N. C. Krak and R. Boellaard, Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial, European Journal of Nuclear Medicine and Molecular Imaging, vol.26, issue.3, pp.294-301, 2005.
DOI : 10.1007/s00259-004-1566-1

H. Jarritt, K. Carson, A. R. Hounsel, and D. Visvikis, The role of PET/CT scanning in radiotherapy planning, The British Journal of Radiology, vol.79, issue.special_issue_1, pp.27-35, 2006.
DOI : 10.1259/bjr/35628509

M. Soret, S. L. Bacharach, and I. Buvat, Partial-Volume Effect in PET Tumor Imaging, Journal of Nuclear Medicine, vol.48, issue.6, pp.932-945, 2007.
DOI : 10.2967/jnumed.106.035774

Y. E. Erdi, O. Mawlawi, and S. M. Larson, Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding, Cancer, vol.34, issue.S12, pp.2505-2509, 1997.
DOI : 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.0.CO;2-F

C. Greco, K. Rosenzweig, and G. L. Cascini, Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC), Lung Cancer, vol.57, issue.2, pp.125-134, 2007.
DOI : 10.1016/j.lungcan.2007.03.020

U. Nestle, S. Kremp, and A. Schaefer-schuler, Comparison of Different Methods for Delineation of 18F- FDG PET-Positive Tissue for Target Volume Definition in Radiotherapy of Patients with Non-Small Cell Lung Cancer, Jour. Nucl. Med, vol.46, issue.8, pp.1342-1350, 2005.

Q. C. Black and I. S. Grills, Defining a radiotherapy target with positron emission tomography, Int. J

J. B. Davis and B. Reiner, Assessment of 18F PET signals for automatic target volume definition in radiotherapy treatment planning, Radiotherapy and Oncology, vol.80, issue.1, pp.43-50, 2006.
DOI : 10.1016/j.radonc.2006.07.006

J. Daisne, M. Sibomana, and A. Bol, Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms, Radiotherapy and Oncology, vol.69, issue.3, pp.247-250, 2003.
DOI : 10.1016/S0167-8140(03)00270-6

J. A. Van-dalen and A. L. Hoffman, A novel iterative method for lesion delineation and volumetric quantification with FDG PET, Nuclear Medicine Communications, vol.28, issue.6, pp.485-493, 2007.
DOI : 10.1097/MNM.0b013e328155d154

M. B. White, A semi-automatic approach to the delineation of tumour boundaries from PET data using Level Sets, SNM annual meeting, 2005.

P. Tylski, G. Bonniaud, and E. Decenciere, 18F-FDG PET images segmentation using morphological watershed : a phantom study, IEEE NSS-MIC, pp.2063-2067, 2006.

W. Zhu and T. Jiang, Automation Segmentation of PET Image for Brain Tumours, pp.2627-2629, 2003.

D. W. Montgomery, A. Amira, and H. Zaidi, Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model, Medical Physics, vol.3, issue.2, pp.722-736, 2007.
DOI : 10.1118/1.2432404

O. Demirkaya, Lesion segmentation in wholebody images of PET, IEEE NSS-MIC, pp.2873-2876, 2003.

X. Geets, J. A. Lee, and A. Bol, A gradient-based method for segmenting FDG-PET images: methodology and validation, European Journal of Nuclear Medicine and Molecular Imaging, vol.10, issue.Suppl 2, pp.1427-1438, 2007.
DOI : 10.1007/s00259-006-0363-4

H. Li, W. L. Thorstad, and K. J. Biehl, A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours, Medical Physics, vol.13, issue.8, pp.3711-3721, 2008.
DOI : 10.1109/42.363096

H. Yu, C. Caldwell, and K. Mah, Co-registered FDG PET/CT Based Textural Characterization of Head and Neck Cancer for Radiation Treatment Planning, IEEE Trans. Med. Im, 2008.

M. Hatt, F. Lamare, and N. Boussion, Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET, Physics in Medicine and Biology, vol.52, issue.12, pp.3467-3491, 2007.
DOI : 10.1088/0031-9155/52/12/010

URL : https://hal.archives-ouvertes.fr/inserm-00150348

M. Hatt, A. Turzo, and C. Roux, A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET, IEEE Transactions on Medical Imaging, vol.28, issue.6, 2008.
DOI : 10.1109/TMI.2008.2012036

URL : https://hal.archives-ouvertes.fr/inserm-00372910

C. C. Ling, J. Humm, and S. Larson, Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality, International Journal of Radiation Oncology*Biology*Physics, vol.47, issue.3, pp.551-560, 2000.
DOI : 10.1016/S0360-3016(00)00467-3

H. Caillol, W. Pieczynski, and A. Hillon, Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation, IEEE Transactions on Image Processing, vol.6, issue.3, pp.425-440, 1997.
DOI : 10.1109/83.557353

F. Salzenstein and W. Pieczynski, Parameter Estimation in Hidden Fuzzy Markov Random Fields and Image Segmentation, Graphical Models and Image Processing, vol.59, issue.4, pp.205-220, 1997.
DOI : 10.1006/gmip.1997.0431

M. Hatt, A. Turzo, P. Bailly, I. Murray, C. Roux et al., Automatic delineation of functional volumes in PET: a robustness study, SNM annual meeting, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00460270

G. Celeux and J. Diebolt, L'algorithme SEM : un algorithme d'apprentissage probabiliste pour la reconnaissance de mélanges de densités, Revue de statistique appliquée, pp.35-52, 1986.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B, vol.39, pp.1-38, 1977.

J. Mcqueen, Some methods for classification and analysis of multivariate observations, Proc. 5th Symp, pp.281-297, 1967.

J. C. Dunn, A Fuzzy relative of the Isodata process and its use in detecting compact well-separeted clusters

W. P. Segars, Development and Application of the New Dynamic NURBS-based Cardiac-Torso (NCAT) Phantom, 2001.

A. Le-maitre, W. P. Segars, S. Marache, A. Reilhac, M. Hatt et al., Incorporating patient specific variability in the simulation of realistic whole body 18F-FDG distributions for oncology applications, Proceedings of the IEEE, 2009.

F. Lamare, A. Turzo, and Y. Bizais, Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE, Physics in Medicine and Biology, vol.51, issue.4, pp.943-962, 2006.
DOI : 10.1088/0031-9155/51/4/013

A. Van-baardwijk, G. Bosmans, and L. Boersma, PET-CT???Based Auto-Contouring in Non???Small-Cell Lung Cancer Correlates With Pathology and Reduces Interobserver Variability in the Delineation of the Primary Tumor and Involved Nodal Volumes, International Journal of Radiation Oncology*Biology*Physics, vol.68, issue.3, pp.771-778, 2007.
DOI : 10.1016/j.ijrobp.2006.12.067

T. Pan and O. Mawlawi, PET/CT in radiation oncology, Medical Physics, vol.35, issue.11, pp.4955-4966, 2008.
DOI : 10.1016/S0360-3016(02)02705-0

J. L. Fox, R. Rengan, and W. , Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non???small-cell lung cancer?, International Journal of Radiation Oncology*Biology*Physics, vol.62, issue.1
DOI : 10.1016/j.ijrobp.2004.09.020

H. Ashamallaa, S. Raa, and K. Parikh, The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer, International Journal of Radiation Oncology*Biology*Physics, vol.63, issue.4, pp.1016-1023, 2005.
DOI : 10.1016/j.ijrobp.2005.04.021

A. Sovik, E. Malinen, and D. R. Olsen, Strategies for Biologic Image-Guided Dose Escalation: A Review, International Journal of Radiation Oncology*Biology*Physics, vol.73, issue.3
DOI : 10.1016/j.ijrobp.2008.11.001

O. G. Rousset, Y. Ma, and A. C. Evans, Correction for partial volume effects in PET: principle and validation, J. Nucl. Med, vol.39, pp.904-911, 1998.

N. Boussion, M. Hatt, and F. Lamare, A multiresolution image based approach for correction of partial volume effects in emission tomography, Physics in Medicine and Biology, vol.51, issue.7, pp.1857-1876, 2006.
DOI : 10.1088/0031-9155/51/7/016

URL : https://hal.archives-ouvertes.fr/inserm-00537786

N. Boussion, M. Hatt, and D. Visvikis, Partial volume correction in PET based on functional volumes, J. Nucl. Med, vol.49, issue.S1, p.388, 2008.