E. Frohlich, Y. Chien, S. Sesoko, and B. Pegram, Relationship between dietary sodium intake, hemodynamics and cardiac mass in SHR and WKY rats, Am J Physiol, vol.264, pp.30-34, 1993.

H. Yu, L. Burrell, M. Black, L. Wu, R. Dilley et al., Salt Induces Myocardial and Renal Fibrosis in Normotensive and Hypertensive Rats, Circulation, vol.98, issue.23, pp.2621-2628, 1998.
DOI : 10.1161/01.CIR.98.23.2621

B. Yuan and F. Leenen, Dietary sodium intake and left ventricular hypertrophy in normotensive rats, Am J Physiol, vol.261, pp.1397-1401, 1991.

S. Adubeiro, F. Roudot-thoraval, J. Dubois-rande, L. Hittinger, and F. Pecker, N-acetylcysteine treatment normalizes serum tumor necrosis factor-alpha level and hinders the progression of cardiac injury in hypertensive rats, Circulation, vol.110, pp.2003-2009, 2004.

Y. Takeda, T. Yoneda, M. Demura, I. Miyamori, and H. Mabuchi, Sodium-Induced Cardiac Aldosterone Synthesis Causes Cardiac Hypertrophy, Endocrinology, vol.141, issue.5, pp.1901-1904, 2000.
DOI : 10.1210/endo.141.5.7529

Y. Ding, J. Lv, C. Mao, H. Zhang, A. Wang et al., High-salt diet during pregnancy and angiotensin-related cardiac changes, Journal of Hypertension, vol.doi
DOI : 10.1097/HJH.0b013e328337da8f

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595402

M. Bayorh, A. Ganafa, N. Emmett, R. Socci, D. Eatman et al., Alterations in Aldosterone and Angiotensin II Levels in Salt-Induced Hypertension, Clinical and Experimental Hypertension, vol.8, issue.4, pp.355-367, 2005.
DOI : 10.1161/01.HYP.21.4.391

C. Pellieux, T. Sauthier, J. Aubert, H. Brunner, and T. Pedrazzini, Angiotensin II-induced cardiac hypertrophy is associated with associated with different mitogen-activated protein kinase activation in normotensive and hypertensive mice, Journal of Hypertension, vol.18, issue.9, pp.1307-1317, 2000.
DOI : 10.1097/00004872-200018090-00017

S. Wassmann, T. Czech, M. Van-eickels, I. Fleming, M. Bohm et al., Inhibition of Diet-Induced Atherosclerosis and Endothelial Dysfunction in Apolipoprotein E/Angiotensin II Type 1A Receptor Double-Knockout Mice, Circulation, vol.110, issue.19, pp.3062-3067, 2004.
DOI : 10.1161/01.CIR.0000137970.47771.AF

R. Gaertner, F. Prunier, P. M. Louedec, L. Mercadier, J. Michel et al., Scar and pulmonary expression and shedding of ACE in rat myocardial infarction, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.1, pp.156-164, 2002.
DOI : 10.1152/ajpheart.00848.2001

C. Adamy, P. Oliviero, S. Eddahibi, L. Rappaport, J. Samuel et al., Cardiac modulations of ANG II receptor expression in rats with hypoxic pulmonary hypertension, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.2, pp.733-740, 2002.
DOI : 10.1152/ajpheart.01088.2001

D. Goodman, D. Harrison, and R. Popp, Echocardiographic features of primary pulmonary hypertension, The American Journal of Cardiology, vol.33, issue.3, pp.438-443, 1974.
DOI : 10.1016/0002-9149(74)90329-4

B. Nunez, C. Lavie, F. Messerli, R. Schmieder, G. Garavaglia et al., Comparison of diastolic left ventricular filling and cardiac dysrhythmias in hypertensive patients with and without isolated septal hypertrophy, The American Journal of Cardiology, vol.74, issue.6, pp.585-589, 1994.
DOI : 10.1016/0002-9149(94)90748-X

R. Dunn, Regional blood flow and metabolite levels in the left ventricular free wall and septum during aortic insufficiency: Implications for the development of asymmetric septal hypertrophy, Journal of the American College of Cardiology, vol.8, issue.5, pp.1182-1188, 1986.
DOI : 10.1016/S0735-1097(86)80399-0

W. Lamers and A. Moorman, Cardiac Septation: A Late Contribution of the Embryonic Primary Myocardium to Heart Morphogenesis, Circulation Research, vol.91, issue.2, pp.93-103, 2002.
DOI : 10.1161/01.RES.0000027135.63141.89

M. Heng, R. Janz, and J. Jobin, Estimation of regional stress in the left ventricular septum and free wall: An echocardiographic study suggesting a mechanism for asymmetric septal hypertrophy, American Heart Journal, vol.110, issue.1, pp.84-90, 1985.
DOI : 10.1016/0002-8703(85)90519-8

F. Haddad, P. Bodell, and K. Baldwin, Pressure-induced regulation of myosin expression in rodent heart, J Appl Physiol, vol.78, pp.1489-1495, 1995.

M. Young and J. Funder, The renin-angiotensin-aldosterone system in experimental mineralocorticoid-salt-induced cardiac fibrosis, Am J Physiol Endocrinol Metab, vol.271, pp.883-888, 1996.

Y. Liu, X. Yang, V. Sharov, O. Nass, H. Sabbah et al., Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors., Journal of Clinical Investigation, vol.99, issue.8, pp.1926-1935, 1997.
DOI : 10.1172/JCI119360

A. Lal, J. Veinot, and F. Leenen, Prevention of high salt diet-induced cardiac hypertrophy and fibrosis by spironolactone, American Journal of Hypertension, vol.16, issue.4, pp.319-323, 2003.
DOI : 10.1016/S0895-7061(02)03268-5

V. Robert, C. Heymes, J. Silvestre, A. Sabri, B. Swynghedauw et al., Angiotensin AT1 Receptor Subtype as a Cardiac Target of Aldosterone : Role in Aldosterone-Salt??Induced Fibrosis, Hypertension, vol.33, issue.4, pp.981-986, 1999.
DOI : 10.1161/01.HYP.33.4.981

Y. Zou, H. Akazawa, Y. Qin, M. Sano, H. Takano et al., Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II, Nature Cell Biology, vol.14, issue.6, pp.499-506, 2004.
DOI : 10.1073/pnas.96.2.499

P. Liao, D. Georgakopoulos, A. Kovacs, M. Zheng, D. Lerner et al., The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy, Proceedings of the National Academy of Sciences, vol.98, issue.21, pp.12283-12288, 2001.
DOI : 10.1073/pnas.211086598

O. Bueno, D. Windt, L. Tymitz, K. Witt, S. Kimball et al., The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice, The EMBO Journal, vol.19, issue.23, pp.6341-6350, 2000.
DOI : 10.1093/emboj/19.23.6341