S. Schreiber, P. Rosenstiel, M. Albrecht, J. Hampe, and M. Krawczak, Genetics of Crohn disease, an archetypal inflammatory barrier disease, Nature Reviews Genetics, vol.19, issue.5, pp.376-88, 2005.
DOI : 10.1038/nrg1607

S. Kugathasan and D. Amre, Inflammatory Bowel Disease???Environmental Modification and Genetic Determinants, Pediatric Clinics of North America, vol.53, issue.4, pp.727-776, 2006.
DOI : 10.1016/j.pcl.2006.05.009

L. Liu, Y. Li, and T. Tollefsbol, Gene-environment interactions and epigenetic basis of human diseases, Curr Issues Mol Biol, vol.10, pp.25-36, 2008.

G. Bouma and W. Strober, The immunological and genetic basis of inflammatory bowel disease, Nature Reviews Immunology, vol.3, issue.7, pp.521-554, 2003.
DOI : 10.1038/nri1132

R. Farmer, K. Easley, and G. Rankin, Clinical patterns, natural history, and progression of ulcerative colitis, Digestive Diseases and Sciences, vol.325, issue.S144, pp.1137-1183, 1993.
DOI : 10.1007/BF01295733

P. Rutgeerts, K. Geboes, G. Vantrappen, J. Beyls, and R. Kerremans, Predictability of the postoperative course of Crohn's disease, Gastroenterology, vol.99, issue.4, pp.956-63, 1990.
DOI : 10.1016/0016-5085(90)90613-6

A. Kaser, A. Lee, A. Franke, J. Glickman, and S. Zeissig, XBP1 Links ER Stress to Intestinal Inflammation and Confers Genetic Risk for Human Inflammatory Bowel Disease, Cell, vol.134, issue.5, pp.743-56, 2008.
DOI : 10.1016/j.cell.2008.07.021

S. Ahn, Y. Shah, J. Inoue, K. Morimura, and I. Kim, Hepatocyte nuclear factor 4?? in the intestinal epithelial cells protects against inflammatory bowel disease, Inflammatory Bowel Diseases, vol.14, issue.7, pp.908-928, 2008.
DOI : 10.1002/ibd.20413

P. Paavola-sakki, V. Ollikainen, T. Helio, L. Halme, and U. Turunen, Genome-wide search in Finnish families with inflammatory bowel disease provides evidence for novel susceptibility loci, European Journal of Human Genetics, vol.11, issue.2, pp.112-132, 2003.
DOI : 10.1038/sj.ejhg.5200936

S. Vermeire and P. Rutgeerts, Current status of genetics research in inflammatory bowel disease, Genes and Immunity, vol.99, pp.637-682, 2005.
DOI : 10.1038/sj.gene.6364257

J. Barrett, S. Hansoul, D. Nicolae, J. Cho, and R. Duerr, Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease, Nature Genetics, vol.179, issue.8, pp.955-62, 2008.
DOI : 10.1021/bi060570x

A. Franke, T. Balschun, T. Karlsen, J. Hedderich, and S. May, Replication of signals from recent studies of Crohn's disease identifies previously unknown disease loci for ulcerative colitis, Nature Genetics, vol.447, issue.6, pp.713-718, 2008.
DOI : 10.1038/ng2068

A. Franke, T. Balschun, T. Karlsen, J. Sventoraityte, and S. Nikolaus, Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility, Nature Genetics, vol.289, issue.11, pp.1319-1342, 2008.
DOI : 10.1038/ng.221

S. Kugathasan, R. Baldassano, J. Bradfield, P. Sleiman, and M. Imielinski, Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease, Nature Genetics, vol.164, issue.10, pp.1211-1216, 2008.
DOI : 10.1038/nature06010

C. Mathew, New links to the pathogenesis of Crohn disease provided by genome-wide association scans, Nature Reviews Genetics, vol.437, issue.1, pp.9-14, 2008.
DOI : 10.1038/nrg2203

S. Fisher, M. Tremelling, C. Anderson, R. Gwilliam, and S. Bumpstead, Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease, Nature Genetics, vol.172, issue.6, pp.710-712, 2008.
DOI : 10.1086/511051

M. Imielinski, R. Baldassano, A. Griffiths, R. Russell, and V. Annese, Common variants at five new loci associated with early-onset inflammatory bowel disease, Nature Genetics, vol.81, issue.12, pp.1335-1375, 2009.
DOI : 10.1038/ng.489

K. Asano, T. Matsushita, J. Umeno, N. Hosono, and A. Takahashi, A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population, Nature Genetics, vol.29, issue.12, pp.1325-1334, 2009.
DOI : 10.1038/ng.482

J. Barrett, J. Lee, C. Lees, N. Prescott, and C. Anderson, Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region, Nature Genetics, vol.81, issue.12, pp.1330-1334, 2009.
DOI : 10.1038/ng.483

J. Hugot, M. Chamaillard, H. Zouali, S. Lesage, and J. Cezard, Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease, Nature, vol.411, issue.6837, pp.599-603, 2001.
DOI : 10.1038/35079107

M. Parkes, J. Barrett, N. Prescott, M. Tremelling, and C. Anderson, Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility, Nature Genetics, vol.6, issue.7, pp.830-832, 2007.
DOI : 10.1038/ng1001-223

J. Hampe, A. Franke, P. Rosenstiel, A. Till, and M. Teuber, A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1, Nature Genetics, vol.25, issue.2, pp.207-218, 2007.
DOI : 10.1038/ng1954

R. Duerr, K. Taylor, S. Brant, J. Rioux, and M. Silverberg, A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene, Science, vol.314, issue.5804, pp.1461-1464, 2006.
DOI : 10.1126/science.1135245

Y. Ogura, D. Bonen, N. Inohara, D. Nicolae, and F. Chen, A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease, Nature, vol.411, issue.6837, pp.603-609, 2001.
DOI : 10.1038/35079114

J. Cho and C. Weaver, The Genetics of Inflammatory Bowel Disease, Gastroenterology, vol.133, issue.4, pp.1327-1366, 2007.
DOI : 10.1053/j.gastro.2007.08.032

C. Noble, A. Abbas, C. J. Lees, C. Ho, and G. , Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis, Gut, vol.57, issue.10, pp.1398-405, 2008.
DOI : 10.1136/gut.2008.148395

J. Olsen, T. Gerds, J. Seidelin, C. Csillag, and J. Bjerrum, Diagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression data, Inflammatory Bowel Diseases, vol.15, issue.7, pp.1032-1040, 2009.
DOI : 10.1002/ibd.20879

T. Dooley, E. Curto, S. Reddy, R. Davis, and G. Lambert, Regulation of Gene Expression in Inflammatory Bowel Disease and Correlation with IBD Drugs, Inflammatory Bowel Diseases, vol.10, issue.1, pp.1-14, 2004.
DOI : 10.1097/00054725-200401000-00001

I. Lawrance, C. Fiocchi, and S. Chakravarti, Ulcerative colitis and Crohn's disease: distinctive gene expression profiles and novel susceptibility candidate genes, Human Molecular Genetics, vol.10, issue.5, pp.445-56, 2001.
DOI : 10.1093/hmg/10.5.445

B. Dieckgraefe, W. Stenson, J. Korzenik, P. Swanson, and C. Harrington, Analysis of mucosal gene expression in inflammatory bowel disease by parallel oligonucleotide arrays, Physiol Genomics, vol.4, pp.1-11, 2000.

C. Costello, N. Mah, R. Hasler, P. Rosenstiel, and G. Waetzig, Dissection of the Inflammatory Bowel Disease Transcriptome Using Genome-Wide cDNA Microarrays, PLoS Medicine, vol.272, issue.8, p.199, 2005.
DOI : 10.1371/journal.pmed.0020199.st002

P. Von-stein, R. Lofberg, N. Kuznetsov, A. Gielen, and J. Persson, Multigene Analysis Can Discriminate Between Ulcerative Colitis, Crohn's Disease, and Irritable Bowel Syndrome, Gastroenterology, vol.134, issue.7, pp.1869-81, 2008.
DOI : 10.1053/j.gastro.2008.02.083

J. Doench and P. Sharp, Specificity of microRNA target selection in translational repression, Genes & Development, vol.18, issue.5, pp.504-515, 2004.
DOI : 10.1101/gad.1184404

A. Flynt and E. Lai, Biological principles of microRNA-mediated regulation: shared themes amid diversity, Nature Reviews Genetics, vol.8, issue.11, pp.831-873, 2008.
DOI : 10.1038/nrg2455

L. Wu, J. Fan, and J. Belasco, MicroRNAs direct rapid deadenylation of mRNA, Proceedings of the National Academy of Sciences, vol.103, issue.11, pp.4034-4043, 2006.
DOI : 10.1073/pnas.0510928103

W. Filipowicz, S. Bhattacharyya, and N. Sonenberg, Mechanisms of posttranscriptional regulation by microRNAs: are the answers in sight, Nat Rev Genet, vol.9, pp.102-116, 2008.

B. Reinhart, F. Slack, M. Basson, A. Pasquinelli, and J. Bettinger, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, vol.403, pp.901-907, 2000.

E. Miska, How microRNAs control cell division, differentiation and death, Current Opinion in Genetics & Development, vol.15, issue.5, pp.563-571, 2005.
DOI : 10.1016/j.gde.2005.08.005

M. Kapsimali, W. Kloosterman, E. De-bruijn, F. Rosa, and R. Plasterk, MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system, Genome Biology, vol.8, issue.8, p.173, 2007.
DOI : 10.1186/gb-2007-8-8-r173

URL : https://hal.archives-ouvertes.fr/hal-00325265

J. Lu, G. Getz, E. Miska, E. Alvarez-saavedra, and J. Lamb, MicroRNA expression profiles classify human cancers, Nature, vol.1, issue.7043, pp.834-842, 2005.
DOI : 10.1016/S1535-6108(02)00018-1

G. Calin and C. Croce, MicroRNA signatures in human cancers, Nature Reviews Cancer, vol.59, issue.11, pp.857-66, 2006.
DOI : 10.1677/erc.1.01209

S. Volinia, G. Calin, C. Liu, S. Ambs, and A. Cimmino, A microRNA expression signature of human solid tumors defines cancer gene targets, Proceedings of the National Academy of Sciences, vol.103, issue.7, pp.2257-61, 2006.
DOI : 10.1073/pnas.0510565103

E. Bandres, E. Cubedo, X. Agirre, R. Malumbres, and R. Zarate, Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues, Molecular Cancer, vol.5, issue.1, p.29, 2006.
DOI : 10.1186/1476-4598-5-29

J. Cummins, Y. He, R. Leary, R. Pagliarini, L. Diaz et al., The colorectal microRNAome, Proceedings of the National Academy of Sciences, vol.103, issue.10, pp.3687-92, 2006.
DOI : 10.1073/pnas.0511155103

W. Kloosterman, A. Lagendijk, R. Ketting, J. Moulton, and R. Plasterk, Targeted Inhibition of miRNA Maturation with Morpholinos Reveals a Role for miR-375 in Pancreatic Islet Development, PLoS Biology, vol.3, issue.8, p.203, 2007.
DOI : 10.1371/journal.pbio.0050203.st002

I. Eisenberg, A. Eran, I. Nishino, M. Moggio, and C. Lamperti, Distinctive patterns of microRNA expression in primary muscular disorders, Proceedings of the National Academy of Sciences, vol.104, issue.43, pp.17016-17037, 2007.
DOI : 10.1073/pnas.0708115104

O. Connell, R. Taganov, K. Boldin, M. Cheng, G. Baltimore et al., MicroRNA-155 is induced during the macrophage inflammatory response, Proceedings of the National Academy of Sciences, vol.104, issue.5, pp.1604-1613, 2007.
DOI : 10.1073/pnas.0610731104

S. Moschos, A. Williams, M. Perry, M. Birrell, and M. Belvisi, Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids, BMC Genomics, vol.8, issue.1, p.240, 2007.
DOI : 10.1186/1471-2164-8-240

E. Sonkoly, M. Stahle, and A. Pivarcsi, MicroRNAs: novel regulators in skin inflammation, Clinical and Experimental Dermatology, vol.179, issue.3, pp.312-317, 2008.
DOI : 10.1073/pnas.0605298103

E. Sonkoly and A. Pivarcsi, Advances in microRNAs: implications for immunity and inflammatory diseases, Journal of Cellular and Molecular Medicine, vol.316, issue.1, pp.24-38, 2009.
DOI : 10.1111/j.1582-4934.2008.00534.x

F. Wu, M. Zikusoka, A. Trindade, T. Dassopoulos, and M. Harris, MicroRNAs Are Differentially Expressed in Ulcerative Colitis and Alter Expression of Macrophage Inflammatory Peptide-2??, Gastroenterology, vol.135, issue.5, pp.1624-1659, 2008.
DOI : 10.1053/j.gastro.2008.07.068

M. Allez, V. Tieng, A. Nakazawa, X. Treton, and V. Pacault, CD4+NKG2D+ T Cells in Crohn???s Disease Mediate Inflammatory and Cytotoxic Responses Through MICA Interactions, Gastroenterology, vol.132, issue.7, pp.2346-58, 2007.
DOI : 10.1053/j.gastro.2007.03.025

D. Bonen and J. Cho, The genetics of inflammatory bowel disease, Gastroenterology, vol.124, issue.2, pp.521-557, 2003.
DOI : 10.1053/gast.2003.50045

J. Van-limbergen, R. Russell, E. Nimmo, and J. Satsangi, The Genetics of Inflammatory Bowel Disease, The American Journal of Gastroenterology, vol.11, issue.12, pp.2820-2851, 2007.
DOI : 10.1111/j.1365-2036.2005.02635.x

J. Van-limbergen, D. Wilson, and J. Satsangi, The Genetics of Crohn's Disease, Annual Review of Genomics and Human Genetics, vol.10, issue.1, pp.89-116, 2009.
DOI : 10.1146/annurev-genom-082908-150013

H. Xu, I. Cheung, H. Guo, and N. Cheung, MicroRNA miR-29 Modulates Expression of Immunoinhibitory Molecule B7-H3: Potential Implications for Immune Based Therapy of Human Solid Tumors, Cancer Research, vol.69, issue.15, pp.6275-81, 2009.
DOI : 10.1158/0008-5472.CAN-08-4517

J. Kota, R. Chivukula, O. Donnell, K. Wentzel, E. Montgomery et al., Therapeutic microRNA Delivery Suppresses Tumorigenesis in a Murine Liver Cancer Model, Cell, vol.137, issue.6, pp.1005-1022, 2009.
DOI : 10.1016/j.cell.2009.04.021

R. Flavin, P. Smyth, C. Barrett, S. Russell, and H. Wen, miR-29b Expression Is Associated With Disease-Free Survival in Patients With Ovarian Serous Carcinoma, International Journal of Gynecological Cancer, vol.158, issue.4, pp.641-648, 2009.
DOI : 10.1111/IGC.0b013e3181a48cf9

S. Sander, L. Bullinger, and T. Wirth, Repressing the repressor: A new mode of MYC action in lymphomagenesis, Cell Cycle, vol.8, issue.4, pp.556-565, 2009.
DOI : 10.4161/cc.8.4.7599

L. Yan, X. Huang, Q. Shao, M. Huang, and L. Deng, MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis, RNA, vol.14, issue.11, pp.2348-60, 2008.
DOI : 10.1261/rna.1034808

E. Ferretti, D. Smaele, E. Miele, E. Laneve, P. Po et al., Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells, The EMBO Journal, vol.61, issue.19, pp.2616-2643, 2008.
DOI : 10.1016/S0892-0362(98)00048-8

C. Gebeshuber, K. Zatloukal, and J. Martinez, miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis, EMBO reports, vol.14, issue.4, pp.400-405, 2009.
DOI : 10.1016/j.devcel.2008.05.009

A. Musiyenko, V. Bitko, and S. Barik, Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells, Journal of Molecular Medicine, vol.12, issue.3, pp.313-335, 2008.
DOI : 10.1007/s00109-007-0296-9

S. Park, J. Lee, M. Ha, J. Nam, and V. Kim, miR-29 miRNAs activate p53 by targeting p85?? and CDC42, Nature Structural & Molecular Biology, vol.49, issue.1, pp.23-32, 2009.
DOI : 10.1038/nsmb.1533

Z. Li, J. Lu, M. Sun, M. S. Zhang, and H. , Distinct microRNA expression profiles in acute myeloid leukemia with common translocations, Proceedings of the National Academy of Sciences, vol.105, issue.40, pp.15535-15575, 2008.
DOI : 10.1073/pnas.0808266105

Q. Zhou, W. Souba, C. Croce, and G. Verne, MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome, Gut, vol.59, issue.6, pp.775-84, 2010.
DOI : 10.1136/gut.2009.181834

D. Hollander, Intestinal permeability, leaky gut, and intestinal disorders, Current Gastroenterology Reports, vol.102, issue.8336, pp.410-416, 1999.
DOI : 10.1007/s11894-999-0023-5

J. Lennard-jones, Classification of Inflammatory Bowel Disease, Scandinavian Journal of Gastroenterology, vol.284, issue.sup170, pp.2-6, 1989.
DOI : 10.3109/00365528909091339

R. Harvey and J. Bradshaw, A SIMPLE INDEX OF CROHN'S-DISEASE ACTIVITY, The Lancet, vol.315, issue.8167, p.514, 1980.
DOI : 10.1016/S0140-6736(80)92767-1

X. Li, F. Sutherland, and L. , Assessing disease activity and disease activity indices for inflammatory bowel disease, Current Gastroenterology Reports, vol.40, issue.6, pp.490-496, 2002.
DOI : 10.1007/s11894-002-0025-z

P. Gomes, C. Boulay, C. Smith, and G. Holdstock, Relationship between disease activity indices and colonoscopic findings in patients with colonic inflammatory bowel disease., Gut, vol.27, issue.1, pp.92-97, 1986.
DOI : 10.1136/gut.27.1.92

K. Livak and T. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???????CT Method, Methods, vol.25, issue.4, pp.402-410, 2001.
DOI : 10.1006/meth.2001.1262

S. Bustin, V. Benes, J. Garson, J. Hellemans, and J. Huggett, The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments, Clinical Chemistry, vol.55, issue.4, pp.611-633, 2009.
DOI : 10.1373/clinchem.2008.112797

M. Burns and H. Valdivia, Modelling the limit of detection in real-time quantitative PCR, European Food Research and Technology, vol.26, issue.1, pp.1513-1537, 2008.
DOI : 10.1007/s00217-007-0683-z

M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul, and E. Segal, The role of site accessibility in microRNA target recognition, Nature Genetics, vol.26, issue.10, pp.1278-84, 2007.
DOI : 10.1038/ng2135

M. Megraw, P. Sethupathy, B. Corda, and A. Hatzigeorgiou, miRGen: a database for the study of animal microRNA genomic organization and function, Nucleic Acids Research, vol.35, issue.Database, pp.149-55, 2007.
DOI : 10.1093/nar/gkl904

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. BerkeleyCalifonia, pp.281-97, 1967.

J. Tukey, Box-and-Whisker Plots. Exploratory Data Analysis, pp.39-43, 1977.