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Abstract 

This review focuses on new insights provided by transgenic animals in the cardiovascular 

pharmacology of serotonin. During development, mice mutant for tryptophan hydroxylase-1 

lacking peripheral serotonin or for 5-HT2B receptors display cardiac defects and dilated 

cardiomyopathy. The 5-HT4 receptor is also important for the maturation of cardiac 

conduction system. In fact, transgenic approaches revealed that adult cardiac status is strongly 

influenced by maternal serotonin. Long ago, serotonin was identified as a vasoconstrictor in 

adult physiology. Analysis of transgenic animals knocked-out for the serotonin transporter 

suggested a role of this protein in blood pressure control and revealed an effect of 5-HT2B 

receptor antagonists in hypertension. Concerning lung vasculature, mice lacking 5-HT2B 

receptor gene exposed to chronic hypoxia are resistant to pulmonary hypertension, while 5-

HT1B receptor and serotonin transporter mutant animals show partial resistance. In platelets, 

serotonin transporter mutant mice revealed that this transporter regulates not only the 

mechanisms by which serotonin is packaged and secreted but also their aggregation. 

Concerning adult cardiac remodeling, fibroblasts from mice lacking 5-HT2B receptor gene 

were unable to secrete cytokines and were protected from cardiac hypertrophy induced by 

isoproterenol and angiotensin II stimulations. Crossing these animals with mice 

overexpressing the receptor in cardiomyocytes revealed the contribution of cardiac fibroblasts 

and 5-HT2B receptors in cardiac hypertrophy. In mice lacking monoamine oxidase-A gene, the 

role of serotonin degradation in cardiac hypertrophy was firmly confirmed. In conclusion, 

transgenic animals contributed strongly to the re-evaluationof the influence of serotonin on 

cardiovascular regulation, though several unknowns remain to be investigated. 
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1. Introduction 

 

The first description of serotonin (5-Hydroxytryptamine, 5-HT) effects was in the 

cardiovascular field when, in 1896, Weiss showed that the response elicited by intravenous 

injection of serum in dogs was not reproduced by plasma administration (Weiss, 1896). The 

identification of the active compound, took half a century with two major steps. The first was 

achieved when Vially and Erspamer purified from enterochromaffin cells a substance 

inducing the contraction of smooth muscle cells (Vially and Erspamer, 1933). This substance 

called enteramine was, in a second step, identified as 5-hydroxytryptamine/5-HT as a blood 

vessel contracting molecule (Rapport et al., 1948a, b). Serotonin has been mainly studied for 

its role in the central nervous system. Only recently, its contribution to the peripheral 

cardiovascular system was emphasized especially in the regulation of platelet aggregation and 

regulation of cerebral blood flow.  

 One important feature of the serotonergic system is a great plasticity and capability to 

be mobilized in pathological context. In fact, most of the 5-HT effects are not detected in 

normal animals or humans, but appear only when a stressor is applied. In such ways, hypoxia 

revealed a role for the 5-HT transporter (SERT) (Wanstall JC et al., 2003), 5-HT1B receptors 

(5-HT1BR-/-) (Keegan et al., 2001), and 5-HT2B receptors (5-HT2BR-/-) (Launay et al., 2002) in 

pulmonary hypertension. Likewise, myocardial injury identified 5-HT4R re-expression and 

contribution to the cardiac inotropism of the failing heart (Qvigstad E et al., 2005). Moreover, 

transgenic mice studies gave new insights in 5-HT contribution to development and cardiac 

morphogenesis. 

 Serotonin is mainly (>95%) localized in the periphery, in circulating platelets from 

which it is released by activation. Serotonin is loaded into platelets via SERT after synthesis 

in the intestinal wall (Figure 1) (for a review on the serotonergic system see Jonnakuty and 

Gragnoli C, 2008). 5-HT is synthesized by enterochromaffin cells and released in the portal 

circulation. The synthesis of this simple mediator, derived from the essential aminoacid L-

tryptophan, is rate limited by tryptophan-hydroxylase 1 (Tph-1) activity, the Tph-2 isoform 

being the central nervous system enzyme. Serotonin demonstrates several, and sometimes 

opposite, cardiovascular effects. This surprisingly wide spectrum of effects is in fact due to 

numerous target receptors. To date, 16 receptors, subclassified in 4 groups, have been 

identified: 5-HT1/5, 5-HT2, 5-HT3, and 5-HT4/6/7. The classification is based upon the main 

intracellular coupling of these receptors (Figure 2). The 5-HT3A-E are ion channels when the 

others are G-proteins coupled receptors: Gi for 5-HT1/5, Gs for 5-HT4/6/7 and Gq for 5-HT2. In 
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some subclasses, different members were identified. As an example, the 5-HT2Rs group 

consists in 3 members: 5-HT 2A, 2B and 2C. In the cardiovascular system, the serotonergic 

receptors distribution pattern is species-dependent (shown in Figure 3 for mice). In this 

review, we will focus on the insights of transgenic animals to cardiovascular pharmacology of 

the ubiquitous transmitter 5-HT.  

 

 

2. The serotonergic system and cardiac morphogenesis 

In mice, 5-HT2BRs are highly expressed during early phases of embryogenesis starting at E8 

in many places such as neuroepithelium, notocord, somits, neural crest cells, and myocardium 

(Choi et al., 1997; Lauder et al., 2000). In cultured mouse embryos, pharmacological 

blockade of 5-HT2BRs by ritanserin induced malformations of the cephalic region, the heart 

and the neural tube indicating a possible contribution of this receptor in development (Choi et 

al., 1997). The firm demonstration of 5-HT embryonic functions was initially provided by 

mice knocked-out for 5-HT2BR (5-HT2BR-/-) by homologous recombination. This mutation 

induced a partial lethality around 10 days embryogenesis that was apparently due to cardiac 

defects (Nebigil et al., 2001).  

 The alterations were similar to those observed in neuregulin and ErbB-2 knockout 

animals indicating that the Gq-coupled 5-HT2BR could use ErbB-2 tyrosine kinase pathway in 

cardiac differentiation and growth. Mice that were able to reach the adulthood showed a left-

ventricular dilatation and fibrillar disorganization, males being more affected than females. 

Such a gender difference has been observed in other transgenic mice presenting a 

cardiomyopathy (Berul et al., 1998). Surprisingly, despite a reduced number of 

cardiomyocytes, size reduction of individual cells and cytoarchitectural abnormalities, the in 

vivo cardiac contractility was preserved. It is to note that 5-HT2BR-/- mice never showed any 

trouble of the cardiac conduction or arrhythmias leading to the conclusion that this receptor is 

mostly involved in embryonic differentiation and growth of the cardiomyocytes. This appears 

different from 5-HT4Rs: Newborns from pregnant female mice immunized against 5-HT4R, 

demonstrate major troubles of the intracardiac conduction with frequent atrioventricular block 

(Kamel et al., 2007). Surprisingly, such a phenotype has not yet been described in 5-HT4R-/- 

animals. 

 Although the role of 5-HT2BR-/- in development is now established, the origin and 

requirement of 5-HT itself is still a matter of debate. Some insights are provided by SERT 

gene targeting. This transporter regulates extracellular 5-HT concentrations, its inhibition 
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being responsible for local increase in extracellular 5-HT concentrations. By using Cre/lox 

conditional transgenic reporter mice, SERT has been shown to be expressed in the embryonic 

heart, starting at E10.5, in the outflow tract, part of right ventricle and to a very limited extent 

in the left ventricle (Pavone et al., 2007). Its expression co-localizes with Islet 1 in left-

ventricular ejection chamber and right ventricle (E11.5) and with connexin-43 in 

atrioventricular valves (Pavone et al., 2008). Taken together, these data indicate that a 

regulation of extracellular 5-HT concentration could affect development without providing 

information on the origin of 5-HT.  

 Recently, the group of Francine Côté, Guilan Vodjdani, and Jacques Mallet 

characterized a mouse strain disrupted for the gene encoding the peripheral Tph-1 (Cote et al., 

2007). These animals demonstrate a preserved cardiac ultrastructure but a dilated 

cardiomyopathy with reduced contractility leading to heart failure. In the heart of these 

animals, 5-HT concentration was reduced 10 times compared to controls but the authors failed 

to show any 5-HT synthesis in myocardial tissue and left open the question on the origin of 

cardiac 5-HT during embryogenesis. Interestingly, newborns from genetic phenylketonuric 

patients show mental retardation and cardiac abnormalities (Roux et al., 1995). The high 

phenylalanine concentration induced a competitive inhibition of tryptophan hydroxylases and 

so, a massive reduction of maternal 5-HT plasma concentration. A diet with reduced 

phenylalanine is required to prevent fetal abnormalities. This observation drives the concept 

that maternal 5-HT could contribute to embryonic development.  

 In a subsequent study, Francine Côté et al. intercrossed Tph-1+/+, +/- and -/- females 

with Tph-1+/+, +/- and -/- males and investigated offspring for embryonic abnormalities (Fligny 

et al., 2008). The result was remarkable, 80% of heterozygous embryos from Tph-1-/- mothers 

were small with or without abnormalities as compared to 3.7% in heterozygous from Tph-1+/- 

mothers. Moreover, surviving adult Tph-1-/- mice exhibited a progressive dilated 

cardiomyopathy that was more severe when born from homozygous mutant mothers than 

heterozygous. These results clearly show that adult cardiac status is strongly influenced by 

maternal serotonergic status. 

 Overall, these data showed that early fetal 5-HT concentration depends on maternal 

transplacental delivery and SERT fetal activity. They both contribute to the regulation of 5-

HTR activation including 5-HT2BRs that are required for normal cardiac morphogenesis and 

growth. 
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3. The serotonergic system in cardiovascular regulation 

 3.1 Regulation of the vascular tone of systemic arteries (central and peripheral 

aspects) 

More than a century ago, 5-HT was described as a blood pressure regulator, but, despite many 

years of intensive research, the contribution of 5-HT to blood pressure control is still an area 

of controversy. Plasma 5-HT is increased in human hypertension and deoxycorticosterone 

(DOCA)-salt hypertensive rats, and a nearly full serotonergic system is found in peripheral 

arteries. These vessels can synthesize, capture, store and metabolize this mediator and arterial 

walls express 5-HT1B, 2A and 2B serotonergic receptors. In the late 1970s, the 5-HT2R 

antagonist ketanserin was clinically used as an antihypertensive compound but the reduction 

of blood pressure was attributed to its affinity for a1-adrenergic receptors, ruling out a 

possible role for 5-HT in systemic pressure control. This postulate was confirmed by the 

absence of effect of ritanserin, a non-selective 5-HT2R antagonist that lacks a-adrenergic 

receptor affinity. At the opposite, 5-HT infusion or administration of the selective 5-HT2BR 

antagonist LY272015 were shown to reduce blood pressure in hypertensive rats, driving the 

hypothesis that the serotonergic system could act differently when blood pressure is normal or 

elevated (Watts, 2009). This group suggested that functional changes of 5-HT2B but not 5-

HT1BRs play a role in the development of DOCA-salt hypertension (Banes and Watts, 2003).  

 Data obtained in transgenic animals were limited with most investigators using SERT 

knockouts as models to elucidate the contribution of 5-HT by reducing its extracellular 

clearance. The consequences of SERT suppression can be analyzed in two different species 

i.e. rats and mice. SERT-/- rats were obtained through N-ethyl-N-nitrosurea mutagenesis 

(Homberg et al., 2006; Homberg et al., 2007). SERT-/- mice and rats show very low blood 5-

HT concentrations and do not demonstrate any blood pressure phenotype supporting an 

absence of role for 5-HT to blood pressure homeostasis and/or compensatory mechanisms in 

rodents (Ni et al., 2008). Nevertheless, Homberg et al. (2006) also analyzed heterozygous rats 

and observed a small increase in systolic blood pressure. This result is interesting because, at 

the opposite to homozygous knockouts, the platelets 5-HT content is normal in heterozygous 

animals. Therefore, 5-HT at physiological blood concentration could increase blood pressure 

if SERT is partially inhibited. This physiological role of SERT was emphasized by the group 

of S. Watts that showed a leftward shift of the dose response curve to 5-HT in wild-type rats 

aortic rings treated with the SERT inhibitor, fluvoxamine (Linder et al., 2008). This 

phenomenon was not observed in aorta from SERT-/- rats arguing in favor of a compensatory 

mechanism in these animals.  
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 If all these data indicate that SERT function has little impact on the resting blood 

pressure regulation, the system may be relevant in the context of a high blood pressure. This 

hypothesis was tested in rats heterozygous and homozygous for SERT mutation and 

chronically submitted to the NO synthase inhibitor N-nitro-L-arginine. The authors did not 

identify blood pressure phenotype among the three genotypes. Nevertheless, heterozygous 

rat’s blood pressure was still higher than controls, the difference observed in basal conditions 

being maintained or slightly increased vs. controls in hypertensive conditions (Homberg et al., 

2006). Similarly, when SERT-/- mice and rats were submitted to a DOCA-salt regimen, their 

blood pressure increase was important but quite similar to controls (Ni et al., 2008). In this 

model, partly depending on the serotonergic system, the lack of difference in SERT-/- rats 

could partly be explained by the low blood 5-HT and does not rule out any contribution of a 

5-HT2BR overexpression in hypertension as suggested by the LY272015 effect. The 5-HT2BR-

/- mouse was characterized for resting blood pressure and did not demonstrated any difference 

compared to controls. Similarly, the selective 5-HT2BR antagonists SB215505 and SB206553 

neither affected basal blood pressure nor response to a 14 days angiotensin II infusion 

(Monassier et al., 2008). In depth investigations should now be done in hypertensive knockout 

models for the arterial 5-HT2A, 2B and 1BRs. Transgenic animals will also offer the opportunity 

to dissect 5-HT pharmacology in other vascular beds such as coronary and cerebral 

circulations. 

 

3.2 Regulation by 5-hydroxytryptamine of hypoxia-induced pulmonary vascular remodeling 

In recent years, several studies have demonstrated that 5-HTRs control hypoxic responses in 

the pulmonary vascular system (Farber and Loscalzo, 2004). Unlike hypoxic responses in 

central nervous system, which involve many different 5-HTR subtypes, hypoxia-induced 

vasoconstriction in pulmonary vasculature appears to involve only 5-HT1B and 5-HT2A, 2 BRs. 

The exact pathways through which hypoxia causes vasoconstriction and pulmonary vascular 

remodeling (PVR) are just beginning to be identified. What is clear, however, is that hypoxia 

alters molecular (e.g., protein expression) and cellular (e.g., proliferation) processes via 

mechanisms that involve 5-HT, its receptors, and its transporter to elicit the physiological, 

pulmonary responses to hypoxia (vasoconstriction and PVR). In wild-type mice, hypoxia 

increases right ventricular pressure and pulmonary vascular remodeling. These effects of 

hypoxia are attenuated in the tryptophan hydroxylase 1-/- mice (Morecroft et al., 2007). In the 

chronic-hypoxic-mouse model of pulmonary hypertension, plasma 5-HT levels are 

significantly increased after chronic exposure to hypoxia in wildtype mice.  



Monassier  p8 

 

 3.2.1. Hypoxic conditions modify 5-hydroxytryptamine levels 

The function of 5-HTRs in hypoxic responses in the pulmonary vasculature must be 

dependent on the presence of suitable 5-HT levels activating these receptors. In healthy 

subjects, unconjugated plasma 5-HT levels are low (<10 nM); however, in PH patients, 

plasma 5-HT is consistently elevated (Herve et al., 1990; Herve et al., 1995; Kereveur et al., 

2000). A deficiency in platelet 5-HT storage, as in Fawn hooded rats, contributes to the 

development of severe PH under both normoxic (Kentera et al., 1988) and hypoxic (high 

altitude) (Sato et al., 1992) conditions. These observations suggest an etiological role for 5-

HT in the development of PH and raise two important questions: 1) what is the source of 5-

HT in pulmonary vasculature, and 2) how does reduced O2 lead to an increase in plasma 5-HT 

levels? 

 In the periphery, 5-HT is synthesized and secreted from neuroendocrine 

enterochromaffin cells in the gut. Serotonin is mainly eliminated by uptake in lung either by 

endothelial cells, where it is then degraded by monoamine oxidase-A (MAO-A) (Vane, 1957) 

or by platelets. Platelets take up 5-HT through SERT and store—but only slowly degrade—

the monoamine. Former studies have shown that long-term hypoxia causes a decrease in 

platelet counts and short-term hypoxia increases platelet counts (McDonald et al., 1978). 

Later, it has been established that chronic hypoxia, a stimulator of erythropoiesis, causes 

thrombocytopenia in laboratory animals. The thrombocytopenia is most likely the result of a 

reduction in the production of platelets caused by a decrease in the number of megakaryocytes 

in bone marrow. The thrombocytopenia seems to be caused by competition of precursor cells 

to erythrocytic and megakaryocytic lineages (McDonald et al., 1992). Moreover, hypoxia 

facilitates platelets aggregation (Li et al., 1997). Alteration of platelet number and/or function 

under hypoxic conditions could thus concertedly reduce 5-HT uptake and would explain 

hypoxia-induced increases in circulating plasma 5-HT. In this regard, platelet activation was 

found in the pulmonary vessels of patients with PH secondary to chronic obstructive 

pulmonary disease (Rostagno et al., 1991), and platelet survival time is reduced in patients 

with hypoxemia and PH (Steele et al., 1977). Anti-platelet agents, such as dipyridamole, 

reduce hypoxemic PH and the thickness of pulmonary arteries in response to chronic hypoxia 

(Keith et al., 1987). Based on these results, it has been postulated that circulating plasma 5-

HT may originate from platelets (Fanburg and Lee, 2000). 

 Different chemosensory organs such as the carotid bodies (CB) and pulmonary 

neuroepithelial bodies (NEB) respond to hypoxia in a 5-HT-dependent fashion. CB type I 
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cells contain 5-HT and express 5-HT1A, 5-HT3, and 5-HT5ARs that may affect CB function 

when arterial pO2 is reduced (Kirby and McQueen, 1984). NEBs release 5-HT in response to 

acute hypoxia by a mechanism involving the 5-HT3R (Fu et al., 2002). In this way, cellular 

and molecular hypoxia-regulated mechanisms, which have an effect on circulating plasma 5-

HT levels, probably involve platelets and pulmonary NEB, as well as reductions in the lungs’ 

ability to uptake and remove 5-HT. The 5-HT2ARs have been detected in platelets (Cook et 

al., 1994), where they enhance platelets aggregation (Li et al., 1997). The activation of 

presynaptic 5-HT1BR decreases 5-HT release (Davidson and Stamford, 1996), and in neonatal 

rabbit pulmonary NEB, 5-HT3Rs are involved in a positive feedback loop resulting in 

hypoxia-induced 5-HT release (Fu et al., 2002). In mice with either genetically or 

pharmacologically inactive 5-HT2BRs, plasma 5-HT levels were not modified by chronic 

hypoxia (Launay et al., 2002). Interestingly, an acute agonist stimulation of 5-HT2BR triggers 

a transient increase in plasma 5-HT that is SERT dependent and blocked by 5-HT2BR 

selective antagonist or genetic ablation, supporting the notion that a 5-HT2BR-dependent 

regulation of 5-HT uptake is implicated in the control of plasma 5-HT levels (Callebert et al., 

2006). Together these observations suggest that 5-HTRs control plasma levels of their ligand 

in response to hypoxia. 

 

 3.2.2. Putative role of serotonin transporter in hypoxic pulmonary vascular 

remodeling 

In recent years, many studies have explored possible roles of SERT in hypoxia-induced PVR. 

Hypoxia causes changes in SERT expression: acute and chronic hypoxia increase SERT 

mRNA levels in rat pulmonary arteries (Eddahibi et al., 1999). Upon acute hypoxia, specific 

5-HT transport is increased in porcine pulmonary artery endothelial cells without a 

concomitant increase in Km. Acute hypoxia results in an elevation of the maximal uptake rate 

(Vmax), implying de novo protein synthesis, and modification of plasma membrane 

phospholipids and fluidity (Bhat and Block, 1990). Conversely, chronic hypoxia reduces 5-

HT uptake by pulmonary arteries (MacLean et al., 2004; Launay et al., 2002). 

 In rat pulmonary artery smooth muscle cells (SMC), stimulation by 5-HT leads to an 

increase in DNA synthesis, and acute hypoxia potentiates this mitogenic effect. The increase 

in DNA synthesis can be prevented by high concentrations of SERT inhibitors (Lee et al., 

1991). Nonetheless, in sodium-free conditions (i.e., without 5-HT uptake), SERT inhibitors 

still attenuated 5-HT-induced mitogenesis (Pitt et al., 1994). Importantly, some SERT 

inhibitors (including citalopram and fluoxetine) have µM affinities for 5-HT2R (Sanchez and 
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Hyttel, 1999). In chronic hypoxic mice, increased PVR is partially reduced by the SERT 

inhibitors citalopram and fluoxetine (Marcos et al., 2003). Recent results indicate that there is 

synergy between the inhibitory effects of 5-HT1BR antagonists and SERT inhibitors on 5-HT-

induced pulmonary vasoconstriction (Morecroft et al., 2005) and that nordexfenfluramine 

(NorDF)-induced vasoconstriction is not dependent on SERT-mediated release of endogenous 

5-HT but rather via direct activation of 5-HTRs (Ni et al., 2005). These observations suggest 

that 5-HT uptake by SERT cannot fully account for the action of 5-HT, and support a role for 

5-HTRs. The proposition that the long SERT promoter polymorphism promotes PVR through 

increased SERT expression does not fully explain why patients who develop PH after 

dexfenfluramine (DF) treatment have the same proportion of this polymorphism as do PH 

patients in general (Rabinovitch, 2001). Moreover, the report that PVR after chronic hypoxia 

is reduced—but not completely abolished—in mice deficient for SERT gene (Eddahibi et al., 

2000) demonstrates that SERT does not solely mediate hypoxia-induced PVR. 

 

 3.2.3. Regulation of hypoxia-induced pulmonary vascular remodeling by 5-

hydroxytryptamine serotonin receptors 

Different mechanical factors have been shown to induce PVR. Chronic hypoxia can stimulate 

PVR directly and/or by a persistent vasoconstriction process as already suggested (Jeffery and 

Wanstall, 2001). Despite sustained hypoxia, vasoconstriction persists but subsides somewhat 

as PVR progresses (Reeves et al., 1986). Neurohumoral factors such as 5-HT/5-HTRs may be 

implicated. The 5-HT1BR-mediated acute contractile response to 5-HT is increased in 

pulmonary arteries isolated from chronic hypoxic wild-type mice. However, 5-HT1BR 

knockout mice still respond to hypoxia but develop less severe PH and PVR than do wild-

type mice (Keegan et al., 2001). Discordantly, Marcos et al. report that chronic hypoxia (10% 

O2 for 2 weeks)-induced pulmonary hypertension and increased vessel muscularization were 

not reduced by the 5-HT1B/1DR antagonist GR127935 (Marcos et al., 2003). Thus, the role of 

5-HT1BR in hypoxia-induced PH and PVR remains unclear and may be species- or strain-

sensitive. 

 In ovine common carotid arteries, despite altering the contractile response, acute 

hypoxia had no effect on 5-HT2AR coupling to IP3 second-messenger production (Angeles et 

al., 2001). Similarly, acute hypoxia reduced 5-HTRs density and agonist affinity in adult 

bovine common carotid arteries (Angeles et al., 2000). However, the role of 5-HT2AR in 

hypoxia-induced PH and PVR is not clear, since the receptor’s expression is not modified in 

the lung vasculature of mice exposed to 10% O2 for 5 weeks or in human PH (Launay et al., 
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2002). Furthermore, in mice, the effects of chronic hypoxia on pulmonary artery pressure and 

vessel muscularization are insensitive to the 5-HT2AR antagonist ketanserin (Marcos et al., 

2003). 

 Mice with pharmacologically or genetically inactive 5-HT2BR do not develop PH and 

PVR following chronic hypoxia, even though the acute hypoxic response (vasoconstriction) is 

intact (Launay et al., 2002). Therefore, the 5-HT2BR is a key factor in the molecular signaling 

pathways that couple chronic hypoxia to PH and PVR, a pathway independent of acute 

hypoxia-induced vasoconstriction, for a review see (Esteve et al., 2007). The 5-HT2BR also 

functionally interacts with the 5-HT1BR and the SERT, whose roles in PH and PVR are rather 

well established. For instance, 5-HT1BR and SERT activities are modulated by 5-HT2BRs 

(Fanburg and Lee, 2000; Tournois et al., 1998). Similarly, MacLean proposed a functional 

interaction between Gi-coupled (5-HT1BR) and the SERT, which would facilitate the 

development of PH (Morecroft et al., 2005). In addition, SERT, 5-HT1BR, and 5-HT2BR are 

colocalized in pulmonary arteries, and 5-HT2BR has been reported to regulate SERT activity 

in the 1C11 serotonergic cell line (Launay et al., 1998). The emerging question, then, is how 

5-HTRs control hypoxia-induced PVR. 

 

4. Platelets and hemostasis 

We have previously emphasized that peripheral 5-HT is mainly found in circulating platelets. 

Once 5-HT enters the circulation, it is captured inside platelets by SERT and then sequestered 

in dense granules by the vesicular monoamine transporter (VMAT-2). This phenomenon is 

critical for a normal platelet aggregation because rats lacking SERT demonstrate a reduced 

hemostasis as attested by a bleeding time prolongation (Matondo et al., 2009) The current 

dogma is that 5-HT released during platelet activation amplifies, in an autocrine manner, the 

effect of other prothrombotic agents through activation of 5-HT2ARs. Nevertheless, some non-

5-HT2A-mediated effects of 5-HT were identified.  

 Recently, work with transgenic mice has provided new informations about the crucial 

role of platelet’s SERT to fill 5-HT stores. The homozygous disruption of integrin b3 in Itgb3-

/- mice did not affect the SERT expression level but markedly reduced 5-HT platelet uptake. 

At the opposite, when platelets were seeded on the aIIbb3 ligand, fibrinogen, the 5-HT 

uptake was increased together with an enhancement of SERT membrane expression and/or 

catalytic function through pathways linked to p38 MAPK. These observations made in 

transgenic animals lead to the discovery of a direct molecular interaction between the SERT 
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C-terminus and the aIIbb3 integrin. Moreover, the expression of an overactive integrin b3 

increased fibrinogen binding, platelet reactivity to ADP and 5-HT uptake. This SERT 

overactivity was due to an increased plasma membrane location of the transporter via an 

enhanced p38 MAPK signaling. Taken together, these data support a role of integrins on 

SERT activity by direct molecular interaction and phosphorylation. 

 Transgenic mice also shed new light on another crucial role of platelet SERT, direct 

regulation of aggregation. Platelets isolated from SERT-/- mice show a 80% reduction of ADP 

induced aggregation and a 50% reduction to thrombin indicating agonist dependent roles for 

the SERT in the extent of platelet aggregation (Carneiro et al., 2008). This role is located in a 

final common pathway leading to aggregation. After being captured, platelet 5-HT is stored in 

dense granules also containing ADP, ATP and calcium. Rab27b is a GTP binding protein that 

was originally purified in platelets. Tomalchova et al. (2007) demonstrated that Rab27b is a 

key regulator of dense granule secretion. Its absence leads to a major reduction of 5-HT, ATP 

and a-granule proteins secretion. 5-HT secretion is tightly regulated: Mice lacking serglycin, 

an hematopoietic cell secretory granule proteoglycan, demonstrate a reduced secretion of 

dense granule 5-HT and ATP contributing to a lower ability to aggregate and to bind 

fibrinogen (Woulfe et al., 2008). 

 Activated platelets bind numerous adhesive and procoagulant proteins by receptor-

mediated processes. Although little evidence suggests that these processes are heterogeneous 

in platelets, platelets co-stimulated with collagen and thrombin express functional a-granule 

factor V only on a subpopulation of cells, referred to as 'COAT-platelets', which then bind 

additional a-granule proteins, including fibrinogen, von Willebrand factor, thrombospondin, 

fibronectin and a2-antiplasmin. These proteins are all transglutaminase substrates, and 

transglutaminase inhibitors prevent the production of COAT-platelets. COAT-platelets use 5-

HT conjugation to augment the retention of procoagulant proteins on their cell surface (Dale 

et al., 2002). Mice selectively deficient in peripheral Tph-1 exhibited impaired hemostasis, 

resulting in a reduced risk of thrombosis and thromboembolism, although the ultrastructure of 

platelets was not affected. While aggregation of 5-HT-deficient platelets in vitro is apparently 

normal, their in vivo adhesion is reduced due to a blunted secretion of adhesive a-granular 

proteins. It has been shown that 5-HT is transamidated to small GTPases by transglutaminases 

during activation and aggregation of platelets, rendering these GTPases constitutively active. 

Thus, a receptor-independent signaling mechanism, now termed "serotonylation," leads to a-

granule exocytosis from platelets (Walther et al., 2003).  
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 The small G protein RhoA plays a major role in several vascular processes and 

cardiovascular disorders. Serotonin is associated with RhoA both in vitro and in vivo, via 

transamidation by transglutaminase. Transamidation leads to RhoA activation and enhanced 

proteasomal degradation, which in turn is responsible for Akt activation and contraction 

inhibition (Guilluy et al., 2007). RhoA and Rho kinase activities are increased in pulmonary 

hypertension, which has recently been associated with enhanced RhoA serotonylation 

(Guilluy et al., 2009). High extracellular 5-HT induces also transamidation of the small 

GTPase, Rab4. Modification with 5-HT stabilizes Rab4 in its active, GTP-bound form, Rab4-

GTP (Ahmed et al., 2008). The covalent coupling of 5-HT by transglutaminases has been 

extended during insulin exocytosis to two key players in insulin secretion, the small GTPases 

Rab3a and Rab27a. Serotonylation renders them constitutively active in a receptor-

independent signaling mechanism. Concordantly, an inhibition of such activating 

serotonylation in b-cells reduces insulin secretion. Serotonylated Rab3a is inactivated by 

enhanced proteasomal degradation, as other serotonylated GTPases. Serotonin can thus 

regulate insulin secretion by serotonylation of GTPases within pancreatic b-cells (Paulmann 

et al., 2009). Serotonin can covalently modify other proteins integral to contractility and the 

cytoskeleton, in particular, smooth muscle a-actin that can be serotonylated (Watts et al., 

2009). Finally, Rac1 activity is transiently increased due to transglutaminase-catalyzed 

transamidation of 5-HT to Rac1 via stimulation of 5-HT2ARs. Activation of Rac1 via 

transglutaminase is therefore a novel effector and second messenger of the 5-HT2AR-

signalling cascade (Dai et al., 2008). 

 

5. Cardiac remodeling 

The idea that 5-HT could interfere with cardiac remodeling has been proposed 20 years ago 

when clinical trials showed the cardiac antihypertrophic effect of the non-selective 5-HT2R 

antagonist, ketanserin, in hypertension and heart failure (Brune et al., 1990; Vyssoulis et al., 

1990). Unfortunately, clinical applications of this drug were blunted by a non-5-HTRs 

mediated QT interval prolongation and the risk of sudden cardiac death. This effect, entirely 

due to a blockade of inward rectifying HERG channels (Tu et al., 2008), deeply affected this 

field of research and reduced the interest of the serotonergic system in the heart.  

 In the late 90s, the characterization of a mouse mutant line lacking the 5-HT2B subtype 

of 5-HT2Rs demonstrated a constitutive reduction of the left-ventricular mass with fewer and 

smaller cardiomyocytes than wild-type mice (Nebigil et al., 2001). This global hypoplasia led 
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to an enlarged ventricle and a small reduction of the cardiac contractility. A similar phenotype 

was obtained in mice lacking Tph-1, the peripheral isoform of tryptophan hydroxylase (Côté 

et al., 2003), indicating that peripheral 5-HT is necessary for cardiac development, possibly 

through a 5-HT2BR stimulation. At the opposite, overexpression of this Gq-coupled receptor 

in cardiomyocytes induced a mild hypertrophic cardiomyopathy (Nebigil et al., 2003). Taken 

together, all these data showed the importance of this receptor in myocardial tropic responses.  

 The fact that many serotonergic agonists are known to produce fibrosis focused 

attention on functions of 5-HTRs in extracellular cell matrix regulation. Cardiac fibroblasts 

express both 5-HT2A and 5-HT2BRs and activation of the later produces the release of IL-6, 

IL-1b, TGF-b and TNFa. Moreover, cardiac hypertrophy induced by a 5 days-long infusion 

of the b-adrenergic agonist, isoproterenol, was prevented by a selective 5-HT2BR antagonist 

and in 5-HT2BR-/- mice (Jaffre et al., 2004). This prevention was observed in parallel with a 

reduction of the plasma concentration of these cytokines and without any effect on heart rate 

or blood pressure. In this model, a reduction of cardiac contractility was observed, attesting of 

a progressive evolution of ventricular function towards failure that was prevented by 5-HT2BR 

blockade. The hypothesis that cardiac hypertrophy could be linked to myocardial cytokines 

production and oxidative stress was tested. When wild-type mice treated with a 5-HT2BR 

antagonist or 5-HT2BR-/- mice were infused with isoproterenol or angiotensin II, the 

pharmacologically induced cardiac hypertrophy was prevented in parallel with a major 

reduction of left ventricular superoxide anion concentration (Monassier et al., 2008). 

Interestingly, in the angiotensin II model, superoxide anion generation in the aorta of these 

hypertensive animals, a tissue expressing very low amounts of 5-HT2BRs, was not prevented 

by 5-HT2BR blockade. Oxidative stress was mainly mediated by an overexpression of the 

NAD(P)H oxidase; 5-HT2BR blockade did not affect this increased expression but reduced the 

enzyme activity.  

 To analyze the respective contribution of 5-HT2BRs expressed by fibroblasts and 

cardiomyocytes in antihypertrophic action of 5-HT2BR antagonists, double transgenics were 

generated by crossing 5-HT2BR-/- mice and mice overexpressing the 5-HT2BR under a-MHC 

promoter (cardiomyocytes specific) (called Tg) (Jaffre et al., 2009). This cross generated 

various strains: Tg; 5-HT2BR-/- (strain knockout for the 5-HT2BR in all cells except 

cardiomyocytes) and Tg; 5-HT2BR+/+ (strain expressing the 5-HT2BR in all cells, including 

cardiomyocytes and fibroblasts). The cardiac hypertrophy induced by isoproterenol was 

completely suppressed in Tg; 5-HT2BR-/- showing that the 5-HT2BR localized in 
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cardiomyocytes is not involved in the antihypertrophic effect of 5-HT2BR blockade. 

Moreover, the plasma increase of IL-6, IL-1b and TGF-b that was induced by isoproterenol in 

Tg; 5-HT2BR+/+ or 5-HT2BR+/+, was suppressed in Tg; 5-HT2BR-/-, indicating the major 

contribution of extracellular cell matrix in the process of cardiac hypertrophy due to a chronic 

b-adrenergic stimulation. Similar results were obtained in primary cultures of left-ventricular 

fibroblasts coming from this later strain and identified the 5-HT2BR as a major contributor to 

cardiac hypertrophy triggered by both b-adrenergic and angiotensinergic stimulations (Figure 

4). Finally, these findings were validated in humans, in which 5-HT2BR overexpression is 

correlated with plasma norepinephrine and cytokine levels. 

 Another insight of transgenic animals in cardiac remodeling is cardiac valve 

degeneration. Free plasma 5-HT is captured by cells expressing SERT. This capture is 

followed by the intracellular degradation of the transmitter mainly by MAO-A (Bianchi et al., 

2005). Two transgenic mice revealed that a reduction of 5-HT catabolism could contribute to 

myocardial and valve fibrosis. In the first one, the genetic ablation of SERT lead to a cardiac 

fibrosis including the valves (Mekontso-Dessap et al., 2006). The study provided the first 

experimental evidence that an increase in extracellular 5-HT concentration could favor 

cardiac fibrosis. Similarly, MAO-A knockout mice submitted to cardiac hypertrophy by aortic 

constriction demonstrated an increase in plasma 5-HT, an exacerbation of cardiac hypertrophy 

and an increase in myocardial 5-HT content (Lairez et al., 2009). Taken together, these data 

emphasize the contribution of 5-HT in cardiac remodeling and gave new evidences about its 

role in valve degeneration. Serotonin plays a major role in the pathogenesis of the cardiac 

plaque formation and valvulopathy observed in carcinoid patients; heart diseased patients 

demonstrated strikingly higher mean serum 5-HT, plasma 5-HT, and urine 5-HIAA levels 

(Robiolio et al., 1995). This work open the way of future studies exploring the mechanisms of 

valve degeneration in the carcinoid heart, a situation where free plasma 5-HT is massively 

increased. 

 

6. Conclusions and future prospects 

Molecular genetics opened new areas of investigation in the field of 5-HT in the 

cardiovascular system. New targets and new clinical indications were proposed for drugs that 

would modulate 5-HT synthesis, transport and receptor-mediated effects. A lot of work has 

still to be done - we have yet to investigate all transgenics for every serotonergic molecule. 

Moreover, many of these proteins are polymorphic. It has been suggested that some 
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polymorphisms may affect cardiovascular outcome (SERT) but humanized mice will 

probably help to better assess their contributions. Together with functional genomics, 

pharmacogenomics and classical pharmacological, molecular genetics is likely to help the 

development of new drug candidates to treat and/or prevent pulmonary hypertension, 

pulmonary fibrosis or cardiac hypertrophy. However, although work with transgenic rats and 

mice clearly has the potential to shed new light on the cardiovascular pharmacology of 5-HT, 

it should be borne in mind that neither mice nor rats are not small humans (Setola and Roth, 

2003). 
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Legend to figures 

Figure 1 : Serotonin synthesis and catabolism. 
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Figure 2 : The 5-HT transporter and the 16 serotonergic receptors with their main signaling 

pathways. 
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Figure 3: Distribution of 5-HT effectors in the cardiovascular system. 

5-HT1B, 5-HT2A and 5-HT2B receptors are expressed by small pulmonary arteries. 

Serotonergic control of systemic vascular tone (including coronary arteries) mainly involves 

vascular 5-HT2A and 5-HT1B receptors. Vasodilatation in arteries follows activation of 5-HT7 

receptors in smooth muscles and endothelial 5-HT2B receptors, which leads to NO release. 

Cardiac atrium express 5-HT4 receptors (during development in rodent), and ventricles 

express 5-HT1B, 5-HT2A and 5-HT4 receptors. 5-HT2A and 5-HT2B receptors are highly 

expressed in valves. Finally, matures platelets express 5-HT2A receptors and SERT. 
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Figure 4: Molecular pathways involving serotonergic 5-HT2B receptors in cytokines 

secretion by cardiac fibroblasts. 

Stimulation of b-adrenergic receptors in cardiac ventricular fibroblasts drives the formation of 

angiotensin II from angiotensinogen. Consecutive stimulation of AT1/5-HT2B receptor 

complexes activates MMPs through Src and the NADP(H) oxidase, and then HB-EGF/ErbB 

signaling triggers cytokines release via p38 mitogen-activated protein kinase activation. This 

release can lead to paracrine effects in cardiomyocytes such as hypertrophy and may be 

involved in extracellular cell matrix remodeling by promoting inflammation and fibrosis. 

bADR: beta adrenergic receptor, AT1R: AT1 receptor for angiotensin, 5-HT2BR: 5-HT2B 

receptor, MMPs: matrix metalloproteinases, e: extracellular, i: intracellular. 
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