M. Chupin, Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer???s disease, NeuroImage, vol.34, issue.3, pp.996-1019, 2007.
DOI : 10.1016/j.neuroimage.2006.10.035

D. Shen, Measuring Size and Shape of the Hippocampus in MR Images Using a Deformable Shape Model, NeuroImage, vol.15, issue.2, pp.422-456, 2002.
DOI : 10.1006/nimg.2001.0987

S. Hu and D. L. Collins, Joint level-set shape modeling and appearance modeling for brain structure segmentation, NeuroImage, vol.36, issue.3, pp.672-83, 2007.
DOI : 10.1016/j.neuroimage.2006.12.048

S. Duchesne, J. Pruessner, and D. L. Collins, Appearance-Based Segmentation of Medial Temporal Lobe Structures, NeuroImage, vol.17, issue.2, pp.515-546, 2002.
DOI : 10.1006/nimg.2002.1188

J. Barnes, A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus, NeuroImage, vol.40, issue.4, pp.1655-71, 2008.
DOI : 10.1016/j.neuroimage.2008.01.012

R. A. Heckemann, Automatic anatomical brain MRI segmentation combining label propagation and decision fusion, NeuroImage, vol.33, issue.1, pp.115-141, 2006.
DOI : 10.1016/j.neuroimage.2006.05.061

P. Aljabar, Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy, NeuroImage, vol.46, issue.3, pp.726-764, 2009.
DOI : 10.1016/j.neuroimage.2009.02.018

A. Hammers, Automatic detection and quantification of hippocampal atrophy on MRI in temporal lobe epilepsy: A proof-of-principle study, NeuroImage, vol.36, issue.1, pp.38-47, 2007.
DOI : 10.1016/j.neuroimage.2007.02.031

D. Collins and J. Pruessner, Towards Accurate, Automatic Segmentation of the Hippocampus and Amygdala from MRI, in Medical Image Computing and Computer- Assisted Intervention ? MICCAI, pp.592-600, 2009.

J. M. Lotjonen, Fast and robust multi-atlas segmentation of brain magnetic resonance images, NeuroImage, vol.49, issue.3, pp.2352-65, 2010.
DOI : 10.1016/j.neuroimage.2009.10.026

I. S. Gousias, Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest, NeuroImage, vol.40, issue.2, pp.672-84, 2008.
DOI : 10.1016/j.neuroimage.2007.11.034

A. Buades, B. Coll, and J. M. , A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

P. Coupe, An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.425-466, 2008.
DOI : 10.1109/TMI.2007.906087

URL : https://hal.archives-ouvertes.fr/inserm-00169658

J. G. Sled, A. P. Zijdenbos, and A. C. Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, vol.17, issue.1, pp.87-97, 1998.
DOI : 10.1109/42.668698

D. L. Collins, Automatic 3-D model-based neuroanatomical segmentation, Human Brain Mapping, vol.16, issue.2, pp.190-208, 1995.
DOI : 10.1002/hbm.460030304

L. G. Nyul and J. K. Udupa, <title>Standardizing the MR image intensity scales: making MR intensities have tissue-specific meaning</title>, Medical Imaging 2000: Image Display and Visualization, pp.496-504, 2000.
DOI : 10.1117/12.383076

Z. Wang, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.
DOI : 10.1109/TIP.2003.819861