, P. Martinez, and L. Hedin, Acetylation of Steroidogenic Factor 1 Protein Regulates Its Transcriptional Activity and Recruits the Coactivator GCN5, Journal of Biological Chemistry, vol.276, issue.40, pp.37659-37664, 2001.
DOI : 10.1074/jbc.M104427200

C. Wang, M. Fu, and R. H. Angeletti, Direct Acetylation of the Estrogen Receptor alpha Hinge Region by p300 Regulates Transactivation and Hormone Sensitivity, Journal of Biological Chemistry, vol.276, issue.21, pp.18375-18383, 2001.
DOI : 10.1074/jbc.M100800200

Y. M. Kim, E. M. Woo, Y. T. Chong, D. R. Homenko, and W. L. Kraus, Acetylation of Estrogen Receptor ?? by p300 at Lysines 266 and 268 Enhances the Deoxyribonucleic Acid Binding and Transactivation Activities of the Receptor, Molecular Endocrinology, vol.20, issue.7, pp.1479-1493, 2006.
DOI : 10.1210/me.2005-0531

H. Chen, R. J. Lin, W. Xie, D. Wilpitz, and R. M. Evans, Regulation of Hormone-Induced Histone Hyperacetylation and Gene Activation via Acetylation of an Acetylase, Cell, vol.98, issue.5, pp.675-686, 1999.
DOI : 10.1016/S0092-8674(00)80054-9

C. Lerin, J. T. Rodgers, D. E. Kalume, S. H. Kim, A. Pandey et al., GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1??, Cell Metabolism, vol.3, issue.6, pp.429-438, 2006.
DOI : 10.1016/j.cmet.2006.04.013

N. Vo, C. Fjeld, and R. H. Goodman, Acetylation of Nuclear Hormone Receptor-Interacting Protein RIP140 Regulates Binding of the Transcriptional Corepressor CtBP, Molecular and Cellular Biology, vol.21, issue.18, pp.6181-6188, 2001.
DOI : 10.1128/MCB.21.18.6181-6188.2001

Y. Qiu, Y. Zhao, and M. Becker, HDAC1 Acetylation Is Linked to Progressive Modulation of Steroid Receptor-Induced Gene Transcription, Molecular Cell, vol.22, issue.5, pp.669-679, 2006.
DOI : 10.1016/j.molcel.2006.04.019

A. Castet, A. Boulahtouf, and G. Versini, Multiple domains of the Receptor-Interacting Protein 140 contribute to transcription inhibition, Nucleic Acids Research, vol.32, issue.6, pp.1957-1966, 2004.
DOI : 10.1093/nar/gkh524

M. Christian, J. M. Tullet, and M. G. Parker, Characterization of Four Autonomous Repression Domains in the Corepressor Receptor Interacting Protein 140, Journal of Biological Chemistry, vol.279, issue.15, pp.15645-15651, 2004.
DOI : 10.1074/jbc.M313906200

L. N. Wei, M. Farooqui, and X. Hu, Ligand-dependent Formation of Retinoid Receptors, Receptor-interacting Protein 140 (RIP140), and Histone Deacetylase Complex Is Mediated by a Novel Receptor-interacting Motif of RIP140, Journal of Biological Chemistry, vol.276, issue.19, pp.16107-16112, 2001.
DOI : 10.1074/jbc.M010185200

V. Kurtev, R. Margueron, K. Kroboth, E. Ogris, V. Cavailles et al., Transcriptional Regulation by the Repressor of Estrogen Receptor Activity via Recruitment of Histone Deacetylases, Journal of Biological Chemistry, vol.279, issue.23, pp.24834-24843, 2004.
DOI : 10.1074/jbc.M312300200

J. Li, J. Wang, and J. Wang, Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3, The EMBO Journal, vol.19, issue.16, pp.4342-4350, 2000.
DOI : 10.1093/emboj/19.16.4342

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC302030

M. G. Guenther, O. Barak, and M. A. Lazar, The SMRT and N-CoR Corepressors Are Activating Cofactors for Histone Deacetylase 3, Molecular and Cellular Biology, vol.21, issue.18, pp.6091-6101, 2001.
DOI : 10.1128/MCB.21.18.6091-6101.2001

H. Li, G. K. Rajendran, N. Liu, C. Ware, B. P. Rubin et al., SirT1 modulates the estrogen-insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice, Breast Cancer Research, vol.9, issue.1 R1, 2007.

L. Hodges-gallagher, C. D. Valentine, S. E. Bader, and P. J. Kushner, Estrogen receptor beta increases the efficacy of antiestrogens by effects on apoptosis and cell cycling in breast cancer cells, Breast Cancer Research and Treatment, vol.40, issue.23, pp.241-250, 2008.
DOI : 10.1007/s10549-007-9640-6

S. K. Rayala, A. H. Talukder, and S. Balasenthil, P21-Activated Kinase 1 Regulation of Estrogen Receptor-?? Activation Involves Serine 305 Activation Linked with Serine 118 Phosphorylation, Cancer Research, vol.66, issue.3, pp.1694-1701, 2006.
DOI : 10.1158/0008-5472.CAN-05-2922

Q. Zhou, P. G. Shaw, N. E. Davidson, T. H. Luu, R. J. Morgan et al., Inhibition of histone deacetylase suppresses EGF signaling pathways by destabilizing EGFR mRNA in ER-negative human breast cancer cells, Breast Cancer Research and Treatment, vol.278, issue.2, pp.443-451, 2008.
DOI : 10.1007/s10549-008-0148-5

C. J. Lai, R. Bao, and X. Tao, CUDC-101, a Multitargeted Inhibitor of Histone Deacetylase, Epidermal Growth Factor Receptor, and Human Epidermal Growth Factor Receptor 2, Exerts Potent Anticancer Activity, Cancer Research, vol.70, issue.9, pp.3647-3656, 2010.
DOI : 10.1158/0008-5472.CAN-09-3360

X. Cai, H. X. Zhai, and J. Wang, -hydroxyheptanamide (CUDC-101) as a Potent Multi-Acting HDAC, EGFR, and HER2 Inhibitor for the Treatment of Cancer, Journal of Medicinal Chemistry, vol.53, issue.5, 2000.
DOI : 10.1021/jm901453q

URL : https://hal.archives-ouvertes.fr/hal-00159318