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Abstract— Intraoperative brain deformations decrease accuracy in image-guided neurosurgery. Approaches to quantify these 

deformations based on 3D reconstruction of cortectomy surfaces have been described and have shown promising results regarding the 
extrapolation to the whole brain volume using additional prior knowledge or sparse volume modalities. Quantification of brain 
deformations from surface measurement requires the registration of surfaces at different times along the surgical procedure, with 
different challenges according to the patient and surgical step. In this paper, we propose a new flexible surface registration approach 
for any textured point cloud computed by stereoscopic or laser range approach. This method includes three terms: the first term is 
related to image intensities, the second to Euclidean distance and the third to anatomical landmarks automatically extracted and 
continuously tracked in the 2D video flow. Performance evaluation was performed on both phantom and clinical case. The global 
method, including textured point cloud reconstruction, had accuracy within 2 millimeters, which is the usual rigid registration error of 
neuronavigation systems before deformations. Its main advantage is to consider all the available data, including the microscope video 
flow with higher temporal resolution than previously published methods.  
 

Index Terms— Image-Guided Neurosurgery, Intraoperative Brain Surface Deformation, Video Analysis, Surface Registration 
 

I. INTRODUCTION 
NTRAOPERATIVE brain deformations decrease accuracy in image guided neurosurgery. Image guided neurosurgery (IGNS) is 

based on the registration between pre operative images and the patient coordinate space using external landmarks or skin 
surface [1]. This registration relies on a rigid transform assumption, which is not verified during some neurosurgical procedures 
for the brain. For surgical tumor resection, many parameters may influence brain deformations, e.g. gravity, lesion size, loss of 
cerebro-spinal fluid, resection [2]. As shown in [3], amplitude of these deformations can be up to 3 centimeters, they are not 
uniform, and their principal direction is not always the gravity direction. Lot of effort has been deployed for updating 
preoperative images according to the intraoperative deformations. Developed approaches are usually based on intraoperative 
imaging, e.g. three-dimensional ultrasound [4]-[8], surface acquisition [9]-[14], interventional MRI [15]-[17], with possible use 
of biomechanical models [13]-[15], [18]-[21] or predictive models [5], [22]. However, there are some remaining issues 
concerning computation time, costs of technology and user interface. Surface information is one interesting solution to cope with 
these issues, especially for updating regions of interest near the cortical surface, as tumor, functional areas, vessels and sulci [23]. 
It has also been shown that volumetric brain deformation can be inferred given the cortical surface displacement [9], [10], [13], 
[14], and [24]. 

Cortical surface can be acquired using stereoscopic [12], [13], [25], or laser range scanning approaches [9], [11]. The data set 
then consists in textured point clouds. For accurate quantification of the cortical surface displacement, a robust non-rigid surface 
registration method of these dataset is required. In [26], different surface registration methods for the same type of data were 
compared: feature based registration, cortical vessel-contour registration, a combined geometry-intensity surface registration 
method, based on the use of mutual information (MI), and a form of the former method which was constrained by manually 
identified sparse landmarks in order to improve robustness. The conclusion of the study was that the methods performed 
differently according to the patient and the particular clinical case, but that the constrained form of the geometry-intensity 
surface registration method was generally outperforming all other studied methods.  

Surgical tools or bleeding may suddenly appear in the images from the operative FOV, which may hamper MI based image 
registration. Moreover, surfaces acquired before the dura mater opening do not offer the same texture information than surface 
acquired after dura mater opening. In that case, only the geometric information can be used.  
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In a previous publication, we introduced and evaluated a method for computing 3D surfaces of the operative field viewed 
through the oculars of a surgical microscope by using stereoscopic reconstruction methods [25]. In this paper, we propose a new 
non-rigid registration method for registering such 3D surfaces, which allows a flexible computation of a dense transformation 
field thanks to a weighted combination of geometric information, texture matching, and sparse landmarks matching. One of the 
novelties of our method is that the landmarks are automatically extracted and tracked in the video flow between two surface 
acquisitions. Up to our knowledge, the previously published methods neither used the video flow as a source of information nor 
an automatic extraction and matching of landmarks. 

In the next sections, we describe this new surface registration method for matching two reconstructed surfaces and 
demonstrate its implementation in clinical settings. We first describe the automatic extraction of the anatomical landmarks as 
well as the method for video tracking. We then introduce the new cost function. Performance evaluation of video tracking and of 
the registration method is described on both phantom and patient, showing the clinical feasibility of our approach.  

II. MATERIALS AND METHODS 
The image acquisition and surface registration workflow was repeated for each one of the deformation estimation (Fig. 1). At 

surgical time ti, a pair of video static images, as seen through the surgical microscope binoculars, was acquired as explained in 
subsection II-A. Stereoscopic reconstruction methods were applied on these images and provided a 3D surface of the operative 
field as explained in [25]. At time ti, anatomical landmarks were automatically extracted from the right image as explained in 
subsection II-B. Video flow from the right ocular was continuously acquired from times ti to tj. The extracted anatomical 
landmarks were continuously tracked in the 2D images from the video flow using the method described in subsection II-C. At 
time tj, a new pair of video images was acquired and a new surface was reconstructed. Matching of both ti and tj surfaces was 
performed using the proposed surface registration method, described in section II-D. 

 
A. Acquisition 
A stereovision system (Zeiss 3-D Compact Video Camera S2, Carl Zeiss, Germany) was set up between the NC4 surgical 

microscope and the binocular tube. Images from these analog cameras were acquired using a video acquisition card (PICOLO, 
Euresys, Belgium). The operative room was also equipped with a neuronavigation system (StealthStation, Medtronic SNT, 
USA).  

Each acquisition consisted of:  
- At time ti, one static pair of images from both left and right surgical microscope oculars, along with position and settings of 

the microscope,  
- A 2D video flow from the right ocular, whose first frame was the static right image at ti , and whose last frame was the static 

right image at time tj,  
- At time tj, one static pair of images from both left and right surgical microscope oculars, along with position and settings of 

the microscope.  
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Fig. 1. Image acquisition and surface registration workflow. 

 
Positions and settings of the microscope were obtained using the neuronavigation system and a communication library 

(StealthLink, Medtronic SNT, USA). Cortical surfaces were computed by dense reconstruction of microscope stereoscopic 
images as explained in [25]. We obtained two surface meshes, one at time ti and one at time tj. Each surface mesh was textured by 
the right image from the surgical microscope [25]. All images from microscope oculars have a resolution of 768X576 pixels. 

B. Extraction of landmarks in right image 

First, a mathematical morphological opening with a square element of size 10x10 and a Laplacian of Gaussian filter was 
applied on the right image I acquired at time ti in order to detect the boundaries of the operative field (see Fig. 2). The operative 
field was roughly segmented from the filtered image Ip by the following method for limiting the anatomical landmarks detection 
to the cortical surface area. It was scanned horizontally from left to right then from right to left in order to locate 255-luminance-
level pixels first met in each direction. These pixels defined the bends of the first mask. A new square mask of size 400 pixels 
was then defined. The center of this mask was defined as the gravity center of the first mask after a mathematical morphology 
opening. The convolution of this new mask and Ip was scanned as previously explained to segment the operative field. A 
mathematical morphology opening was then applied to the scanned image to obtain the final mask.  
 

 
 
Fig. 2. Pre processing steps and natural landmark extraction. Top left: original image, top right after morphological opening; bottom left: after laplacian of 
Gaussian; bottom right: the mask is computed from the laplacian of Gaussian, and applied to the original image, from which are extracted the natural landmarks. 
 

 
 
Fig. 3. Results in clinical settings on patient: anatomical landmarks extracted automatically: the 15 best landmarks only (15 maxima values of Harris extractor) 
after having removed specularities. 

The detection of the landmarks was based on the Harris detector [27], applied on the segmented image Ic , taking the local 
maxima of the following expression R: 

              (1) 
with λ=0.04 as often chosen in the literature, and  
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 , 

where det(M) and Tr(M) stand for the determinant and the trace of the matrix M, respectively, and x and y are coordinates of 
pixels in Ic. Among these local maxima, points with intensity higher than 80% of the maximal intensity of the image were 
rejected to eliminate specularities. The result of this final step was a file with the 2D coordinates of landmarks in the static right 
image.  
An example of result from this step is shown in Fig. 3. 

C. Tracking of landmarks from video flow 
The position of the landmarks in each image of the video flow between ti and tj was considered as a dynamic system, modeled 

as a hidden Markov process. The goal was to estimate the values of the state xk from observations zk obtained at each instant, k 
defined as an integer in ]i,j]. The system was described by a dynamic equation modeling the evolution of the state and a 
measurement model that links the observation to the state. We considered the unknown state of the system as the landmark 
position in the present and in the previous instant. 

1) Measurement model: At time k, we assumed that the observation was the result of a matching process whose goal is to 
provide the point in image Ik that is the most similar to the initial point x0. We used sum-of-squared-differences (SSD) as 
matching criteria for quantifying the similarity between the target point and the candidate points. The resulting linear observation 
equation is:  

. (2) 
The state xk was defined by (mk−1,mk,nk−1,nk)T , where (mk,nk)T is the feature location at time k, zk is the measure obtained by 

SSD at times k and k-1, and wk is a zero-mean Gaussian white noise of covariance Rk. This equation models the noise associated 
to the measure by a Gaussian wk. Despite possible difficulties with illumination or geometric changes, this choice of SSD was 
justified in [28] by possible automatic evaluation of the confidence in the correlation peak (i.e., of Rk), taking into account the 
image noise. For that purpose, the SSD surface centered on zk was modeled as a probability distribution of the true match 
location [28]. A Chi-Square “‘goodness of fit” test was used to check when this distribution was locally better approximated by a 
Gaussian or a uniform law [28]. An approximation by a Gaussian distribution indicated a clear discrimination of the measure and 
Rk was set to the local covariance of the distribution. On the contrary, an approximation by a uniform distribution indicated 
unclear peak detection on the response distribution. This can be explained by occlusions or noisy situations. In such cases, the 
diagonal terms of Rk were fixed to infinity, and the off-diagonal terms were set to 0. This estimation allowed the tracker to be 
robust to occlusions.  

2) Dynamic model: The following dynamic equations have been considered:  
, (3) 

where vk is a zero-mean Gaussian white noise of covariance fixed a priori and l the index of the process (F, b). We defined two 
process models corresponding to different surgical steps. 

, , 

and , ,       (4) 

   
where (mi, ni)T is the feature location at time ti. The model (F1, b1) relies on a stationary hypothesis. It was used when brain 
movements were expected to be very regular and when there was no surgical tool used in this surgical step. The model (F2, b2) is 
a regressive process of 2nd order. It was used to take into account quick non-linear movements, especially when surgical tools 
were used and deformed the brain surface.  
The resulting systems were linear and were solved using the Kalman filter [29]. This tracker was used to follow the extracted 
landmarks in the video. The tracking stage resulted in a file containing landmarks positions in the right picture used to compute 
stereoscopic reconstruction at ti and at tj. A confidence value expressed as the variance of the posterior probability density used to 
compute the state estimate for each landmark tracker was associated to each landmark-tracked position.  
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D.  Surface registration  
     The cortical surface deformation was quantified by a dense deformation field computed by registration between two surface 
meshes.  
   1) Initialization: Thanks to the stereoscopic reconstruction and calibration, the coordinates of the tracked landmarks at times ti 
and tj were automatically defined in a common coordinate system [25] as 3D points, and respectively, n being the index of 

the extracted and tracked landmark. This automatic correspondence was used to compute a sparse surface deformation field. 
From this sparse deformation field, an initial dense deformation field Dfinit was computed by Thin-Plate-Spline interpolation 
using anatomical landmarks as control points [30]. 
    2) Cost function: The cost function F included three terms and two weighting factors α and β (4). The first term A was related 
to image intensities, the second B to Euclidean distance between surfaces and the third C to distance between tracked landmarks. 
Equation (5) defines F for any 3D point Pi from the surface mesh at time ti and a candidate 3D point Pj from the surface mesh at 
time tj: 

€ 

F Pi ,Pj( ) = β αA Pi ,Pj( ) + 1−α( )B Pi ,Pj( ) + 1− β( )C Pi ,Pj( )( )  (5) 

Equation (6) describes the term A. Our experiments have shown that the luminance level in the acquired RGB images was 
strongly correlated with the green level. Therefore, only the green channel G and its gradient image GradG were used: 

 . (6) 

Each pixel (u, v) of the gradient image was computed by: , 

where G(u, v) was the green level of pixel whose coordinates were (u, v).  and were the correlation coefficients 
between two search windows of size 3 per 21 pixels, centered at the pixels corresponding to Pi and Pj in the green channel of the 
right images at time ti and tj , and the gradient of the green channel, respectively. If both intensities windows were identical, then 
A(Pi, Pj) = 1.  

Equation (7) describes the term B: 

. (7)   

D(X, Y) stands for the Euclidean distance between 3D points X and Y in millimeters. Pi:closest was the closest point of Pi on the 
surface mesh at tj in the Euclidean definition. If Pj was the closest point, then B(Pi, Pj) = 1.  

Equation (8) describes the term C related to the natural landmarks tracked in the video flow between time ti and tj: 
 (8) 

 was the estimated new location of point Pi on the surface mesh at tj by the initial dense deformation field Dfinit. 

The expression of the weighting factorΨ, which allowed us to automatically change the importance of the initial dense 
deformation field according to the Euclidean distance of the point Pi to the landmarks used, was defined as follows:  

€ 

ψ Pi( ) = exp
−k D Lti

n ,Pi( )σ Lti
n( )( )

n=1

N

∑
2

,  

where N is the number of tracked landmarks; k was computed to have an inflexion point of the function for x=1; 

is the last estimated position of the tracked landmark in the video flow from ti to tj. The variance  is the variance 

of the posterior density of the Kalman tracker used to compute the matching landmark  in 2D.  

The only parameters to be changed in (5) were the weighting factors α and β. They were both in the interval [0; 1] and 
depended on the surgical step. For instance, when one of the surfaces to register was acquired before opening the dura mater, 
there was no texture or video information to rely on. Indeed, the dura mater is a white opaque tissue overlaying arachnoid and pia 
mater tissue on the cortex. In this case, α was set to 0 and β to 1. Consequently, only the term B was taken into account, i.e. only 
the closest point in terms of Euclidean distance was considered for surface matching. When no video information was available 
but both source and target surface were showing the cortical surfaces, β was set to 1 and α was defined in ]0; 1[ to describe a 
trade off between the respect of the intensity similarity and the Euclidean distance. When video information was available, α and 
β were experimentally defined in ]0; 1[. Adjusting their value was adjusting the importance of each information component. In 
this preliminary study, these values were computed off-line on synthetic data as a trade-off between the number of correctly 
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matched points, the resulting SSD, and the median distance value. The synthetic data were created by deforming a true surface 
mesh just before the arachnoid opening by a known Gaussian function. Further experiments needs to be performed to optimize 
these parameters according to the surgical step [31]. 

3) Minimization scheme: For each point of the source surface, the cost function (5) was minimized with a search region 
limited to the neighborhood of the target surface point given by Dfinit. The minimization method employed was the Levenberg-
Marquardt iterative method, implemented as described in [32]. A final dense deformation field was then obtained, where each 
vector linked one point from the source surface at time ti to one point of the target surface at time tj. 

III. PERFORMANCE EVALUATION DESIGN AND RESULTS 

The use of landmarks to constrain an intensity and geometry based registration was already shown to be superior to other 
registration methods in [26]. In this paper, we focus on demonstrating the feasibility of extracting and tracking these landmarks 
automatically from the video flow, and to show how our flexible framework allow to use the same registration method all along 
the procedure. First, we evaluated the feasibility and the performance of the landmarks tracker for different video sequences 
acquired during surgical procedures. Second, we evaluated performance of the surface registration algorithm in clinical settings, 
both on phantom and patient data. A standardized framework, as suggested in [33], was applied to design and report the 
performance evaluation procedures. 

A. Video tracker performance evaluation  
Four video sequences from three clinical cases were studied. Sequence 1 was acquired during the removal of a right frontal 

cavernoma on a woman, and consisted in 40 frames, with an acquisition frequency of 5 frames per second (fps). Sequence 2 was 
acquired on a man with a tumor located in the right inferior frontal gyrus, after dura mater opening and with a surgical tool 
occluding the extracted landmarks. It consisted in 54 frames with an acquisition frequency of 1 fps. Sequence 3 and sequence 4 
was acquired on a woman with a right rolandic cavernoma. Sequence 3 was acquired after the dura mater opening and showed 
two big heart pulsations, with 47 frames at 5 fps. Sequence 4 was acquired during the cavernoma removal, with three surgical 
tools occluding the landmarks. For all these sequences, there was no change in magnification, focus, or camera position. 

Tracking was performed on the green channel, which was shown to be strongly correlated with the grey images. The choice of 
the model was manual and depended on the sequence. The evaluation was done on 34 anatomical landmarks automatically 
extracted in the first images of video sequences: 5 for the sequence 1, 11 for the sequence 2 and 3, and 6 for the sequence 4. The 
reference for evaluation was the position of each landmark manually measured when possible in each frame of the video 
sequence. The estimated reference error, defined as the distance between 2 points identified 3 times by 2 observers, was 2 pixels 
in each vertical and horizontal direction. For indication, with a minimal zoom, 1 pixel represented 0.1 mm. The points were not 
successfully tracked during the whole sequence. However, the error was less than 10 pixels for all the landmarks for 75% (3rd 
quantile) of the sequences 1 and 2, less than 11 pixels for 100% of the sequence 3, and less than 8 pixels for 50% (median) of the 
sequence 4. Even when the points were not perfectly tracked during the whole sequence, results were within 1mm, despite of 
occlusions or image specularities. The computation time was about 0.03 seconds per anatomical landmarks per frame. 

B. Performance evaluation of the surface registration method 
  The stereo reconstruction method was previously evaluated in [25] and has shown accuracy within 1 millimeter. The surface 

registration method was evaluated on both phantom and on patient data in clinical settings (i.e. in the operative room), as 
described in Tables I and II, respectively. 

 
1) On phantom: First, we used a Poly Vinyl Alcohol (PVA) phantom assessed by one anatomist and one neurosurgeon (Fig. 

4). A tumor was simulated using boric acid. The phantom surface was textured with ink, simulating cortical surface texture. The 
utility of PVA phantom for brain shift simulation was previously demonstrated [34]. Two urinary probes were set up inside the 
phantom, near the surface, and inflated with air to simulate brain deformation. The process model (F2, b2) defined in (4) was used 
in the dynamic model equation (3) all along the phantom evaluation. For evaluating the global accuracy of the hybrid surface 
registration method, 10 manually extracted landmarks, different from those automatically extracted, were visually tracked on the 
phantom surface. Their position was acquired using the neuronavigation pointer on the non-bulged phantom and acquired again 
after bulging. We compared the vectors for these landmarks with vectors computed by the deformation field obtained by the 
surface registration method for these same landmarks. A resection of the boric acid tumor was then simulated. The same 
procedure was repeated between bulged phantom and resection. The vectors between manually extracted and tracked landmarks 
and those given for the same landmarks by the computed deformation field were compared. Table I shows a maximal difference 
between vectors norm of 1.8 mm and a maximal difference of direction of 10 degrees. 
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Fig. 4.  Phantom in Poly Vinyl Alcohol used for performance evaluation. Up, view of the preoperative MRI images of the phantom. A tumor was simulated using 
boric acid. Bottom image: The phantom surface was textured with ink. Two urinary probes were set up inside the phantom, near the surface, and inflated to 
simulate deformation. 

 
TABLE I 

PERFORMANCE EVALUATION OF THE SURFACE REGISTRATION METHOD ON PHANTOM: 
DESCRIPTION OF THE EVALUATION PROCEDURE AND RESULTS 

Description of evaluation 
components 

Values for evaluation of the global surface registration method 

Evaluation data sets 2 whole data set acquisitions (4 reconstructed surface meshes + 2 video flows) 
Input parameters Step of the procedure Non-bulged Phantom to 

bulged Phantom 
Bulged Phantom to after 
resection 

Reference Vector between position of 10 manually extracted landmarks  

 Neuronavigation pointer resolution  <1 mm 

Manual extraction of identical landmarks <1 mm 

Estimated error related 
to the computation of the 
Reference 

Reconstructed surface mesh resolution <2mm 

Evaluation metric Difference of norma and directionb between reference and vector from same source point computed by the 
registration method using data set 
 Max norm difference 1.8 0.3 Quality indices 
Max norm direction 10° 1.5° 

a in millimeters 
b Direction is computed from the scalar product between 2 vectors. 

2) On patient: The feasibility and accuracy of the method in real clinical settings were also studied. Results are summarized in 
Table II. The studied clinical case was a 53 year-old woman with a cavernoma located in the right frontal gyrus. The patient 
underwent a 3D preoperative T1-weigthed MRI (TR= 9.89 ms, TE= 4.59 ms, 1 voxel=1mm3) from a 3T-MR imaging system 
(Philips Medical Systems, Susresnes, France), which was rigidly registered to the patient at the beginning of the intervention 
using the neuronavigation system. After dura mater opening, for the purpose of validation, 4 points were localized on the brain 
surface by the neurosurgeon using the neuronavigation system pointer tip. A surface mesh was then reconstructed and the video 
start acquisition signal was given. A python script then automatically launched the following processing. Fifteen anatomical 
landmarks were automatically extracted (see Fig. 3). A video tracker was launched for each landmark using the model process 
(F2, b2). After resection, the video end signal acquisition was given to the script. A new surface mesh was automatically 
acquired. The right image of the pair of images used for the reconstruction defined the last frame of the video flow. A list of 15 
tracked landmarks with their confidence value, the surface mesh before resection, and the surface mesh after resection were 
given as input of the surface registration algorithm, with α set to 0.3 and β set to 0.5.  

The neurosurgeon was then asked to acquire the position of the same 4 points with the neuronavigation pointer tip, referring to 
a printed picture where the first-step points were identified. The vectors linking these pairs of 3D points were used as the 
evaluation reference and their norms were compared to those computed by the surface registration method. The reference 
distance between points located by the neurosurgeon was 1.9 mm for point A, 8.0 mm for point B, 2.6 mm for point C, and 7.8 
mm for point D. The distance of 1.9 mm can be considered as the estimated intrinsic reference error, because point A was chosen 
on a static frame (i.e., one corner of the craniotomy site, on the bone). Differences between norm of the previous vector and 
norm of the vector of the computed deformation field were then obtained: 0.1 mm for point A, 0.5 mm for point B, 0.4 mm for 
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point C and 0.8 mm for point D. For evaluating the surface registration method alone, 3D coordinates of 9 anatomical landmarks 
in the surface meshes before and after resection were manually identified. These anatomical landmarks were chosen to be 
different from the tracked ones. The vectors linking these landmarks were compared to those given by the final computed 
deformation field. The original distance without any registration was 6.2 ± 2.1 mm. For the iterative closest point (ICP) rigid 
registration, accuracy computed on these 9 extracted points was 5.8 ± 0.9 mm. For the proposed registration method, it was 2.2 ± 
0.2 mm. Fig. 5 shows the display of the computed deformation field which was proposed during the intervention to the 
neurosurgeon. 
 
 
 

TABLE II 
PERFORMANCE EVALUATION OF THE SURFACE REGISTRATION METHOD ON PATIENT: 

DESCRIPTION OF THE EVALUATION PROCEDURE AND RESULTS 
Description of 
evaluation 
components 

Values for global accuracy evaluation, including 
localisation 

Values for surface meshes registration accuracy evaluation 
alone 

Evaluation data sets 2 surface meshes: before and after resection 
 

Input parameters None 
 

Reference 4 landmarks acquired by the pointer of the 
neuronavigation system, recognised by the surgeon 

9 points virtually picked on the surface meshes 

Error of visual landmarks 
recognition  

1.9mm Error on surface mesh reconstruction  <2 mm Estimated error 
related to the 
computation of the 
Reference Error of pointer localisation < 0.1mm Error on extraction of a 3D point on the 

surface 
<1 mm 

Evaluation metric Difference of norma between reference vectors and vectors computed by the hybrid registration method. 
 

Quality indices  Max a  0.8 Mean a ±std 2.2±0.2 

a in millimetres 
 

 
 
Figure 5: Visualization of the deformation field on the source surface, acquired just after Dura mater opening and the target surface, after resection. This 
visualization was 3D, and could be manipulated by the surgeon or medical staff. 

IV. DISCUSSION AND CONCLUSION 
In this paper, we have introduced a surface registration method, which can be used with any textured cortical surface meshes 

computed by stereoscopic or laser range approaches. This new surface registration method takes into account both the static 
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surface meshes and the video flow between these meshes allowing a higher temporal resolution. 
 The aim of this method was to be able to address the different aspects of complexity encountered in the images all along the 

surgical procedure. The results of the performance evaluation of this method mainly showed its feasibility in clinical conditions. 
The global method, including stereoscopic reconstruction and surface registration, had a precision around 2 millimeters, which 
was the usual rigid registration error of the neuronavigation system before deformations. The video tracker evaluation on 
different clinical data sets has shown that in sequences without movement of the microscope, the tracking method was 
sufficiently robust. However, results were described for one patient and one phantom only. These first results are very promising 
but more clinical cases are needed to prove the robustness of the proposed method and to automatically chose the dynamic model 
to be used and the parameters α and β.  

Another main limitation of our work is the limited dynamic models used, implying the constraint of unchanging zoom and 
focus settings of the microscope. Future work will consist of defining non-linear models that depend on the surgical step [31] and 
on tracked modifications of microscope settings.  

Other works previously proposed the use of intensity for non-rigid organs surface registration. Sinha et al. [11] used an 
intensity-based algorithm using mutual information (MI) to register pre operative segmented cortex, which was expressed as a 
textured point cloud by using ray casting, and a laser range scanning associated with a video camera. Images from video cameras 
are subject to occlusions by bleeding or tools in the surgical FOV, especially during and after resection. Therefore, MI may not 
be the most relevant solution in this case. Nakajima et al. [10] have previously proposed the use of cortical vessels for cortical 
surface registration. The vessels were used as anatomical landmarks, but their intraoperative position was manually defined using 
the neuronavigation system. In [12], a Euclidean distance-based ICP has been shown to give some good results for brain 
deformation tracking. However in our clinical case, ICP was not sufficient. The reason is that the different information, which 
are used by these different algorithms, may be relevant in certain cases but not for other. This was also shown in [26], where the 
authors compared in an objective way different registration methods, and observed that the methods performed differently 
according to the patient and the particular clinical case. This shows one of the main advantages of our approach: we can adapt to 
any case, just by modifying the parameters α and ß from equation (4). We hope to be able to automatically define these 
weighting coefficients according to the surgical step as a future work. The use of the video flow in brain shift estimation is also 
new and could be extended to other surgery. 

In our opinion, the most promising approach for volumetric brain shift quantification should cope with intraoperative 
information, both volume and surface, and with modeling of the brain shift phenomenon [2], [35]. Existing 3D imaging devices 
will certainly give more reliable information regarding the volume deformation. However, their temporal resolution is inferior to 
the resolution allowed to our approach, since our approach is totally non invasive and does not require any change in the surgical 
procedure. Combining our surface approach with a volume imaging technique will allow benefiting from the advantages of both 
methods. The added value of IGNS without correction of deformation has been demonstrated compared to traditional 
neurosurgery in terms of intervention time and cost per patient [36]. Brain deformation correction should not reduce these 
advantages with longer interventions due to the use of costly and cumbersome intraoperative imaging devices. Methods of 
surface registration using the surgical microscope video flow would then be part of the global brain shift correction framework.  
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