M. Avalos, Y. Grandvalet, and E. C. Ambroise, Parsimonious additive models, Computational Statistics & Data Analysis, vol.51, issue.6, pp.2851-2870, 2007.
DOI : 10.1016/j.csda.2006.10.007

URL : https://hal.archives-ouvertes.fr/inserm-00402444

P. Bickel, Y. Ritov, and E. A. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector, The Annals of Statistics, vol.37, issue.4, pp.1705-1732, 2009.
DOI : 10.1214/08-AOS620

URL : https://hal.archives-ouvertes.fr/hal-00401585

L. Breiman, Heuristics of instability and stabilization in model selection, The Annals of Statistics, vol.24, issue.6, pp.2350-2383, 1996.
DOI : 10.1214/aos/1032181158

S. Bull, J. Lewinger, and E. S. Lee, Confidence intervals for multinomial logistic regression in sparse data, Statistics in Medicine, vol.71, issue.4, pp.903-921, 2007.
DOI : 10.1002/sim.2518

F. Bunea, Honest variable selection in linear and logistic regression models via ???1 and ???1+???2 penalization, Electronic Journal of Statistics, vol.2, issue.0, pp.1153-1194, 2008.
DOI : 10.1214/08-EJS287

F. Bunea, A. Et, and . Barbu, Dimension reduction and variable selection in case control studies via regularized likelihood optimization, Electronic Journal of Statistics, vol.3, issue.0, 2009.
DOI : 10.1214/09-EJS537

B. Chardon, S. Host, G. Pedrono, and E. I. Gremy, Contribution of case-crossover design to the analysis of short-term health effects of air pollution : reanalysis of air pollution and health data, pp.31-40, 2008.

C. Corcoran, C. Mehta, N. Patel, and E. P. Senchaudhuri, Computational tools for exact conditional logistic regression, Statistics in Medicine, vol.13, issue.17-18, pp.2723-2762, 2001.
DOI : 10.1002/sim.739

B. Efron, T. Hastie, I. Johnstone, and E. R. Tibshirani, Least angle regression, Ann. Statist, vol.32, pp.407-499, 2004.

B. Efron, R. J. Et, and . Tibshirani, An introduction to the Bootstrap, 1993.
DOI : 10.1007/978-1-4899-4541-9

B. Falissard, J. Et, and . Lellouch, Comprendre et utiliser les statistiques dans les sciences de la vie, 2005.

J. Goeman, An efficient algorithm for l 1 penalized estimation, 2008.

S. Greenland, Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators, Biostatistics, vol.1, issue.1, pp.113-135, 2000.
DOI : 10.1093/biostatistics/1.1.113

S. Greenland, Invited Commentary: Variable Selection versus Shrinkage in the Control of Multiple Confounders, American Journal of Epidemiology, vol.167, issue.5, pp.523-532, 2008.
DOI : 10.1093/aje/kwm355

J. Gui and H. Li, Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data, Bioinformatics, vol.21, issue.13, pp.3001-3009, 2005.
DOI : 10.1093/bioinformatics/bti422

L. Hansson and H. Khamis, Matched samples logistic regression in case-control studies with missing values: when to break the matches, Statistical Methods in Medical Research, vol.41, issue.6, pp.595-607, 2008.
DOI : 10.1177/0962280207082348

P. Joly, A. Alioum, D. Commenges, M. L. Goff, and E. B. Liquet, Master sciences, technologies , santé, mention santé publique, 2009.

A. Klinger, Inference in high dimensional generalized linear models based on soft thresholding, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.2, pp.377-392, 2001.
DOI : 10.1111/1467-9868.00291

Y. Lin and H. Zhang, Component selection and smoothing in multivariate nonparametric regression, The Annals of Statistics, vol.34, issue.5, pp.2272-2297, 2006.
DOI : 10.1214/009053606000000722

N. Meinshausen, Relaxed Lasso, Computational Statistics & Data Analysis, vol.52, issue.1, pp.374-393, 2007.
DOI : 10.1016/j.csda.2006.12.019

N. Meinshausen, B. Et, and . Yu, Lasso-type recovery of sparse representations for high-dimensional data, The Annals of Statistics, vol.37, issue.1, pp.246-270, 2009.
DOI : 10.1214/07-AOS582

M. Park, T. Et, and . Hastie, -regularization path algorithm for generalized linear models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.67, issue.4, pp.659-677, 2007.
DOI : 10.1073/pnas.082099299

URL : https://hal.archives-ouvertes.fr/hal-00458708

B. Pötscher, U. Et, and . Schneider, Confidence sets based on penalized maximum likelihood estimators, 2008.

J. Pötscher, Confidence sets based on sparse estimators are necessarily large, 2007.

P. Ravikumar, H. Liu, J. Lafferty, and E. L. Wasserman, Spam: Sparse additive models, Advances in Neural Information Processing Systems, 2007.

R. Tibshirani, Regression shrinkage and selection via the lasso, J. Royal. Statist. Soc B, vol.58, pp.267-288, 1996.

R. Tibshirani, THE LASSO METHOD FOR VARIABLE SELECTION IN THE COX MODEL, Statistics in Medicine, vol.16, issue.4, pp.385-95, 1997.
DOI : 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3

M. Van-der-laan, S. Dudoit, and E. S. Keles, Asymptotic Optimality of Likelihood-Based Cross-Validation, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, 2004.
DOI : 10.2202/1544-6115.1036

P. Verweij and H. V. Houwelingen, Cross-validation in survival analysis, Statistics in Medicine, vol.80, issue.24, pp.2305-2319, 1993.
DOI : 10.1002/sim.4780122407

M. Yuan, Y. Et, and . Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.58, issue.1, pp.49-67, 2006.
DOI : 10.1198/016214502753479356

P. Zhao, B. Et, and . Yu, On model selection consistency of lasso, The Journal of Machine Learning Research, vol.7, pp.2541-2563, 2006.

H. Zou, The Adaptive Lasso and Its Oracle Properties, Journal of the American Statistical Association, vol.101, issue.476, pp.1418-1429, 2006.
DOI : 10.1198/016214506000000735

H. Zou, T. Et, and . Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.2, pp.301-320, 2005.
DOI : 10.1073/pnas.201162998