R. Ferguson and J. Maller, Centrosomal Localization of Cyclin E-Cdk2 Is Required for Initiation of DNA Synthesis, Current Biology, vol.20, issue.9, pp.856-860, 2010.
DOI : 10.1016/j.cub.2010.03.028

Y. Masui and C. Markert, Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes, Journal of Experimental Zoology, vol.2, issue.2, pp.129-145, 2010.
DOI : 10.1002/jez.1401770202

T. Evans, E. Rosenthal, J. Youngblom, D. Distel, and T. Hunt, Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division, Cell, vol.33, issue.2, pp.389-396, 1983.
DOI : 10.1016/0092-8674(83)90420-8

J. Gautier, C. Norbury, M. Lohka, P. Nurse, and J. Maller, Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+, Cell, vol.54, issue.3, pp.433-439, 1988.
DOI : 10.1016/0092-8674(88)90206-1

L. Hartwell and T. Weinert, Checkpoints: controls that ensure the order of cell cycle events, Science, vol.246, issue.4930, pp.629-634, 1989.
DOI : 10.1126/science.2683079

W. Dunphy and J. Newport, Fission yeast p13 blocks mitotic activation and tyrosine dephosphorylation of the Xenopus cdc2 protein kinase, Cell, vol.58, issue.1, pp.181-191, 1989.
DOI : 10.1016/0092-8674(89)90414-5

J. Gautier, M. Solomon, R. Booher, J. Bazan, and M. Kirschner, cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2, Cell, vol.67, issue.1, pp.197-211, 1991.
DOI : 10.1016/0092-8674(91)90583-K

R. Wang, G. He, and M. Nelman-gonzalez, Regulation of Cdc25C by ERK-MAP Kinases during the G2/M Transition, Cell, vol.128, issue.6, pp.1119-1132, 2007.
DOI : 10.1016/j.cell.2006.11.053

A. Karaiskou, C. Jessus, T. Brassac, and R. Ozon, Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification, J Cell Sci, vol.112, pp.3747-3756, 1999.

J. Maller, F. Butcher, and E. Krebs, Early effect of progesterone on levels of cyclic adenosine 3':5'-monophosphate in Xenopus oocytes, J BiolChem, vol.254, pp.579-582, 1979.

J. Maller and E. Krebs, Regulation of Oocyte Maturation, Curr Top Cell Regul, vol.16, pp.271-311, 1980.
DOI : 10.1016/B978-0-12-152816-4.50012-1

J. Wang and X. Liu, Progesterone inhibits protein kinase A (PKA) in Xenopus oocytes: demonstration of endogenous PKA activities using an expressed substrate, Journal of Cell Science, vol.117, issue.21, pp.5107-5116, 2004.
DOI : 10.1242/jcs.01383

B. Duckworth, J. Weaver, and J. Ruderman, G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A, Proceedings of the National Academy of Sciences, vol.99, issue.26, pp.16794-16799, 2002.
DOI : 10.1073/pnas.222661299

A. Castro, M. Peter, T. Lorca, and E. Mandart, c-Mos and cyclin B/cdc2 connections during Xenopus oocyte maturation, Biology of the Cell, vol.93, issue.1-2, pp.15-25, 2001.
DOI : 10.1016/S0248-4900(01)01128-5

C. Jessus and R. Ozon, How does Xenopus oocyte acquire its competence to undergo meiotic maturation?, Biology of the Cell, vol.96, issue.3, pp.187-192, 2004.
DOI : 10.1016/j.biolcel.2003.12.007

O. Haccard and C. Jessus, Redundant pathways for Cdc2 activation in Xenopus oocyte: either cyclin B or Mos synthesis, EMBO reports, vol.13, issue.3, pp.321-325, 2006.
DOI : 10.1016/0014-4827(75)90118-4

S. Hoffmann, C. Tsurumi, J. Kubiak, and Z. Polanski, Germinal vesicle material drives meiotic cell cycle of mouse oocyte through the 3???UTR-dependent control of cyclin B1 synthesis, Developmental Biology, vol.292, issue.1, pp.46-54, 2006.
DOI : 10.1016/j.ydbio.2005.12.052

Z. Polanski, E. Ledan, and S. Brunet, Cyclin synthesis controls the progression of meiotic maturation in mouse oocytes, Development, vol.125, pp.4989-4997, 1998.

H. Rime, J. Yang, C. Jessus, and R. Ozon, MPF is activated in growing immature Xenopus oocytes in the absence of detectable tyrosine dephosphorylation of p34cdc2, Experimental Cell Research, vol.196, issue.2, pp.241-245, 1991.
DOI : 10.1016/0014-4827(91)90257-U

H. Rime, C. Jessus, and R. Ozon, Tyrosine Phosphorylation of p34cdc2 Is Regulated by Protein Phosphatase 2A in Growing Immature Xenopus Oocytes, Experimental Cell Research, vol.219, issue.1, pp.29-38, 1995.
DOI : 10.1006/excr.1995.1201

O. Mulner, R. Belle, and R. Ozon, cAMP-dependent protein kinase regulates in ovo camp level of the Xenopus oocyte: Evidence for an intracellular feedback mechanism, Molecular and Cellular Endocrinology, vol.31, issue.1, pp.151-160, 1983.
DOI : 10.1016/0303-7207(83)90038-2

H. Nakajima, F. Toyoshima-morimoto, E. Taniguchi, and E. Nishida, Identification of a Consensus Motif for Plk (Polo-like Kinase) Phosphorylation Reveals Myt1 as a Plk1 Substrate, Journal of Biological Chemistry, vol.278, issue.28, pp.25277-25280, 2003.
DOI : 10.1074/jbc.C300126200

A. Karaiskou, A. Lepretre, G. Pahlavan, D. Pasquier, D. Ozon et al., Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes, Development, vol.131, issue.7, pp.1543-1552, 2004.
DOI : 10.1242/dev.01050

G. Marteil, D. Inca, R. Pascal, and A. , EP45 accumulates in growing Xenopus laevis oocytes and has oocyte-maturation-enhancing activity involved in oocyte quality, Journal of Cell Science, vol.123, issue.10, pp.1805-1813, 2010.
DOI : 10.1242/jcs.063305

URL : https://hal.archives-ouvertes.fr/inserm-00461087

L. Holland and L. Wangh, Estrogen induction of a 45 kDa secreted protein coordinately with vitellogenin in Xenopus liver, Molecular and Cellular Endocrinology, vol.49, issue.1, pp.63-73, 1987.
DOI : 10.1016/0303-7207(87)90064-5

L. Holland, C. Suksang, A. Wall, L. Roberts, D. Moser et al., A major estrogen-regulated protein secreted from the liver of Xenopus laevis is a member of the serpin superfamily. Nucleotide sequence of cDNA and hormonal induction of mRNA, J Biol Chem, vol.267, pp.7053-7059, 1992.

P. Jorgensen, J. Steen, H. Steen, and M. Kirschner, The mechanism and pattern of yolk consumption provide insight into embryonic nutrition in Xenopus, Development, vol.136, issue.9, pp.1539-1548, 2009.
DOI : 10.1242/dev.032425

B. Beck, D. Henjum, and K. Antonijczuk, 2+)- binding protein in Xenopus oocytes and embryos, shows identity to Ep45, an estrogen-regulated hepatic serpin, Res Commun Chem Pathol Pharmacol, vol.77, pp.3-16, 1992.

F. Sunderman, . Jr, A. Varghese, and O. Kroftova, Characterization of pNiXa, a serpin of Xenopus laevis oocytes and embryos, and its histidine???rich, Ni(II)???binding domain, Molecular Reproduction and Development, vol.44, issue.4, pp.507-524, 1996.
DOI : 10.1002/(SICI)1098-2795(199608)44:4<507::AID-MRD11>3.3.CO;2-D

J. Haspel, F. Sunderman, . Jr, and S. Hofper, A nickel-binding serpin, pNiXa, induces maturation of Xenopus oocytes and shows synergism with oncogenic ras-p21 protein, Res Commun Chem Pathol Pharmacol, vol.79, pp.131-140, 1993.

D. Inca, R. Marteil, G. Bazile, and F. , Proteomic screen for potential regulators of M-phase entry and quality of meiotic resumption in Xenopus laevis oocytes, Journal of Proteomics, vol.73, issue.8, pp.1542-1550, 2010.
DOI : 10.1016/j.jprot.2010.03.017

URL : https://hal.archives-ouvertes.fr/inserm-00469265

K. Severinov, E. Melnikova, and A. Ryazanov, Downregulation of the translation elongation factor 2 kinase in Xenopus laevis oocytes at the final stages of oogenesis, New Biol, vol.2, pp.887-893, 1990.

P. Ueland, Pharmacological and biochemical aspects of Sadenosylhomocysteine and S-adenosylhomocysteine hydrolase, Pharmacol Rev, vol.34, pp.223-253, 1982.

N. Radomski, C. Kaufmann, and C. Dreyer, Nuclear Accumulation of S-Adenosylhomocysteine Hydrolase in Transcriptionally Active Cells during Development of Xenopus laevis, Molecular Biology of the Cell, vol.10, issue.12, pp.4283-4298, 1999.
DOI : 10.1091/mbc.10.12.4283

Y. Miura, M. Kano, K. Abe, S. Urano, S. Suzuki et al., Age-dependent variations of cell response to oxidative stress: Proteomic approach to protein expression and phosphorylation, ELECTROPHORESIS, vol.262, issue.14, pp.2786-2796, 2005.
DOI : 10.1002/elps.200500172

C. Dreyer, Differential accumulation of oocyte nuclear proteins by embryonic nuclei of Xenopus, Development, vol.101, pp.829-846, 1987.

E. Kmiec, J. Sekiguchi, and A. Cole, chromatin assembly, Biochemistry and Cell Biology, vol.67, issue.8, pp.443-454, 1989.
DOI : 10.1139/o89-070

M. Higa, K. Ullman, and A. Prunuske, Studying nuclear disassembly in vitro using Xenopus egg extract, Methods, vol.39, issue.4, pp.284-290, 2006.
DOI : 10.1016/j.ymeth.2006.06.004

A. Jambhekar and A. Amon, Control of Meiosis by Respiration, Current Biology, vol.18, issue.13, pp.969-975, 2008.
DOI : 10.1016/j.cub.2008.05.047

P. May-panloup, M. Chrétien, C. Jacques, C. Vasseur, Y. Malthi?ry et al., Low oocyte mitochondrial DNA content in ovarian insufficiency, Human Reproduction, vol.20, issue.3, pp.593-597, 2005.
DOI : 10.1093/humrep/deh667

H. Yamase, F. Forouhar, and D. Sojda, Immunoperoxidase staining of tumors by an antibody to Xenopus pNiXa

H. Beaumont, J. Gallie, C. Kost, G. Ferguson, and P. Rainey, Experimental evolution of bet hedging, Nature, vol.138, issue.7269, pp.90-93, 2009.
DOI : 10.1038/nature08504