S. Papa, T. Engber, A. Kask, and T. Chase, Motor fluctuations in levodopa treated parkinsonian rats: relation to lesion extent and treatment duration, Brain Research, vol.662, issue.1-2, pp.69-74, 1994.
DOI : 10.1016/0006-8993(94)90796-X

S. Fahn, Is levodopa toxic? Neurology, pp.184-95, 1996.

R. Drucker-colin and L. Verdugo-diaz, Cell Transplantation for Parkinson's Disease: Present Status, Cellular and Molecular Neurobiology, vol.24, issue.3, pp.301-317, 2004.
DOI : 10.1023/B:CEMN.0000022764.94760.3f

O. Lindvall and P. Hagell, Role of cell therapy in Parkinson disease, Neurosurgical Focus, vol.13, issue.5, p.2, 2002.
DOI : 10.3171/foc.2002.13.5.3

G. Delcroix, P. Schiller, J. Benoit, and C. Montero-menei, Adult cell therapy for brain neuronal damages and the role of tissue engineering, Biomaterials, vol.31, issue.8, pp.2105-2125, 2010.
DOI : 10.1016/j.biomaterials.2009.11.084

O. Lindvall and Z. Kokaia, Prospects of stem cell therapy for replacing dopamine neurons in Parkinson's disease, Trends in Pharmacological Sciences, vol.30, issue.5, pp.260-267, 2009.
DOI : 10.1016/j.tips.2009.03.001

G. Schierle, O. Hansson, M. Leist, P. Nicotera, H. Widner et al., Caspase inhibition reduces apoptosis and increases survival of nigral transplants, Nature Medicine, vol.5, issue.1, pp.97-100, 1999.
DOI : 10.1038/4785

J. Kordower, J. Rosenstein, T. Collier, M. Burke, E. Chen et al., Functional fetal nigral grafts in a patient with Parkinson's disease: Chemoanatomic, ultrastructural, and metabolic studies, The Journal of Comparative Neurology, vol.137, issue.2, pp.203-233, 1996.
DOI : 10.1002/(SICI)1096-9861(19960624)370:2<203::AID-CNE6>3.0.CO;2-6

J. Kordower, T. Freeman, E. Chen, E. Mufson, P. Sanberg et al., Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson's disease, Movement Disorders, vol.623, issue.suppl, pp.383-93, 1998.
DOI : 10.1002/mds.870130303

P. Brundin, G. Barbin, O. Isacson, M. Mallat, B. Chamak et al., Survival of intracerebrally grafted rat dopamine neurons previously cultured in vitro, Neuroscience Letters, vol.61, issue.1-2, pp.79-84, 1985.
DOI : 10.1016/0304-3940(85)90404-5

G. Delcroix, K. Curtis, P. Schiller, and C. Montero-menei, EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells. Differentiation, 2010.

A. Hermann, S. Liebau, R. Gastl, S. Fickert, H. Habisch et al., Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols, Journal of Neuroscience Research, vol.69, issue.8, pp.1502-1516, 2006.
DOI : 10.1002/jnr.20840

J. Ross and C. Verfaillie, Evaluation of neural plasticity in adult stem cells, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.174, issue.1, pp.199-205, 2008.
DOI : 10.1006/exnr.2001.7853

S. Song and J. Sanchez-ramos, Brain as the Sea of Marrow, Experimental Neurology, vol.184, issue.1, pp.54-60, 2003.
DOI : 10.1016/S0014-4886(03)00306-6

S. Morikawa, Y. Mabuchi, K. Niibe, S. Suzuki, N. Nagoshi et al., Development of mesenchymal stem cells partially originate from the neural crest, Biochemical and Biophysical Research Communications, vol.379, issue.4, pp.1114-1123, 2009.
DOI : 10.1016/j.bbrc.2009.01.031

V. Tatard, D. Ippolito, G. Diabira, S. Valeyev, A. Hackman et al., Neurotrophin-directed differentiation of human adult marrow stromal cells to dopaminergic-like neurons, Bone, vol.40, issue.2, pp.360-73, 2007.
DOI : 10.1016/j.bone.2006.09.013

R. Barzilay, I. Kan, T. Ben-zur, S. Bulvik, E. Melamed et al., Induction of Human Mesenchymal Stem Cells into Dopamine-Producing Cells with Different Differentiation Protocols, Stem Cells and Development, vol.17, issue.3, pp.547-54, 2008.
DOI : 10.1089/scd.2007.0172

K. Trzaska, E. Kuzhikandathil, and P. Rameshwar, Specification of a Dopaminergic Phenotype from Adult Human Mesenchymal Stem Cells, Stem Cells, vol.207, issue.11, pp.2797-808, 2007.
DOI : 10.1634/stemcells.2007-0212

E. Wolff, X. Gao, K. Yao, Z. Andrews, H. Du et al., Endometrial stem cell transplantation restores dopamine production in a Parkinson???s disease model, Journal of Cellular and Molecular Medicine, vol.5, issue.4
DOI : 10.1111/j.1582-4934.2010.01068.x

L. Blanc and K. , Immunomodulatory effects of fetal and adult mesenchymal stem cells, Cytotherapy, vol.5, issue.6, pp.485-494, 2003.
DOI : 10.1080/14653240310003611

A. Nasef, N. Mathieu, A. Chapel, J. Frick, S. Francois et al., Immunosuppressive Effects of Mesenchymal Stem Cells: Involvement of HLA-G, Transplantation, vol.84, issue.2, pp.231-238, 2007.
DOI : 10.1097/01.tp.0000267918.07906.08

URL : https://hal.archives-ouvertes.fr/inserm-00484861

G. Delcroix, M. Jacquart, L. Lemaire, L. Sindji, F. Franconi et al., Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: In vitro characterization and migration potential in rat brain, Brain Research, vol.1255, pp.18-31, 2009.
DOI : 10.1016/j.brainres.2008.12.013

URL : https://hal.archives-ouvertes.fr/inserm-00354437

A. Mahmood, D. Lu, L. Wang, and M. Chopp, Intracerebral Transplantation of Marrow Stromal Cells Cultured with Neurotrophic Factors Promotes Functional Recovery in Adult Rats Subjected to Traumatic Brain Injury, Journal of Neurotrauma, vol.19, issue.12, pp.1609-1626, 2002.
DOI : 10.1089/089771502762300265

E. Sykova and P. Jendelova, In vivo tracking of stem cells in brain and spinal cord injury, Prog Brain Res, vol.161, pp.367-83, 2007.
DOI : 10.1016/S0079-6123(06)61026-1

P. Jendelova, V. Herynek, L. Urdzikova, K. Glogarova, J. Kroupova et al., Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord, Journal of Neuroscience Research, vol.33, issue.2, pp.232-275, 2004.
DOI : 10.1002/jnr.20041

M. Hellmann, H. Panet, Y. Barhum, E. Melamed, and D. Offen, Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine-lesioned rodents, Neuroscience Letters, vol.395, issue.2, pp.124-132, 2006.
DOI : 10.1016/j.neulet.2005.10.097

G. Bouchez, L. Sensebe, P. Vourc-'h, L. Garreau, S. Bodard et al., Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson's disease, Neurochemistry International, vol.52, issue.7, pp.1332-1374, 2008.
DOI : 10.1016/j.neuint.2008.02.003

O. Sadan, M. Bahat-stromza, Y. Barhum, Y. Levy, A. Pisnevsky et al., Protective Effects of Neurotrophic Factor???Secreting Cells in a 6-OHDA Rat Model of Parkinson Disease, Stem Cells and Development, vol.18, issue.8, pp.1179-90, 2009.
DOI : 10.1089/scd.2008.0411

Y. Levy, M. Bahat-stroomza, R. Barzilay, A. Burshtein, S. Bulvik et al., Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of Parkinson's disease, Cytotherapy, vol.10, issue.4, pp.340-52, 2008.
DOI : 10.1080/14653240802021330

M. Mccoy, T. Martinez, K. Ruhn, P. Wrage, E. Keefer et al., Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson's disease, Experimental Neurology, vol.210, issue.1, pp.14-29, 2008.
DOI : 10.1016/j.expneurol.2007.10.011

G. Orive, E. Anitua, J. Pedraz, and D. Emerich, Biomaterials for promoting brain protection, repair and regeneration, Nature Reviews Neuroscience, vol.48, issue.9, pp.682-92, 2009.
DOI : 10.1038/nrn2685

S. Saporta, C. Borlongan, J. Moore, E. Mejia-millan, S. Jones et al., Microcarrier enhanced survival of human and rat fetal ventral mesencephalon cells implanted in the rat striatum, Cell Transplantation, vol.6, issue.6, pp.579-84, 1997.
DOI : 10.1016/S0963-6897(97)00115-2

C. Borlongan, S. Saporta, and P. Sanberg, Intrastriatal Transplantation of Rat Adrenal Chromaffin Cells Seeded on Microcarrier Beads Promote Long-Term Functional Recovery in Hemiparkinsonian Rats, Experimental Neurology, vol.151, issue.2, pp.203-217, 1998.
DOI : 10.1006/exnr.1998.6790

B. Cherksey, V. Sapirstein, and A. Geraci, Adrenal chromaffin cells on microcarriers exhibit enhanced long-term functional effects when implanted into the mammalian brain, Neuroscience, vol.75, issue.2, pp.657-64, 1996.
DOI : 10.1016/0306-4522(96)00262-X

R. Bakay, C. Raiser, N. Stover, T. Subramanian, M. Cornfeldt et al., Implantation of Spheramine ???? in advanced Parkinson's disease (PD), Frontiers in Bioscience, vol.9, issue.1-3, pp.592-602, 2004.
DOI : 10.2741/1217

N. Stover and R. Watts, Spheramine for treatment of Parkinson???s disease, Neurotherapeutics, vol.54, issue.Suppl 1, pp.252-261, 2008.
DOI : 10.1016/j.nurt.2008.02.006

V. Tatard, P. Menei, J. Benoit, and C. Montero-menei, Combining Polymeric Devices and Stem Cells for the Treatment of Neurological Disorders: A Promising Therapeutic Approach, Current Drug Targets, vol.6, issue.1, pp.81-96, 2005.
DOI : 10.2174/1389450053344885

B. Tucker, M. Rahimtula, and K. Mearow, Integrin activation and neurotrophin signaling cooperate to enhance neurite outgrowth in sensory neurons, The Journal of Comparative Neurology, vol.4, issue.3, pp.267-80, 2005.
DOI : 10.1002/cne.20518

P. Hall, J. Lathia, and M. Caldwell, Laminin enhances the growth of human neural stem cells in defined culture media, BMC Neuroscience, vol.9, issue.1, p.71, 2008.
DOI : 10.1186/1471-2202-9-71

S. Kearns, B. Scheffler, A. Goetz, D. Lin, H. Baker et al., A method for a more complete in vitro Parkinson's model: Slice culture bioassay for modeling maintenance and repair of the nigrostriatal circuit, Journal of Neuroscience Methods, vol.157, issue.1, pp.1-9, 2006.
DOI : 10.1016/j.jneumeth.2006.03.020

S. Kearns, E. Laywell, V. Kukekov, and D. Steindler, Extracellular matrix effects on neurosphere cell motility, Experimental Neurology, vol.182, issue.1, pp.240-244, 2003.
DOI : 10.1016/S0014-4886(03)00124-9

L. Qian and W. Saltzman, Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification, Biomaterials, vol.25, issue.7-8, pp.1331-1338, 2004.
DOI : 10.1016/j.biomaterials.2003.08.013

M. Ho, D. Yu, M. Davidsion, and G. Silva, Comparison of standard surface chemistries for culturing mesenchymal stem cells prior to neural differentiation, Biomaterials, vol.27, issue.24, pp.4333-4342, 2006.
DOI : 10.1016/j.biomaterials.2006.03.037

M. Nakajima, T. Ishimuro, K. Kato, I. Ko, I. Hirata et al., Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation, Biomaterials, vol.28, issue.6, pp.1048-60, 2007.
DOI : 10.1016/j.biomaterials.2006.10.004

V. Tatard, M. Venier-julienne, P. Saulnier, E. Prechter, J. Benoit et al., Pharmacologically active microcarriers: a tool for cell therapy, Biomaterials, vol.26, issue.17, pp.3727-3764, 2005.
DOI : 10.1016/j.biomaterials.2004.09.042

C. Bouffi, O. Thomas, C. Bony, A. Giteau, M. Venier-julienne et al., The role of pharmacologically active microcarriers releasing TGF-??3 in cartilage formation in vivo by mesenchymal stem cells, Biomaterials, vol.31, issue.25, pp.6485-93, 2010.
DOI : 10.1016/j.biomaterials.2010.05.013

V. Tatard, M. Venier-julienne, J. Benoit, P. Menei, and C. Montero-menei, In Vivo Evaluation of Pharmacologically Active Microcarriers Releasing Nerve Growth Factor and Conveying PC12 Cells, Cell Transplantation, vol.13, issue.5, pp.573-83, 2004.
DOI : 10.3727/000000004783983675

V. Tatard, L. Sindji, J. Branton, A. Aubert-pouessel, J. Colleau et al., Pharmacologically active microcarriers releasing glial cell line ??? derived neurotrophic factor: Survival and differentiation of embryonic dopaminergic neurons after grafting in hemiparkinsonian rats, Biomaterials, vol.28, issue.11, pp.1978-88, 2007.
DOI : 10.1016/j.biomaterials.2006.12.021

URL : https://hal.archives-ouvertes.fr/inserm-00258197

D. Ippolito, G. Diabira, S. Howard, G. Menei, P. Roos et al., Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential, Journal of Cell Science, vol.117, issue.14, pp.2971-81, 2004.
DOI : 10.1242/jcs.01103

D. Ippolito, G. Diabira, S. Howard, G. Roos, B. Schiller et al., Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells, Bone, vol.39, issue.3, pp.513-535, 2006.
DOI : 10.1016/j.bone.2006.02.061

K. Tamama, H. Kawasaki, and A. Wells, Epidermal Growth Factor (EGF) Treatment on Multipotential Stromal Cells (MSCs). Possible Enhancement of Therapeutic Potential of MSC, Journal of Biomedicine and Biotechnology, vol.58, issue.12, p.795385, 2010.
DOI : 10.1182/blood.V97.5.1227

C. Padovan, K. Jahn, T. Birnbaum, P. Reich, P. Sostak et al., Expression of Neuronal Markers in Differentiated Marrow Stromal Cells and CD133<SUP>+</SUP> Stem-Like Cells, Cell Transplantation, vol.12, issue.8, pp.839-887, 2003.
DOI : 10.3727/000000003771000183

E. Freire, F. Gomes, R. Linden, V. Neto, and T. Coelho-sampaio, Structure of laminin substrate modulates cellular signaling for neuritogenesis, Journal of Cell Science, vol.115, issue.24, pp.4867-76, 2002.
DOI : 10.1242/jcs.00173

J. Vandesompele, D. Preter, K. Pattyn, F. Poppe, B. Van-roy et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

A. Giteau, M. Venier-julienne, S. Marchal, J. Courthaudon, M. Sergent et al., Reversible protein precipitation to ensure stability during encapsulation within PLGA microspheres, European Journal of Pharmaceutics and Biopharmaceutics, vol.70, issue.1, pp.127-163, 2008.
DOI : 10.1016/j.ejpb.2008.03.006

P. Fraker, J. Speck, and J. , Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril, Biochemical and Biophysical Research Communications, vol.80, issue.4, pp.849-57, 1978.
DOI : 10.1016/0006-291X(78)91322-0

D. Kirik, C. Rosenblad, and A. Bjorklund, Characterization of Behavioral and Neurodegenerative Changes Following Partial Lesions of the Nigrostriatal Dopamine System Induced by Intrastriatal 6-Hydroxydopamine in the Rat, Experimental Neurology, vol.152, issue.2, pp.259-77, 1998.
DOI : 10.1006/exnr.1998.6848

E. Horwitz and W. Prather, Cytokines as the major mechanism of mesenchymal stem cell clinical activity: expanding the spectrum of cell therapy, Isr Med Assoc J, vol.11, pp.209-220, 2009.

Q. Chen, Y. Long, X. Yuan, L. Zou, J. Sun et al., Protective effects of bone marrow stromal cell transplantation in injured rodent brain: Synthesis of neurotrophic factors, Journal of Neuroscience Research, vol.6, issue.5, pp.611-620, 2005.
DOI : 10.1002/jnr.20494

H. Ohtaki, J. Ylostalo, J. Foraker, A. Robinson, R. Reger et al., Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses, Proceedings of the National Academy of Sciences, vol.105, issue.38
DOI : 10.1073/pnas.0803670105

D. Docheva, C. Popov, W. Mutschler, and M. Schieker, Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system, Journal of Cellular and Molecular Medicine, vol.78, issue.1, pp.21-38, 2007.
DOI : 10.1172/JCI200214327

P. Lu, A. Blesch, and M. Tuszynski, Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation, or artifact?, Journal of Neuroscience Research, vol.15, issue.182, pp.174-91, 2004.
DOI : 10.1002/jnr.20148

M. Khoo, B. Shen, H. Tao, and D. Ma, Long-Term Serial Passage and Neuronal Differentiation Capability of Human Bone Marrow Mesenchymal Stem Cells, Stem Cells and Development, vol.17, issue.5, pp.883-96, 2008.
DOI : 10.1089/scd.2007.0185

L. Sensebe, M. Deschaseaux, J. Li, P. Herve, and P. Charbord, The Broad Spectrum of Cytokine Gene Expression by Myoid Cells from the Human Marrow Microenvironment, Stem Cells, vol.85, issue.2, pp.133-176, 1997.
DOI : 10.1002/stem.150133

C. Hurelbrink and R. Barker, The potential of GDNF as a treatment for Parkinson's disease, Experimental Neurology, vol.185, issue.1, pp.1-6, 2004.
DOI : 10.1016/j.expneurol.2003.09.018

E. Garbayo, C. Montero-menei, E. Ansorena, J. Lanciego, M. Aymerich et al., Effective GDNF brain delivery using microspheres???A promising strategy for Parkinson's disease, Journal of Controlled Release, vol.135, issue.2, pp.119-145, 2009.
DOI : 10.1016/j.jconrel.2008.12.010

C. Jollivet, A. Aubert-pouessel, A. Clavreul, M. Venier-julienne, R. S. Montero-menei et al., Striatal implantation of GDNF releasing biodegradable microspheres promotes recovery of motor function in a partial model of Parkinson's disease, Biomaterials, vol.25, issue.5, pp.933-975, 2004.
DOI : 10.1016/S0142-9612(03)00601-X

A. Bjorklund, C. Rosenblad, C. Winkler, and D. Kirik, Studies on Neuroprotective and Regenerative Effects of GDNF in a Partial Lesion Model of Parkinson's Disease, Neurobiology of Disease, vol.4, issue.3-4, pp.186-200, 1997.
DOI : 10.1006/nbdi.1997.0151

G. Block, S. Ohkouchi, F. Fung, J. Frenkel, C. Gregory et al., Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1, Stem Cells, vol.143, issue.spec. no. 1, pp.670-81, 2009.
DOI : 10.1002/stem.20080742