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Abstract. In this paper, we present a new algorithm for non-linear reg-
istration of point sets. We estimate both forward and backward deforma-
tions fields best superposing the two point sets of interest and we make
sure that they are consistent with each other by designing a symmetric
cost function where they are coupled. Regularisation terms are included
in this cost function to enforce deformation smoothness. Then we present
a two-step iterative algorithm to optimise this cost function, where the
two fields and the fuzzy matches between the two sets are estimated in
turn. Building regularisers using the RKHS theory allows to obtain fast
and efficient closed-form solutions for the optimal fields. The resulting
algorithm is efficient and can deal with large point sets.

1 Introduction

The most popular methods in the literature for the non-rigid registration of two
point sets are probably those extending the original ICP algorithm of Besl &
McKay [1], such as the EM-ICP of Granger & Pennec [2] or the TPS-RPM of
Chui & Rangarajan [3]. The common viewpoint of these methods is to consider
the points of the first set as the means of a Gaussian Mixture Model (GMM)
and the points of the other set as samples of this GMM. The unknown non-
rigid transformation best superposing the two point sets can then be estimated
according to the maximum likelihood principle and using (typically) the EM
algorithm. This optimisation then boils down to a simple iterative estimation
of fuzzy point-to-point correspondences (encoded in what is often termed the
match matrix) and of the non-rigid transformation in turn. This simple two-step
(point matching and transformation estimation) algorithm is very attractive,
but inherently asymmetric, which makes it difficult to obtain inverse consistent

registration (i.e. the registration of one set to the other provides the inverse
transformation of that obtained when switching the two sets) in this EM-ICP

framework. Such a property is very desirable, especially when building an at-
las from a set of anatomical structures. First trials towards a symmetric point
matching include the work by Rangarajan et al. who used the Sinkhorn theorem
to enforce the match matrix to be doubly stochastic [3]. Most other works focused
on the estimation of the transformation: Joshi & Miller [4] showed how to build



a diffeomorphism between two sets of matched points, but without guaranteeing
inverse consistency. In parallel, Johnson & Christensen proposed a method to-
wards this goal, but using thin-plate splines where invertibility is not ensured [5].
These solutions are theoretically attractive but computationally redhibitory in
case of large point sets, which limits their use to simple anatomical structures.

In this paper, we propose a symmetric formulation of the registration prob-
lem in an EM-ICP framework, that allows to jointly compute the forward and
the backward deformation fields linking the two point sets (Section 2). Our cost
function is composed of two data attachment terms, two consistency terms (to
enforce both transformations to be compatible with each other) and two regu-

larisation terms over both fields. We provide an iterative two-step algorithm to
minimise this new criterion, in which the first step is quite similar to that of
the original EM-ICP algorithm and the second step consists of two interleaved
approximation problems. Using the Reproducing Kernel Hilbert Space (RKHS)
theory and the Fourier analysis, we devise efficient regularisers leading to closed-
form solutions based on sparse linear algebra for these two problems (Section
3). This results in an efficient algorithm allowing non-linear registration on large
3D point sets (Section 4). Finally, we give some perspectives (Section 5).

2 A framework for a consistent & symmetric EM-ICP

2.1 Cost function

Let X = {x1, ..., xN} and Y = {y1, ..., yM} be two point sets representing two
anatomical structures to be registered. Let TX and TY be respectively the back-
ward and forward unknown transformations superposing X and Y . Let AX (resp.
AY ) be the match matrix describing the correspondences between TX(X) and
Y (resp. TY (Y ) and X). Let α and β be real positive values weighing the in-
fluence of the different terms. Following the EM-ICP framework in its energetic
formulation [3], we consider the matrices AX and AY as hidden variables of the
problem and we design our cost function as :

E(TX , TY , AX , AY ) = [Ed(Y, TX(X), AX) + Ed(X, TY (Y ), AY )

+αEc(T
X ◦ TY , I) + αEc(T

Y ◦ TX , I)

+βEr(T
X) + βEr(T

Y )], (1)

where:
• Ed(Y, TX(X), AX) is a data attachment term defined as:

Ed(Y, TX(X), AX) = 1/N
[

∑

i,j

AX
i,j ||yi − TX(xj)||

2 + σ2
∑

i,j

AX
i,j log(AX

i,j)
]

, (2)

where
∑

i,j is the sum over the points yi ∈ Y and xj ∈ X, and
∑

i AX
i,j = 1 ∀j.

The parameter σ can be seen as the Gaussian noise variance on X and Y . In
practice σ controls the fuzziness of A.

• Ec(T
Y ◦ TX , I) is a consistency term that measures the discrepancy be-

tween transformations TX and TY . Without this term, estimations of TX and



TY would be completely independent. This new term couples them and forces
them to be compatible with each other. We design it as: Ec(T

Y ◦ TX , I) =
1/N

∑

xj∈X ||TY ◦ TX(xj) − xj ||
2.

• Er(T
X) = R(TX) is a regularisation term penalising discontinuities of TX .

• Ed(X, TY (Y ), AY ), Ec(T
X ◦ TY , I) and Er(T

Y ) are built the same way.

2.2 Minimisation

The cost function (1) can be optimised by an iterative two-step algorithm that
consists in minimisation over AX ;AY and TX ;TY in turn:

init T̃X and T̃Y as the identity function

i) ÃX ; ÃY = arg minAX ,AY E(T̃X , T̃Y , AX , AY )

ii) T̃X ; T̃Y = arg minT X ,T Y E(TX , TY , ÃX , ÃY )

Step i) has a closed-form solution. To achieve robustness, we replace the square
cost function in Ed by a truncated quadratic cost function. Then Step i) can
be efficiently solved using a kd-tree [2]. For Step ii), we optimise iteratively the
criterion with respect to each one of the two unknowns TX and TY :

ii.a) TX = T̃X and TY = T̃Y

ii.b) T̃X = arg minT X E(TX , TY , ÃX , ÃY )

ii.c) T̃Y = arg minT Y E(TX , TY , ÃX , ÃY )

Intuitively, this algorithm consists in alternatively estimating TX as a compro-
mise between data attachment (Ed(Y, TX(X), AX)), regularisation (Er(T

X)) and
consistency with TY (Ec(T

Y ◦TX , I)) and TY as a compromise between the three
other symmetric terms. Implementing this last scheme requires further specifica-
tion of T and R. We define the transformation TX as the initial position plus a
displacement field: TX(xj) = xj + tX(xj) and R is a regulariser on tX (similarly
for TY and tY ). Then Step ii.b) can be written as:

ii.b) t̃X = arg mintX 1/N
∑

i,j AX
i,j ||yi − xj − tX(xj)||

2 + βR(tX)+

α/N
∑

j ||t̃
Y (xj + tX(xj)) + tX(xj)||

2 + α/M
∑

i ||t
X(yi + t̃Y (yi)) + t̃Y (yi)||

2

Step ii.c) has a similar expression.
Due to the terms

∑

j ||t̃
Y (xj+tX(xj))+tX(xj)||

2 in step ii.a) and
∑

i ||t̃
X(yi+

tY (yi)) + tY (yi)||
2 in Step ii.b), which are somewhat redundant with their sym-

metric counterparts, the two problems are very intricate. Thus, similarly to what
is done by Chui et al. [7] in a related context, we drop them, which allows to
reformulate Steps ii.a) and ii.b) as two independent approximation problems:

ii.b) t̃X = arg mintX 1/N
∑

i,j AX
i,j ||yi − xj − tX(xj)||

2

+βR(tX) + α/M
∑

i ||t
X(yi + t̃Y (yi)) + t̃Y (yi)||

2

ii.c) t̃Y = arg mintY 1/M
∑

i,j AY
i,j ||xi − yj − tY (yj)||

2

+βR(tY ) + α/N
∑

j ||t
Y (xj + t̃X(xj)) + t̃X(xj)||

2

In practice, only a few iterations are necessary to decrease importantly the
criterion. Then, R could be chosen as a TPS regulariser and then the two approx-
imations problems would consist in solving linear systems of size proportional to



N ×M , which would be impracticable in terms of time and memory complexity
for large point sets. Below, we propose an alternative efficient strategy.

3 Efficient solutions for the approximation problems

3.1 Formalism

One can show that the two above mentioned problems can be restated as:

f̃ = arg min
f

∑

i,j

pjAi,j ||ui − (vj + f(vj))||
2 + βR(f). (3)

where U = {u1, ..., uN}, V = {v1, ..., vM} and
∑

i Ai,j = 1 ∀j. The positive
values (pj) are introduced for the sake of generality and allow to consider some
points of V as outliers by simply fixing pk = 0 when vk is an outlier.

First, one can show that this problem is equivalent to (considering that the
derivatives vanish at the optimum and noting that

∑

i Ai,j = 1, ∀j):

f̃ = arg min
f

∑

j=1

pj ||cj − (vj + f(vj))||
2 + βR(f),with cj =

∑

i

Ai,jui. (4)

This reduces the size of the problem from card(U) × card(V ) to card(V ).
Now, we focus on building a tractable (in terms of minimisation) and powerful

(in terms of reliability of the model) regulariser R. For that, we consider our
problem in a space of admissible solutions H that we span using a positive definite
kernel (pdk) k 1 : H = {f |f(.) =

∑∞
i=0 k(qi, .)wi, wi ∈ IR3, , qi ∈ Ω; ||f ||H < ∞}C

where SC denotes the completion of the set S and where Ω ⊂ IR3. This space is
endowed with the inner product: < f, h >H=

∑∞
i,j=0 wT

i k(qi, qj)wj . The space
H is a Hilbert space with reproducing kernel k (or more compactly a RKHS) [8].
Then we assume that f ∈ H and define our regulariser R(f) as ||f ||H:

f̃ = arg min
f∈H

∑

j=1

pj ||cj − (vj + f(vj))||
2 + β||f ||H. (5)

One of the key advantage of RKHS is that one can show [9] that the values
taken by the solution f̃ at the points v1, . . . , vj , . . . , vM can be expressed as

f̃(vj) =
∑M

i=1 k(vi, vj)wi and then formulate the last minimisation problem as:

(w̃) = arg min
(w)

∑

j=1..M

pj ||cj −
(

vj +
∑

i=1..M

k(vj , vi)wi

)

||2+β
∑

i,j=1..M

wT
i k(vj , vi)wj

Vanishing the derivatives gives a linear system whose solution can be expressed
in a closed-form as: W = (d(P )K + βI)−1d(P )[C − V ], where V = [v1, ..., vM ]T ,
C = [c1, ..., cM ]T , W = [w1, ..., wM ]T , K = (k(vi, vj)i,j) is the M by M matrix
associated to kernel k and d(P ) is the diagonal matrix formed by the pj values.
The challenge is now to choose a kernel corresponding to a relevant regulariser.

1 More generally, we could use a vectorial positive definite kernel k (in our case, k(., .)
would be a 3×3 matrix). By simply considering a scalar pdk, we indirectly restrict
our study to vectorial pdk k of the form k(., .) = k(., .)I. However, note that all the
results of this section can be extended to vectorial pdks.



3.2 Choosing a kernel

In order to design a suitable k, one can use an interesting relationship with
Fourier-based stabilisers. Let ∀f = (f1, f2, f3) integrable, R(f) = R(f1)+R(f2)+

R(f3), with R(fi) = 1
(2π)3

∫ ∞

−∞
|f∗

i (ω)|2

φ∗(|ω|/b)dω, where ∗ is the Fourier transform

operator, φ : IR → IR is an integrable function and b is a real positive rescaling
factor. Let F = {f : IR3 → IR3|R(f) < ∞}. Interestingly, one can state that if φ∗

is symmetric, positive and if φ ∈ L1 thus F is a RKHS whose reproducing kernel
is given by k(qi, .) = b × φ(b × (qi − .)) and such that ∀f ∈ F , ||f ||F = R(f) [8,
10]. This dual view is convenient as it allows to design a wide variety of efficient
regularisers directly into the Fourier domain.

In order to design an efficient regulariser, we have to choose 1
φ∗

as a high-pass
filter. This way, high frequencies of the deformation will be drastically penalised
whereas low frequencies will only be penalised a little. Generally, φ∗

[0,∞] is a
monotonically decreasing function and the most important element that charac-
terises its influence on the regularisation is the way it decreases that indicates the
amount of penalisation with respect to frequencies. Particularly, the frequencies
for which φ∗(||ω||/b) is null are forbidden. The two parameters β and b allow to
handle the regularisation properties: β is a quantitative parameter (it indicates
the amount of smoothness) whereas b is more qualitative (in a way, it defines
what the term ”smoothness” means). Finally, note that an undesirable effect of
this approach is to penalise the null frequency i.e. the average of the field (as
1/φ∗(0) is not null). One removes this penalisation by simply ensuring that the
deformation field has the same norm before and after regularisation. Figure 1
shows the influence of b and β when approximating a noisy field when choosing
φ as the Wu kernel [8].

3.3 Efficient choices

Although we propose a closed-form solution for the approximation problem, it
consists in solving a M×M system. This is can be problematic when M increases
(in term of memory usage and of computational time). Suppose that we choose
a compactly supported pdk (i.e. for ∀x, ∀y such that ||y|| > r; k(x, y) = 0), then
i) d(P )K + βI is a sparse matrix that can be computed using a kd-tree and ii)
computing W consists in solving a sparse system. Some interesting compactly
supported pdk corresponding to low-pass filters have been proposed in the liter-
ature (such as Wendland, Wu or Buhmann functions). Moreover, techniques to
generate a wide variety of them have been proposed [8]. Alternatively one can
use a highly decreasing function and approximate it by zeroying all its values
over a given threshold. We experimentally find the compact support kernel of
Wu (φ2,3) as the one providing the best results and we will use it in the following.

4 Evaluation & Application

We use three databases of 20 surfaces each, composed of pairs of lateral ven-
tricles of control subjects (15,000 points, segmented from T1-weighted MRI us-



Original field Wu function with beta=5, b=10 Wu function with beta=5, b=40 Wu function with beta=100, b=40 

Fig. 1. Effect of parameters β and b on the approximation of a noisy field.

ing itksnap.org), caudate nuclei of patients with dysphasia (2,000 points, seg-
mented from T1-weighted MRI with an in-house software) and osseous labyrinths
of modern H. sapiens (30,000 points, segmented from CT images with amira.com).
We perform the following validation experiments.

Experiment 1. We choose one surface in each dataset and deform these 3
surfaces 100 times using randomly generated non-linear transformations (using
TPS). Then we register the original and deformed surfaces and compute the
overall residual distance between the known corresponding points and the Haus-
dorff distance between the surfaces. These two error measures are then averaged
over the 100 simulations for each of the three surfaces.

Experiment 2. We manually select 6 landmarks on each of the 40 pairs of
ventricles and labyrinths (the 20 nuclei are not used in this experiment). Then
we choose one of the surfaces in each of the two datasets to be the template,
and register all the 19 other surfaces to this template. We evaluate the mean
residual errors on the landmarks, the Hausdorff distance between the surfaces,
and we average these errors over the 19 subjects for each of the two datasets.

For both sets of experiments, we evaluate 3 strategies: asymmetric EM-ICP
formulation using an order-one Tikhonov regularisation [6] (Method 1), asym-
metric formulation using RKHS-based regularisation (Method 2) and symmetric-
consistent formulation using RKHS (Method 3). The results are displayed on
Tab. 1. Fig. 2 and Fig. 3 illustrate the added value of the symmetric consistent
RKHS formulation compared to the asymmetric one on ventricles and nuclei.

The parameters for Method 3 are initialised as: α = 8, β = 400, σ2 = 20×S,
b = 250 × S where S is the size (in metre) of the object; β, σ2, b are then
decreased throughout the algorithm until they reach the respective values of 20,
5×S and 150×S. The same is done for Method 1 for β and σ2 and for Method
2 for β, σ2 and b. The run time to register point sets of 5,000 points is 2 min for
Method 1, 5 min for Method 2 and 12 min for Method 3 on a standard PC.

Application to statistical shape modelling. Two major tracks have been
followed in the literature to extend the EM-ICP formalism to build statistical
shape models [7, 12]. By using our contributions, these methods can be made
symmetric and consistent (allowing to reduce the bias during the computation
of the mean shape) and one can drastically increase the size of the input data.
Fig. 4 shows the mean shape and the first mode of variation for 20 caudate nuclei
by adapting the method of Hufnagel et al. [12].



Fig. 2. Registration of lateral ventricles. From left to right: (i) two misaligned
pairs of lateral ventricles A and B (from Exp. 1); (ii) A to B and (iii) B to A with
the asymmetric EM-ICP with RKHS; (iv) A to B and (v) B to A with the symmetric-
consistent EM-ICP with RKHS. Point-to-point and Hausdorff registration errors are
given below each figure. The asymmetric formulation leads to registration errors close to
the horns. The location of these errors depends on what surface is used as the template.
With the symmetric consistent formulation, no order-dependent registration error is
visible, and the overall registration quality is visually and quantitatively improved.

Fig. 3. Registration of caudate nuclei. Same display as in Fig. 2, but with caudate
nuclei and a color mapping of the point-to-point errors. We draw the same conclusions
as in Fig. 2.

Fig. 4. Mean shape and first mode of variation (± 2
√

λ1) on 20 caudate
nuclei. The first mode can be interpreted as a bending.

5 Conclusion

Our contributions are twofold. First, we proposed a symmetric and consistent
EM-ICP framework where we enforce coherency between backward and forward
deformations. Note that none of these transformations is guaranteed to be invert-
ible, though. Second, we designed new efficient regularisers for EM-ICP based
registration. These new regularisers are expressed within the RKHS formalism
which leads to computationally attractive solutions (especially when using ker-
nels with compact support). A particular class of kernels provides regularisers
with a simple interpretation in the frequency domain. Overall, our algorithm



Experiment 1 Experiment 2

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

nuclei 2.26/1.87 0.73/1.76 0.64/1.37 - - -

ventricles 2.15/7.80 1.55/5.15 1.53/1.48 2.21/3.41 1.84/2.23 1.67/1.01

labyrinths 0.29/0.85 0.23/0.75 0.21/0.23 0.32/0.65 0.28/0.62 0.24/0.19

Table 1. Average registration errors for the 3 tested methods and the two
experiments on the 3 datasets. The first error is the mean point-to-point (for
Exp. 1) or landmark-to-landmark (Exp. 2) error, and the second error is the Hausdorff
distance. Both errors are averaged over the 100 (Exp. 1) or 19 (Exp. 2) registrations.
Method 3 (symmetric-consistent EM-ICP with RKHS regularisation) gives the lowest
error for each experiment and dataset.

allows to perform registration on large data sets. Future works will include i)
comparing our regulariser with others such as Coherent Point Drift [11] or TPS;
ii) comparing our statistical shape modelling with other techniques [7, 12].
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