Turning Tangent Empirical Mode Decomposition: A Framework for Mono- and Multivariate Signals.

Abstract : A novel Empirical Mode Decomposition (EMD) algorithm, called 2T-EMD, for both mono- and multivariate signals is proposed in this paper. It differs from the other approaches by its computational lightness and its algorithmic simplicity. The method is essentially based on a redefinition of the signal mean envelope, computed thanks to new characteristic points, which offers the possibility to decompose multivariate signals without any projection. The scope of application of the novel algorithm is specified, and a comparison of the 2T-EMD technique with classical methods is performed on various simulated mono- and multivariate signals. The monovariate behaviour of the proposed method on noisy signals is then validated by decomposing a fractional Gaussian noise and an application to real life EEG data is finally presented.
Type de document :
Article dans une revue
IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2011, 59 (3), pp.1309-1316. 〈10.1109/TSP.2010.2097254〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00550936
Contributeur : Lotfi Senhadji <>
Soumis le : vendredi 31 décembre 2010 - 18:14:52
Dernière modification le : mardi 3 juillet 2018 - 10:58:04
Document(s) archivé(s) le : vendredi 1 avril 2011 - 02:51:34

Fichiers

Turning_Tangent_Empirical_Mode...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Julien Fleureau, Jean-Claude Nunes, Amar Kachenoura, Laurent Albera, Lotfi Senhadji. Turning Tangent Empirical Mode Decomposition: A Framework for Mono- and Multivariate Signals.. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2011, 59 (3), pp.1309-1316. 〈10.1109/TSP.2010.2097254〉. 〈inserm-00550936〉

Partager

Métriques

Consultations de la notice

516

Téléchargements de fichiers

541