Skip to Main content Skip to Navigation
Journal articles

Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields.

Abstract : An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized noninvasively through direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows determination of the precise estimation of the phase and amplitude aberrations, and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2pi). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from sigma = 1.89 radian before correction to sigma = 0.53 radian following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be -7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of -0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus with speckle tracking. This technique could have important implications in the field of high-intensity focused ultrasound even in complex configurations such as transcranial, transcostal, or deep seated organs.
Document type :
Journal articles
Complete list of metadatas

Cited literature [20 references]  Display  Hide  Download

https://www.hal.inserm.fr/inserm-00542512
Contributor : Mathieu Pernot <>
Submitted on : Friday, December 3, 2010 - 1:08:53 PM
Last modification on : Friday, July 17, 2020 - 9:07:24 AM
Long-term archiving on: : Friday, March 4, 2011 - 2:54:06 AM

Files

inserm-00542512_edited.pdf
Files produced by the author(s)

Identifiers

Citation

Eric Herbert, Mathieu Pernot, Gabriel Montaldo, Mathias Fink, Mickael Tanter. Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields.. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Institute of Electrical and Electronics Engineers, 2009, 56 (11), pp.2388-99. ⟨10.1109/TUFFc.2009.1327⟩. ⟨inserm-00542512⟩

Share

Metrics

Record views

350

Files downloads

1355