J. G. Barbara and K. Takeda, Quantal release at a neuronal nicotinic synapse from rat adrenal gland., Proceedings of the National Academy of Sciences, vol.93, issue.18, pp.9905-9909, 1996.
DOI : 10.1073/pnas.93.18.9905

C. L. Brumwell, J. L. Johnson, J. , and M. H. , Extrasynaptic alpha 7-nicotinic acetylcholine receptor expression in developing neurons is regulated by inputs, targets, and activity, J. Neurosci, vol.22, pp.8101-8109, 2002.

J. Buttigieg, S. Brown, A. C. Holloway, and C. A. Nurse, Chronic Nicotine Blunts Hypoxic Sensitivity in Perinatal Rat Adrenal Chromaffin Cells via Upregulation of KATP Channels: Role of ??7 Nicotinic Acetylcholine Receptor and Hypoxia-Inducible Factor-2??, Journal of Neuroscience, vol.29, issue.22, pp.7137-7147, 2009.
DOI : 10.1523/JNEUROSCI.0544-09.2009

V. Carabelli, A. Marcantoni, V. Comunanza, A. De-luca, J. Díaz et al., T-type channels and low-threshold catecholamine secretion in rat chromaffin cells, The Journal of Physiology, vol.274, issue.1, pp.149-165, 2007.
DOI : 10.1113/jphysiol.2007.132274

Q. Chang and R. J. Balice-gordon, Gap junctional communication among developing and injured motor neurons, Brain Research Reviews, vol.32, issue.1, pp.242-249, 2000.
DOI : 10.1016/S0165-0173(99)00085-5

C. Colomer, C. Lafont, and N. C. Guérineau, Stress-induced Intercellular Communication Remodeling in the Rat Adrenal Medulla, Annals of the New York Academy of Sciences, vol.307, issue.1, pp.106-111, 2008.
DOI : 10.1196/annals.1410.040

C. Colomer, M. G. Desarménien, and N. C. Guérineau, Revisiting the Stimulus-Secretion Coupling in the Adrenal Medulla: Role of Gap Junction-Mediated Intercellular Communication, Molecular Neurobiology, vol.44, issue.Suppl, pp.87-100, 2009.
DOI : 10.1007/s12035-009-8073-0

URL : https://hal.archives-ouvertes.fr/inserm-00398108

C. Colomer, L. A. Olivos-oré, A. Vincent, J. M. Mcintosh, A. R. Artalejo et al., Functional characterization of alpha9-containing cholinergic nicotinic 15, 2010.

S. Daikoku, M. Kinutani, and M. Sako, Development of the adrenal medullary cells in rats with reference to synaptogenesis, Cell Tissue Res, vol.179, pp.77-86, 1977.

A. M. De-diego, L. Gandía, and A. G. García, A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla, Acta Physiologica, vol.270, issue.Pt 1, pp.287-301, 2008.
DOI : 10.1111/j.1748-1716.2007.01807.x

R. Del-toro, K. L. Levitsky, J. López-barneo, and M. D. Chiara, Induction of T-type Calcium Channel Gene Expression by Chronic Hypoxia, Journal of Biological Chemistry, vol.278, issue.25, pp.22316-22324, 2003.
DOI : 10.1074/jbc.M212576200

W. W. Douglas, Stimulus-secretion coupling: the concept and clues from chromaffin and other cells, British Journal of Pharmacology, vol.90, issue.suppl. 228, pp.451-474, 1968.
DOI : 10.1111/j.1476-5381.1968.tb08474.x

C. A. Ducsay, K. Hyatt, M. Mlynarczyk, B. K. Root, K. M. Kaushal et al., Long-term hypoxia modulates expression of key genes regulating adrenomedullary function in the late gestation ovine fetus, AJP: Regulatory, Integrative and Comparative Physiology, vol.293, issue.5, pp.1997-2005, 2007.
DOI : 10.1152/ajpregu.00313.2007

M. García-fernández, R. Mejías, and J. López-barneo, Developmental changes of chromaffin cell secretory response to hypoxia studied in thin adrenal slices. Pflügers Arch, pp.93-100, 2007.

D. S. Goldstein and I. J. Kopin, Evolution of concepts of stress, Stress, vol.247, issue.2, pp.109-120, 2007.
DOI : 10.1172/JCI109429

C. Hamelink, O. Tjurmina, R. Damadzic, W. S. Young, E. Weihe et al., Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis, Proc. Natl, 2002.
DOI : 10.1073/pnas.012608999

M. Inoue, K. Harada, H. Matsuoka, T. Sata, and A. Warashina, Inhibition of TASK1-like channels by muscarinic receptor stimulation in rat adrenal medullary cells, Journal of Neurochemistry, vol.16, pp.1804-1814, 2008.
DOI : 10.1111/j.1471-4159.2008.05521.x

K. Kandler and L. C. Katz, Neuronal coupling and uncoupling in the developing nervous system, Current Opinion in Neurobiology, vol.5, issue.1, pp.98-105, 1995.
DOI : 10.1016/0959-4388(95)80093-X

B. A. Kuri, S. A. Chan, and C. B. Smith, PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway, Journal of Neurochemistry, vol.182, issue.Pt 2, pp.1214-1225, 2009.
DOI : 10.1111/j.1471-4159.2009.06206.x

R. Kvetnansky, C. L. Sun, C. R. Lake, N. Thoa, T. Torda et al., Effect of Handling and Forced Immobilization on Rat Plasma Levels of Epinephrine, Norepinephrine, and Dopamine-??-Hydroxylase, Endocrinology, vol.103, issue.5, pp.1868-1874, 1978.
DOI : 10.1210/endo-103-5-1868

R. Kvetnansky, E. L. Sabban, and M. Palkovits, Catecholaminergic Systems in Stress: Structural and Molecular Genetic Approaches, Physiological Reviews, vol.89, issue.2, pp.535-606, 2009.
DOI : 10.1152/physrev.00042.2006

A. F. Lau, W. E. Kurata, M. Y. Kanemitsu, L. W. Loo, B. J. Warn-cramer et al., Regulation of connexin43 function by activated tyrosine protein kinases, Journal of Bioenergetics and Biomembranes, vol.6, issue.4, pp.359-668, 1996.
DOI : 10.1007/BF02110112

K. Lee, A. Ito, K. Koshimura, T. Ohue, Y. Takagi et al., Differential Effects of Hypoxia on Ligand Binding Properties of Nicotinic and Muscarinic Acetylcholine Receptors on Cultured Bovine Adrenal Chromaffin Cells, Journal of Neurochemistry, vol.64, issue.2, pp.874-882, 1995.
DOI : 10.1046/j.1471-4159.1995.64020874.x

K. L. Levitsky and J. López-barneo, channel expression and its role in rat chromaffin cell responsiveness to acute hypoxia, The Journal of Physiology, vol.15, issue.9, pp.1917-1929, 2009.
DOI : 10.1113/jphysiol.2009.168989

A. O. Martin, M. Mathieu, C. Chevillard, and N. C. Guérineau, Gap junctions mediate electrical signaling and ensuing cytosolic Ca 2+ increases between chromaffin cells in adrenal slices: a role in catecholamine release, J. Neurosci, vol.21, pp.5397-5405, 2001.

A. O. Martin, M. Mathieu, and N. C. Guérineau, Evidence for long-lasting cholinergic control of gap junctional communication between adrenal chromaffin cells, J. Neurosci, vol.23, pp.3669-3678, 2003.

A. O. Martin, G. Alonso, and N. C. Guérineau, Agrin mediates a rapid switch from electrical coupling to chemical neurotransmission during synaptogenesis, The Journal of Cell Biology, vol.9, issue.3, pp.503-514, 2005.
DOI : 10.1074/jbc.M309652200

URL : https://hal.archives-ouvertes.fr/hal-00017507

G. Z. Mentis, E. Diaz, L. B. Moran, and R. Navarrete, Increased incidence of gap junctional coupling between spinal motoneurones following transient blockade of NMDA receptors in neonatal rats, The Journal of Physiology, vol.10, issue.98P, pp.757-764, 2002.
DOI : 10.1113/jphysiol.2002.028159

A. M. Muñoz-cabello, J. J. Toledo-aral, J. López-barneo, and M. Echevarría, Rat Adrenal Chromaffin Cells Are Neonatal CO2 Sensors, Journal of Neuroscience, vol.25, issue.28, pp.6631-6640, 2005.
DOI : 10.1523/JNEUROSCI.1139-05.2005

C. A. Nurse, J. Buttigieg, R. Thompson, M. Zhang, C. et al., Oxygen Sensing in Neuroepithelial and Adrenal Chromaffin Cells, Novartis Found. Symp, vol.272, pp.106-114, 2006.
DOI : 10.1002/9780470035009.ch9

C. A. Nurse, J. Buttigieg, S. Brown, and A. C. Holloway, Regulation of Oxygen Sensitivity in Adrenal Chromaffin Cells, Annals of the New York Academy of Sciences, vol.29, issue.1, pp.132-139, 2009.
DOI : 10.1111/j.1749-6632.2009.05031.x

L. Olivos and A. R. Artalejo, Muscarinic excitation-secretion coupling in chromaffin cells, Acta Physiologica, vol.424, issue.2, pp.213-220, 2008.
DOI : 10.1111/j.1748-1716.2007.01816.x

Y. Oomori, Y. Habara, and T. Kanno, Muscarinic and nicotinic receptor-mediated Ca 2+ dynamics in rat adrenal chromaffin cells during development, Cell and Tissue Research, vol.294, issue.1, pp.109-123, 1998.
DOI : 10.1007/s004410051161

T. L. Parker, W. K. Kesse, A. Tomlinson, C. , and R. E. , Ontogenesis of preganglionic sympathetic innervation of rat adrenal chromaffin cells, p.18, 1988.

F. Sala, A. Nistri, and M. Criado, Nicotinic acetylcholine receptors of adrenal chromaffin cells, Acta Physiologica, vol.425, issue.Pt 3, pp.203-212, 2008.
DOI : 10.1111/j.1748-1716.2007.01804.x

F. J. Seidler and T. A. Slotkin, Adrenomedullary function in the neonatal rat: responses to acute hypoxia., The Journal of Physiology, vol.358, issue.1, pp.1-16, 1985.
DOI : 10.1113/jphysiol.1985.sp015536

T. A. Slotkin, Development of the Sympathoadrenal Axis, Developmental Neurobiology of the Autonomic Nervous System, pp.69-96, 1986.
DOI : 10.1007/978-1-59259-459-7_3

D. Souvannakitti, B. Kuri, G. Yuan, A. Pawar, G. K. Kumar et al., Neonatal intermittent hypoxia impairs neuronal nicotinic receptor expression and function in adrenal chromaffin cells, AJP: Cell Physiology, vol.299, issue.2, pp.381-388, 2010.
DOI : 10.1152/ajpcell.00530.2009

D. C. Spray and M. V. Bennett, Physiology and Pharmacology of Gap Junctions, Annual Review of Physiology, vol.47, issue.1, 1985.
DOI : 10.1146/annurev.ph.47.030185.001433

N. Stroth and L. E. Eiden, Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling, Neuroscience, vol.165, issue.4, pp.1025-1030, 2010.
DOI : 10.1016/j.neuroscience.2009.11.023

T. C. Tai, R. Claycomb, S. Her, A. K. Bloom, and D. L. Wong, Glucocorticoid Responsiveness of the Rat Phenylethanolamine N-Methyltransferase Gene, Molecular Pharmacology, vol.61, issue.6, pp.1385-1392, 2002.
DOI : 10.1124/mol.61.6.1385

R. J. Thompson, A. Jackson, and C. A. Nurse, Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells., The Journal of Physiology, vol.498, issue.2, pp.503-510, 1997.
DOI : 10.1113/jphysiol.1997.sp021876

R. J. Thompson, J. Buttigieg, M. Zhang, and C. A. Nurse, A rotenone-sensitive site and H2O2 are key components of hypoxia-sensing in neonatal rat adrenomedullary chromaffin cells, Neuroscience, vol.145, issue.1, pp.130-141, 2007.
DOI : 10.1016/j.neuroscience.2006.11.040

B. L. Upham and J. E. Trosko, Oxidative-Dependent Integration of Signal Transduction with Intercellular Gap Junctional Communication in the Control of Gene Expression, Antioxidants & Redox Signaling, vol.11, issue.2, pp.297-307, 2009.
DOI : 10.1089/ars.2008.2146

A. R. Wakade, Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland., The Journal of Physiology, vol.313, issue.1, pp.463-480, 1981.
DOI : 10.1113/jphysiol.1981.sp013676

A. R. Wakade and T. D. Wakade, Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine, Neuroscience, vol.10, issue.3, pp.973-978, 1983.
DOI : 10.1016/0306-4522(83)90235-X

B. G. Wallace, Z. Qu, and R. L. Huganir, Agrin induces phosphorylation of the nicotinic acetylcholine receptor, Neuron, vol.6, issue.6, pp.869-878, 1991.
DOI : 10.1016/0896-6273(91)90227-Q