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ABSTRACT 

 Purpose: Accurate contouring of PET functional volumes is now considered crucial in image-

guided radiotherapy and other oncology applications, as the use of functional imaging allows 

biological target definition. In addition, the definition of variable uptake regions within the tumour 

itself may facilitate dose painting for dosimetry optimization. 

Material and methods: Current state-of-the-art algorithms for functional volume segmentation use 

adaptive thresholding. We have developed an approach named Fuzzy Locally Adaptive Bayesian 

(FLAB), validated on homogeneous objects. We improved it for the delineation of inhomogeneous 

tumours by allowing the use of up to three classes. Simulated and real tumours with histology data 

containing homogeneous and heterogeneous activity distributions were used to assess the algorithm’s 

accuracy.  

Results: The new 3-FLAB algorithm is able to extract the overall tumour from the background tissues, 

as well as delineate variable uptake regions within the tumours, with higher accuracy and robustness 

compared to adaptive threshold (Tbckg) and fuzzy C-means (FCM). 3-FLAB performed with a mean 

classification error of less than 9±8% on the simulated tumours whereas binary-only implementation 

led to errors of 15±11%. Tbckg and FCM lead to mean errors of 20±12% and 17±14% respectively. 3-

FLAB also lead to more robust estimation of the maximum diameters of tumours with histology 

measurements, with less than 6% standard deviation whereas binary FLAB, Tbckg and FCM lead to 

10%, 12% and 13% respectively.  

Conclusion: These encouraging results warrants further investigation in future studies that will 

investigate the impact of 3-FLAB in radiotherapy treatment planning, diagnosis and therapy response 

evaluation 

 

 

Key Words: Heterogeneous functional volumes delineation; automatic segmentation; image-guided 

radiotherapy; dose painting. 



 4

1. Introduction 

 While most of positron emission tomography (PET) clinical applications rely on manual and 

visual analysis, accurate functional volume delineation in PET is crucial for numerous oncology 

applications. These include the use of tumour volume and associated determination of semi-

quantitative indices of activity concentration for diagnosis and therapy response evaluation (1), or the 

definition of target volumes in intensity-modulated radiation therapy (IMRT) (2). Subjective (1) and 

tedious manual delineation cannot perform accurate and reproducible segmentation especially when 

considering complex shapes and non-homogeneous uptake. This results from the low quality of PET 

images notably due to statistical noise and partial volume effects (PVE) (3) arising from the scanner’s 

limited spatial resolution. 

Most of the previously proposed methods for PET volume definition are semi-automatic and 

threshold-based, using either fixed (30-75% of the maximum activity) (2,4,5) or adaptive approaches 

incorporating the background activity (6-10). Unfortunately, these approaches often require additional 

a priori information and are user- and system-dependent. They require manual background regions of 

interest (ROIs) and their performance depend on parameters requiring optimization using phantom 

acquisitions for each scanner and reconstruction. Finally all of these approaches are strictly binary and 

were not validated considering heterogeneous volumes. 

On the other hand, numerous works have addressed PET lesion segmentation using more 

advanced image segmentation methodologies (11-19). However, the majority of these approaches 

often depend on pre- or post-processing steps like deconvolution and/or denoising, are often binary 

only and validated on phantom acquisitions or clinical data without rigorous ground-truth. 

We have previously developed an algorithm for PET volume definition by combining a fuzzy 

measure with a locally adaptive Bayesian-based classification (FLAB) that has been shown to perform 

better with respect to fixed thresholding, Fuzzy C-Means (FCM) or Fuzzy Hidden Markov Chains 

(FHMC) for PET volume definition, as far as homogeneous spheres or slightly heterogeneous and non 

spherical tumours are concerned (20). Preliminary results show that FLAB is also robust with respect 

to variability of the acquisition and reconstruction parameters (24). 
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Clinical tumours may be characterized by heterogeneous uptake, thus demanding a non-binary 

approach for an accurate segmentation that may have a significant impact in defining biological target 

volumes for dose painting (21). The goals of this work were to (a) improve the FLAB model by 

incorporating the use of three hard classes and three fuzzy transitions and (b) evaluate its accuracy on 

real (with known diameter measured in histology) and simulated (with known ground-truth) datasets 

containing inhomogeneous tumours.  

2. Materials and methods 

2.1 The 3-class fuzzy Bayesian segmentation (3-FLAB) 

 The 3-FLAB algorithm is an extension of the previous work considering only a binary 

segmentation (20). FLAB automatically estimates parameters of interest from the image, maximizing 

the probability of each voxel to belong to one of the considered classes. This probability is estimated 

for each voxel as a function of its value and the values of its neighbours relative to the voxels’ 

statistical distributions in the image which corresponds to an estimation of the noise within each class. 

Hence, each voxel of the volume is considered by the method as a random variable within a Bayesian 

framework: 

(X,Y) (Y | X) (X)
(X | Y)

(Y) (Y)

P P P
P

P P
= =  (1) 

where, (X | Y)P is the probability to belong to class X knowing the observation Y. This probability is 

obtained by the product of (Y | X)P  and (X)P , corresponding to the noise model and the spatial 

model respectively. (Y | X)P  is estimated considering the statistical distribution of the voxels within 

each class, whereas (X)P  is estimated  using a sliding cube of 3x3x3 voxels, hence each voxel’s 

classification is influenced by its neighbours. The parameters to estimate are the mean and variance of 

each class and the spatial probabilities of each voxel with respect to its neighbours. This is performed 

iteratively using a stochastic version (SEM) (25) of the Expectation Maximization (EM) (26) 

initialized with K-Means (27) or Fuzzy C-Means (28). In addition, a fuzzy measure between the 
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classes was added in order to account for the blur between regions, assuming each voxel may contain a 

mixture of classes. 

 The originality of 3-FLAB relative to the previously developed binary-only FLAB (20) is the 

use of three classes and three fuzzy transitions within the model (see fig.1), to deal with both 

homogeneous and heterogeneous activity distributions. Fig.2 demonstrates the inability of FLAB to 

handle highly non-uniform activity distributions, where the lower uptake part of the lesion is 

erroneously considered as part of the background (see fig.2(b)), emphasizing the need to better model 

heterogeneous activity distributions. 3-FLAB should retain the accuracy and robustness of the original 

model, being in addition able to accurately handle challenging heterogeneous activity distributions 

frequently characterizing clinical lesions. The 3-FLAB segmentation workflow is summarized below, 

while the implementation and mathematical details can be found in the Appendix: 

(1). Initialization of both the spatial and noise models parameters. Means and variances of each 

class are obtained using the K-Means or Fuzzy C-Means. The prior probabilities are fixed at 1/3 for 

each class. 

(2). Iterative estimation using the SEM by stochastic sampling for each voxel according to its 

posterior probability. 

(3). Segmentation by selecting for each voxel the class or fuzzy level that maximizes its posterior 

probability and fusion of fuzzy levels with each hard class to generate a 2 or 3 class segmentation 

map. 

 

2.2 Alternative segmentation methodologies used for comparison 

We compared the results of the 3-FLAB algorithm with the binary FLAB approach and the Fuzzy 

C-Means (with 2 or 3 clusters) clustering introduced by Dunn (28) and used to segment PET brain 

tumours in (13), as well as an adaptive thresholding (6) (Tbckg): 

threshold mean backgroundI I Iα= × +   (2) 

meanI  was obtained by computing the mean of all voxels contained inside an initial threshold at 70% of 

the maximum and backgroundI  by computing the mean of the voxels inside a ROI manually drawn on the 
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background. meanI  and backgroundI  were subsequently used to derive a first approximation of the source-

to-background contrast. The parameter α  was optimised using phantom acquisitions on each scanner 

used to obtain the data. The adaptive thresholding algorithm was implemented using a region growing 

approach with the maximum intensity voxel as a seed and iteratively adding 3D-neighbouring voxels 

if their value was above the threshold calculated using equation (2). 

 

2.3 Validation studies 

2.3.1 Datasets 

 Dataset-1 was used to evaluate the performance of the algorithm under realistic imaging 

conditions. It consists of twenty three-dimensional simulated tumours with variable levels of irregular 

shape and homogeneous or non-homogeneous uptake distributions derived from tumours in patients 

undergoing 18F-FDG PET/CT investigations for radiotherapy treatment planning purposes. These 

images were acquired in 2D and 3D mode using the GE Discovery LS and Philips Gemini PET/CT 

scanners respectively. Three of these tumours illustrating the range of sizes, shapes and heterogeneities 

considered are shown in fig.4(a-c). The goal was to produce realistic images of PET tumours while 

retaining a voxel-based ground-truth in order to compute accurate voxel-based classification errors. 

Half of the tumours were simulated considering a homogeneous uptake distribution whereas the other 

half was simulated using significant heterogeneity within the tumour. The procedure followed to 

generate these images is illustrated in fig.3 and is detailed below. 

 Each clinical tumour is first manually delineated on the PET image by a nuclear medicine 

expert, thus creating a voxelized volume that represents the ground-truth of the simulation. The 

activity levels attributed to each of the tumour parts were derived based on the average activity 

measured in the same areas of the tumour in the corresponding patient images. This ground-truth 

tumour structure is subsequently transformed into a Non-Uniform Rational B-Splines (NURBS) 

volume via Rhinoceros
TM

 (CADLINK software), for insertion into the NCAT phantom (29) attenuation 

maps at the same approximate position as where it was located in the patient (30). No respiratory or 

cardiac motions were considered. Simulations using a model of the Philips PET/CT scanner previously 
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validated with GATE (Geant4 Application for Tomography Emission) (31) were carried out. A total of 

45 million coincidences were simulated corresponding to the statistics of a clinical acquisition over a 

single axial 18 cm field of view (31). Images were subsequently reconstructed using OPL-EM (7 

iterations, 1 subset) (31) with two different voxel sizes (4x4x4 for the Philips Gemini and 2x2x5 mm
3 

for the GE Discovery LS) in order to match those used in the corresponding clinical images.  

 Dataset-2 contains 18 images of lung tumours from patients with histologically proven Non-

Small Cell Lung Cancer (clinical Stage Ib–IIIb), acquired on the Siemens Biograph PET/CT scanner 

and reconstructed using OSEM (4 iterations, 8 subsets), with scatter and CT-based attenuation 

correction, and 5.31x5.31x5.31 mm3 voxels. These tumours were surgically extracted for a histology 

study in which their maximum diameter was measured by macroscopic examination (32). These 

diameters range from 15 to 90 mm (44+/-21). One of these tumours is shown in fig.4(d). 

 

2.3.2 Analysis 

 As our goal is not the detection of a lesion in the whole image but the accurate estimation of 

its volume and shape, we assume it has been detected and isolated by the clinician within a 3-D “box” 

well encompassing the tumour.  

Since a ground-truth was available, Classification Errors (CE) were computed. In the case of a 2-class 

ground-truth, the CE is: 

    
{ }

{ }

|
100

| 1

t t

t

card t c x
CE

card t x

≠
= ×

=
     (3) 

where, tc  is the classification of voxel t and tx  is the true class. Card is the number of elements. 

This error measurement takes into consideration the spatial distribution of the tumor by considering 

both background voxels classified as object and object voxels classified as background. Consequently 

this measure is more appropriate than simple volume estimation which could lead to overall small 

volume errors associated with largely inaccurate segmentations. In addition, the errors are computed 

relatively to the size of the object, to avoid biases relative to the size of the processing box. In the case 

of a 3-class ground-truth, CE may be computed for each of the three classes using equation (4) or with 

respect to a binarized ground-truth (2
nd

 and 3
rd

 class merged) using equation (3). 
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=
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where, CEc stands for the Classification Error associated with a given class c.  

 Two different analyses were conducted using dataset-1: The first considered the entire dataset 

(both homogeneous and heterogeneous tumours) and CE computed using equation (3), in order to 

compare overall performances of FLAB (binary only), 3-FLAB, FCM and Tbckg. The second 

considered only the ten heterogeneous tumours to compute CE2 and CE3 using equation (4) for 3-

FLAB and FCM with three clusters. 

 The segmentation accuracy on the tumours with histology (dataset-2) was assessed by 

segmenting the clinical image and subsequently measuring the maximum diameter on the segmented 

volumes, to compare it with the histology measurement. 

3. Results 

 Fig.5 contains one axial slice of the segmentations obtained on three simulated tumours of 

dataset-1 and one tumour of dataset-2. Fig.6(a) contains the mean classification errors and standard 

deviation obtained by all the methods on the 20 tumours of dataset-1. FLAB (binary only) performed 

well on homogeneous tumours but failed as expected on strongly heterogeneous lesions leading to 

overall errors of 15±11%. 3-FLAB on the other hand produced segmentation maps closer to the 

ground-truth, both visually and quantitatively, with errors between 5% and 15% (9±8%). FCM (with 2 

or 3 clusters) was competitive with respect to 3-FLAB for some tumours, but showed a higher 

variability (10-40%) and mean error (20±12%). This translated qualitatively in FCM being unable to 

differentiate two different regions within the tumour as well as being unable to detect discontinuities 

in the contours (e.g. fig.5(d), 1
st
 row). In addition, for the regions where a transition was present 

between the high uptake region and the background (e.g. fig.4(d)) the 3-FLAB approach was the only 

one giving accurate representation of this transition (fig.5(c) versus fig.5(d), last row). Tbckg was not 

able to produce satisfactory segmentation in several cases. Tumours with high overall contrast were 

approximately extracted from the background (e.g. fig.5(e), rows 2-4). However, as a binary method it 

is unable to delineate uptake distributions within the tumour. In several cases the heterogeneity was 
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significant and Tbckg lead to significant under-evaluation of the tumour volume (CE up to 60% with a 

mean of 17%±14%) as it tends to extract the high activity region or parts of the reduced uptake region 

only (e.g. fig.5(e), 1st row). 

 Fig.6(b) compares 3-FCM (using three clusters) and 3-FLAB concerning the three-class 

segmentation of the ten heterogeneous simulated tumours of dataset-1. 3-FCM is less accurate and 

robust compared to 3-FLAB especially in the case of the delineation of higher activity regions (3rd 

class), with about twice the mean error and standard deviation (24±20%) of 3-FLAB (11±8%).  

 Fig.7 contains the mean error and standard deviation with respect to the maximum diameter, 

computed on the tumour histology database (dataset-2). Whereas all methods gave relatively low mean 

errors (<-3%), the standard deviation associated with FCM and Tbckg (13% and 12% respectively) is 

about twice the one of 3-FLAB (<6%), while binary FLAB lead to almost 10% standard deviation. 

The low mean error for all these algorithms is explained by the fact that there were about the same 

amount of under- and over-estimation of the diameters in this dataset, resulting in an overall low mean 

error. The standard deviation is here a better indicator of the accuracy obtained on the dataset and 

demonstrates higher accuracy and robustness for 3-FLAB. 

4. Discussion 

 Functional volume delineation represents today an area of interest for multiple clinical (routine 

and research) applications of PET. Such areas include response to therapy studies and the use of 

biological tumour volumes in radiotherapy treatment planning. Although several fully automatic 

algorithms have been recently proposed (11-20), segmentation methodologies currently used in 

clinical practice are based on the use of fixed and adaptive thresholding (4-10). These algorithms have 

been shown to accurately determine functional volumes under specific imaging conditions of spherical 

and homogeneous activity distribution object in phantom studies, as well as been evaluated on clinical 

images where the ground-truth is unknown. In clinical practice lesions are often heterogeneous in 

shape and uptake. In order to address these issues we have extended a previously developed algorithm 

to accurately handle lesions with non-uniform uptake and non-spherical forms. In addition, we have 

proposed an evaluation framework including both realistic simulated patient lesions and histological 
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assessment of tumour diameters, allowing the evaluation of segmentation algorithms under standard 

imaging conditions with the added advantage of knowing the ground-truth.  

The inability of the adaptive thresholding considered in this study to accurately segment complex 

tumours is demonstrated by its poor performance. This is explained by the fact that in case of 

heterogeneous uptake, the 70% threshold used for the initial estimation of the tumour-to-background 

contrast may retain only the high uptake region, thus leading to incorrect contrast estimation. On the 

other hand, if the lesion is small and/or has a small contrast, the 70% threshold may lead to an initial 

overestimation of the volume of the tumour, hence an underestimation of its uptake and therefore an 

incorrect estimation of the contrast which the subsequent adaptive thresholding may not be able to 

compensate for. In addition, the background ROI is user-dependent with a potentially high impact on 

the result, especially with heterogeneous background. When such a case occurred we systematically 

selected the ROI which resulted in the lowest error. Finally, the region growing implementation avoids 

incorporating false positives of the background if they are not connected to the main tumour, 

especially when the contrast is low and/or if the background is noisy and heterogeneous. However it 

also makes the algorithm dependent on the seed location and can lead to missing parts of the tumour 

when several high uptake regions are connected by low uptake regions. FCM can produce binary or 3-

class segmentations but its robustness and accuracy are much lower compared to FLAB because it 

incorporates neither spatial correlation nor noise modeling. One advantage of the Tbckg over FCM is its 

region growing implementation that makes it less susceptible than FCM to the inclusion of high 

intensity voxels of the background. Therefore FCM usually performs poorer than Tbckg for low contrast 

lesions and noisy images but better for heterogeneous activity distributions within the tumour. On the 

other hand, 3-FLAB performed accurately even under challenging contrast, noise and heterogeneity 

conditions, with overall superior performance than the other algorithms considered here.  

The need for more than three classes may arise for heterogeneous tumours on a heterogeneous 

background. However, all the clinical tumours considered in this study were correctly delineated using 

two or three classes because the contrasts between the heterogeneities within the tumour are usually 

much higher than those occurring in the background, hence only one hard class may be sufficient to 

deal with the background whereas two are required to correctly handle the significantly different 
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uptakes occurring inside the tumour. Eventually the 3-FLAB algorithm could be extended to more 

than three classes assuming that only pairs of hard classes generate fuzzy transitions. One also has to 

keep in mind that using more classes will lead to smaller regions, but those regions within the tumor 

will subsequently be used for quantification or radiotherapy dose boosting and/or painting and should 

therefore be kept reasonably large. The potential impact of using three classes proposed by 3-FLAB 

should therefore be investigated before more complex segmentations using additional classes can be 

considered.  

 We have already demonstrated that FLAB performs well for small lesions down to 13 mm in 

diameter (20) and this study was not designed to specifically investigate the ability of 3-FLAB to deal 

with small tumours since these rarely exhibit heterogeneous uptake that can be detected on the PET 

image considering the existing resolution limits. 3-FLAB retains all the characteristics of FLAB but 

adds the ability to consider a third class and therefore handle non-uniform lesion activity distributions. 

Thus 3-FLAB does not as such improve the delineation of small (<2cm) lesions. However the 

higher/lower uptake regions within the larger tumours are often of small size comparable to that of 

small lesions, with PVE affecting them with respect to their “background” which is in fact the other 

part of the tumour with different uptake. As fig.6(b) demonstrates 3-FLAB is capable to accurately 

segment these regions. 

 An application that could greatly benefit from the use of FLAB is radiotherapy treatment 

planning (33). It is now acknowledged that planning based on PET/CT volumes improves tumour 

delineation by reducing inter- and intra-observer variability (32,34). It can also lead to the inclusion of 

regions not visible on CT, or the exclusion of regions without significant uptake (35). Using the 3-

FLAB algorithm could help lower the inter- and intra-observer variability , as well as shorten the 

overall time consuming delineation process associated with currently implemented algorithms 

considering the need of multiple phantom studies for the use of adaptive thresholding. 3-FLAB takes a 

few seconds per iteration even for the largest tumours considered in this study (on a single 2Ghz core 

processor in C++ implementation).Secondly, “dose painting” can be facilitated considering the non-

binary nature of the proposed segmentation, allowing the automatic definition of ROIs inside the 

tumour, for example in dose escalation studies (36), in addition to the external contour information for 
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optimized dosimetry, potentially reducing the dose delivered to healthy surrounding tissues and 

organs. The impact of such improved accuracy on overall patient’s outcome remains to be 

demonstrated in clinical studies which are planned for the future. Finally, FLAB robustness with 

respect to the noise characteristics associated with the use of different scanners, acquisition protocols 

and reconstruction algorithms have been demonstrated in a preliminary study (24) and should allow its 

use with any type of PET images without the need of time consuming pre-processing optimization.    

 The proposed algorithm may also have an impact in diagnosis and therapy response 

assessment when combined with PVE correction (PVC) for accurate quantification. Considering 

different PVC approaches, anatomical information from MRI or CT is used to improve the 

quantitative and qualitative accuracy of functional images (37,38). Unfortunately, when no anatomical 

image is available or no correlation exists between the anatomical and functional structures, such 

approaches cannot be easily used (3). This is especially true in the case of large heterogeneous 

tumours for which there is little to no correlation between the anatomical and functional information. 

A potential solution will be the use of the FLAB result instead of the anatomical image in combination 

with one of the previously proposed PVC algorithms. This should lead to improved contrast at the 

object’s borders as well as improved quantification in the regions within the tumour. Such 

combination recently demonstrated encouraging results (39) and warrants further investigation in 

terms of the potential impact in clinical therapy response studies. 

 

5. Conclusion 

 A modified version of the FLAB algorithm has been developed in order to include the 

estimation of three hard classes and three fuzzy transitions. This automatic approach combines 

statistical and fuzzy modeling in order to address specific issues such as noise and PVE associated 

with 3D PET images. Its accuracy has been assessed on both simulated and clinical images of complex 

shapes, containing inhomogeneous activities and small regions. The results demonstrate the ability 3-

FLAB to accurately delineate such lesions, for which threshold-based methodologies suggested until 

now fail.  
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Figure Captions 

Figure 1: The fuzzy scheme in the 3-FLAB implementation. 

Figure 2: Binary FLAB model applied to a heterogeneous simulated tumour (a). The segmentation 

result (b) clearly misses parts of the tumour. 

Figure 3: The simulation of realistic PET images. 

Figure 4: Datasets illustration. (a-d) Examples of clinical tumours (up) with CT (left) and PET (right), 

and the corresponding simulated PET (down). (a)-(c) dataset-1; (d) dataset-2.  

Figure 5: Segmentations of the tumours in fig.4(a-d): (a) ground-truth; (b) PET image; (c-d) 

segmentations for (c) 3-FLAB, (d) FCM, (e) Tbckg. 

Figure 6: Mean Classification Errors and standard deviation for (a) all methodologies considering all 

twenty tumours of dataset-1, (b) 3-FLAB and 3-FCM considering 2nd and 3rd classes of the ten 

heterogeneous tumours of dataset-1. 

Figure 7: Mean errors and standard deviation for each methodology, with respect to known maximum 

diameter of dataset-2 tumours. 

 


