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The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in 

reciprocal social interaction and communication, and the presence of restricted and repetitive 

behaviors
1
. Individuals with an ASD vary greatly in cognitive development, which can range from 

above average to intellectual disability (ID)
2
. While ASDs are known to be highly heritable (~90%)

3
, 

the underlying genetic determinants are still largely unknown. Here, we analyzed the genome-wide 

characteristics of rare (<1% frequency) copy number variation (CNV) in ASD using dense genotyping 

arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases 

were found to carry a higher global burden of rare, genic CNVs (1.19 fold, P= 0.012), especially so for 

loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P= 3.4x10
-4

). Among 

the CNVs, there were numerous de novo and inherited events, sometimes in combination in a given 

family, implicating many novel ASD genes like SHANK2, SYNGAP1, DLGAP2 and the X-linked 

DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene-sets 

involved in cellular proliferation, projection and motility, and GTPase/Ras signaling. Our results 

reveal many new genetic and functional targets in ASD that may lead to final connected pathways.  

 

 

Twin and family studies indicate a predominantly genetic basis for ASD susceptibility and provide support 

for considering these disorders as a clinical spectrum. Some 5-15% of individuals with an ASD have an 

identifiable genetic aetiology corresponding to known rare single-gene disorders (e.g., fragile X syndrome) 

and chromosomal rearrangements (e.g., maternal duplication of 15q11-q13). Rare mutations have been 

identified in synaptic genes, including NLGN3, NLGN4X
4 
and SHANK3

5
, and microarray studies have 

revealed copy number variation (CNV) as risk factors
6
. CNV examples include de novo events observed in 

5-10% of ASD cases
7-9

, de novo or inherited hemizygous deletions and duplications of 16p11.2
9-11

 and 

NRXN1
7
, and exceptionally rare homozygous deletions in consanguineous families

12
. Genome-wide 
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association studies using single nucleotide polymorphisms (SNPs) have highlighted two potential ASD risk 

loci at 5p14.1
13 

and 5p15.2
14

, but these data suggest common variation will account for only a small 

proportion of the heritability in ASD.  

To further delineate the contribution of rare genomic variants to autism we genotyped 1,275 ASD cases 

and their parents using the Illumina Infinium 1M-single SNP-microarray (Fig.1). A set of 1,981 controls 

used for comparison studies was genotyped on the same platform
15

 and both data sets were subjected to the 

same quality control (QC) procedures. Ultimately, we analyzed 996 ASD cases (876 trios) and 1,287 

controls of European ancestry (EA) to minimize confounds due to population differences (Supplementary 

Fig. 1-2 and Supplementary Table 1)
16

.  

Two CNV prediction algorithms (QuantiSNP
17

 and iPattern (unpublished)) and additional extensive QC 

were used to establish a stringent dataset of non-redundant CNVs called by both algorithms in an individual 

(Fig. 1, Supplementary Tables 1-3 and Supplementary Fig. 3). This stringent dataset of 5,478 rare CNVs in 

996 cases and 1,287 controls of EA (Supplementary Table 4) had the following characteristics: (i) CNV 

present at <1% frequency in the total sample (cases and controls), (ii) CNV ≥30 kb in size (because >95% of 

these could be confirmed) and (iii) all CNVs further verified using combined evidence from the PennCNV 

algorithm
18

 and child-parent intensity fold-changes, genotype proportions (to verify deletions) and visual 

inspection (for chromosome-X).  

We assessed the impact of rare CNV in cases compared to controls using three primary measures of CNV 

burden: the number of CNVs per individual, the estimated CNV size, and the number of genes affected by 

CNVs (Table 1). No significant difference was found in the former two measures (Supplementary Tables 4a 

and 5), even after controlling for fine-level ancestry differences by pair-matching cases and controls 

(Supplementary Information)
16

. In contrast, we discovered a significant increase in the number of genes 

intersected by rare CNV in cases when focusing on gene-containing segments (1.19-fold increase, empirical 

P= 0.012). This ASD association with genic CNV was stronger for deletions (1.26-fold increase, empirical 

P= 8.0x10
-3

). These differences remained after we further controlled for potential case-control differences 

that could be present due to biological differences or technical biases. Restricting our analysis to autosomal 

CNVs (ie. after removing CNVs located on chromosome X) resulted in a consistent enriched gene count in 

ASD cases compared to controls. Single-occurrence CNV deletions had increased rates in ASD over 

controls, suggesting some could be pathogenic.  

We then examined parent-child transmission and confirmed that 5.7% (50/876) of ASD cases had at least 

one de novo CNV with >0.6% carrying two or more de novo events (Supplementary Tables 4a, 6 and 7). The 

de novo CNV rate in our simplex and multiplex families was 5.6% (22/393) and 5.5% (19/348), respectively, 

in contrast with previous studies showing a higher rate in simplex families
8,9

. A total of 226 validated de 
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novo (7) and inherited (219) CNVs not observed in controls and affecting single genes were found 

(Supplementary Table 8).  

Numerous novel candidate ASD loci such as SHANK2, SYNGAP1, and DLGAP2, were identified based 

on the observation that de novo CNV affects these genes in cases and not controls (Supplementary Table 6). 

The relatedness of SHANK2 to the causal ASD gene SHANK3
5
, involvement of SYNGAP1 in ID

19
, and 

interaction of DLGAP family proteins with SHANK proteins
20

 further support their role in ASDs. 

Maternally-inherited X-linked deletions at DDX53/PTCHD1 (7 cases) implicated this locus in ASD. We 

tested an additional 3,677 EA controls (Fig. 1) and again found no CNV at these genes, and 

DDX53/PTCHD1 emerged as a significant ASD risk factor (P= 3.1x10
-3

 with the initial 1,287 controls; P= 

3.6x10
-6

 with combined controls; Supplementary Fig. 4).  

Association studies of individual rare CNV often have insufficient power to discriminate benign from 

disease-causing variants. Here, we assessed whether genes and CNVs previously associated with ASD 

and/or ID were enriched in cases compared with controls, in order to help identify pathogenic events. We 

defined three gene-lists based on evidence from previous studies of their involvement in ASDs 

(Supplementary Table 9): (i) ‘ASD implicated’ list consisting of 36 disease genes and 10 loci strongly 

implicated in ASD and identified in subjects with ASD or ASD and ID; (ii) ‘ID’ consisting of 110 disease 

genes and 17 loci implicated in ID but not yet in ASD; and, (iii) ‘ASD candidates’ including 103 genes from 

previous studies of common and rare variants.  

We observed a higher proportion of cases with rare CNVs overlapping ‘ASD implicated’ disease genes 

compared to controls (4.3% versus 2.3%, Fisher exact test P= 5.4x10
-3

; Fig. 2a), corresponding to a 

significant enrichment for genes in this set (OR= 1.8; 95% CI 1.3–2.6, empirical P= 2.6x10
-3

; Fig. 2b, see 

also Supplementary Information). This effect was stronger for duplications, which may also disrupt genes 

(OR= 2.3; 95% CI 1.4–3.8, empirical P= 9.4x10
-4

). Enrichment was also found for rare CNVs overlapping 

ID genes, more notably for deletions (OR= 2.1; 95% CI 1.1–4.2, empirical P= 5.3x10
-2

). In contrast, there 

was no evidence of enrichment among case-CNVs compared to control-CNVs for genes in the ‘ASD 

candidates’ set (empirical P >0.3). When the two disease gene-sets ‘ASD implicated’ and ‘ID’ were 

combined, we observed 7.6% of cases with rare CNVs preferentially affecting ASD/ID genes compared to 

4.5% in controls (Fisher exact test P= 1.2x10
-3

, Fig.2a). The observed enrichments did not change when 

potential case-control genome-wide differences for CNV rate and size were considered.  

Our global analyses of these putative pathogenic loci use somewhat subjective boundaries for CNV 

overlap. Manual inspection of the data yields more accurate results. After eliminating CNVs that are less 

likely to have an aetiological role (heterozygous CNVs that disrupt autosomal recessive loci, events outside 

the critical region of overlap of genomic disorders, X-linked genes in females inherited from non-ASD 

fathers, duplications inherited from non-ASD parents, and intronic CNVs in NRXN1), 25 CNVs remained in 
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the ASD group, compared to only four in the controls (P= 3.6x10
-6

; Supplementary Table 10). Moreover, the 

latter four CNVs were all duplications at 1q21.1, 16p11.2 or 22q11.2, loci known to exhibit incomplete 

penetrance and variable expressivity
6
. The population attributable risk provided by the combination of all 

ASD-CNVs that overlap ASDs and/or ID genes is estimated to be 3.3% (Supplementary Table 11). We also 

identified rare de novo chromosomal abnormalities and large CNVs likely to be aetiologic (Supplementary 

Table 10).  

We then tested for functional enrichment of gene-sets among those genes affected by CNVs to identify 

biological processes involved in ASD (Fig. 3). Here, the term gene-set refers to groups of genes that share a 

common function or operate in the same pathway. Such a functional enrichment mapping approach can 

combine single-gene effects into meaningful groups
21

.  

We compiled comprehensive collections of gene-sets (Supplementary Table 12) and used the Fisher's 

exact test to assess which gene-sets were more frequently affected by rare CNV events in ASD cases 

compared to controls. An estimate of the false-discovery rate (FDR) at each gene-set was obtained by 

random permutation of case and control labels (Supplementary Information). To visualize enriched gene-

sets, overlap scores were used to graphically organize these sets into a functional enrichment map (or 

network) using Cytoscape
22

. We identified the 'seed' genes for the network at an FDR q-value of 5% and 

further relaxed the thresholds to 12.5% to better capture the network topology
23

.  

Using these criteria only deletions were found significantly enriched in gene-sets in cases over controls 

(Supplementary Fig. 5), consistent with the global burden results (Table 1). Specifically, 76 gene-sets 

affected by deletions (2.18% of sets tested) were found enriched and used to construct a functional map 

(Figure 3a, Supplementary Fig. 6-7). We tested for possible bias, including measures of CNV size and 

number for cases versus controls per gene-set, as well as genome proximity, but no differences were found 

that might explain the observed enrichments (Supplementary Fig. 8-9).  

We identified enrichments in gene-sets known to be involved in ASDs and also discovered new candidate 

ASD pathways (Fig. 3a, Supplementary Table 13). For example, gene-sets involved in cell and neuronal 

development and function (including projection, motility, and proliferation) previously reported in ASD-

associated phenotypes, were identified
24

. Novel observations included gene-sets involved in GTPase/Ras 

signaling, with component Rho GTPases known to be involved in regulating dendrite and spine plasticity 

and associated with ID. We also found a tentative link to sets in the kinase activity/regulation functional 

group where only minorities of these sets meet a stringent 5% FDR q-value threshold (Supplementary Fig. 

10).  

We further assessed the relationship of our functional enrichment map with known ASD/ID genes (Fig. 

3b, Supplementary Fig. 11) and found genes enriched in sets linked to microtubule cytoskeleton, 

glycosylation and CNS development/adhesion
25

. The two groups of genes found enriched in deletions (Fig. 
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3a) also displayed connectivity to the ASD/ID disease gene-sets, either directly or through intermediates (Fig 

3b, Supplementary Fig. 12). Although ASD genes appear to be enriched in different subsets of genes 

compared to ID-only genes, we cannot discount the possibility that this is the result of selection bias, and we 

expect that more ID genes may yet be linked to ASD.  

Our findings provide strong support for the involvement of multiple rare genic CNVs, both genome-wide 

and at specific loci, in ASD. These findings, similar to those recently described in schizophrenia
26

, suggest 

that at least some of these ASD-CNVs (and the genes that they affect) are under purifying selection
27

. Genes 

previously implicated in ASD by rare variant findings have pointed to functional themes in ASD 

pathophysiology
6,28

. Molecules such as NRXN1, NLGN3/4X and SHANK3, localized presynaptically or at 

the post-synaptic density (PSD), highlight maturation and function of glutamatergic synapses. Our data 

reveal SHANK2, SYNGAP1 and DLGAP2 as new ASD loci, which also encode proteins in the PSD. We also 

found ID genes to be important in ASD
29

. Furthermore, our functional enrichment map identifies new groups 

such as GTPase/Ras, effectively expanding both the number and connectivity of modules that may be 

involved in ASD. The next steps will be to relate defects or patterns of alterations in these groups to ASD 

endophenotypes. The combined identification of higher-penetrance rare variants and new biological 

pathways, including those identified in this study, may broaden the targets amenable to genetic testing and 

therapeutic intervention.  

 

Methods Summary  

Cases were classified using the Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic 

Observation Schedule (ADOS) instruments and those with known karyotypic abnormalities or genetic 

disorders were excluded. Informed consent was obtained from all families and procedures had approval from 

institutional review boards. DNA was obtained from blood or buccal-swabs (73% of cases; 75% of controls) 

or cell-lines (22% of cases; 25% of controls) (in 5% of cases the DNA source was not identified). The 1,287 

EA controls passing all QC-filters included 1,261 individuals recruited as controls for the study of addiction 

(SAGE)
15

 and 26 HapMap samples (from Illumina). An additional 3,677 EA controls from three separate 

studies genotyped on other platforms were also used. Raw data from ASD family (Accession pending) and 

SAGE control (Accession: phs000092.v1.p1) genotyping are at NCBI dbGAP. CNVs were analysed using 

PLINK v1.07
30

, R stats and custom scripts. Primary analyses were robust to potential systematic 

measurement differences between cases and controls; it was not possible to control for site but we controlled 

for the overall extent and number of CNVs for all burden comparisons, and obtained a consistent enriched 

gene count in ASD cases compared to controls.  
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Figure 1: CNV discovery and characterization. Comprehensive procedures were used to identify the rare CNV 

dataset (boxed). Dashed arrows indicate CNVs not included in downstream analyses. 
1
SNP and intensity quality control 

(QC) with ancestry estimation. 
2
QC for CNV calls. 

3
Pilot validation experiments using quantitative-PCR were used to 

evaluate the false discovery-rate. 
4
Rare CNVs in samples of EA ancestry were defined as ≥30 kb in size and present in 

the total sample set at a frequency <1%. 70/996 (17%) of ASD cases were analyzed on different lower-resolution arrays 

in previous studies
9,10,28

. 
5
All CNVs were computationally verified and at least 40% of case-CNVs were also 

experimentally validated by qPCR and/or independent Agilent or other SNP microarrays. 
6
3,677 additional EA controls 

were used to test specific loci from the primary burden analyses. Additional details are in the Methods Summary and 

Supplementary Information  
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Figure 2. CNV burden in known ASD and/or ID genes. a, Proportion of samples with CNVs overlapping genes and 

loci known to be associated in ASD with or without ID or ID only, as well as published candidate genes and loci for 

ASD (Supplementary Table 9). To select for CNVs with maximal impact, they needed to intersect genes, and overlap 

the target loci by ≥50% of their length. Fisher’s exact test P-values for significant differences (P ≤ 0.05, one tailed) are 

shown. b, enrichment analysis for genes overlapped by rare CNVs in cases compared to controls for the three gene-sets 

in panel a, relative to the whole genome. Odds ratio (OR) and 95% confidence intervals are given for each gene set. 

Empirical P-values for gene-set enrichment are indicated above each OR. All P-values <0.1 are listed.  
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Figure 3. A functional map of ASD. Enrichment results were mapped into a network of gene-sets (nodes) related by 

mutual overlap (edges), where the color (red, blue, or yellow) indicates the class of gene-set. Node size is proportional 

to the total number of genes in each set and edge thickness represents the number of overlapping genes between sets. a, 

Gene-sets enriched for deletions are shown (red) with enrichment significance (FDR q-value) represented as a node 

color gradient. Groups of functionally related gene-sets are circled and labeled (groups, solid line; sub-groups, dashed 

line). b, An expanded enrichment map shows the relationship between gene-sets enriched in deletions (panel a) and sets 

of known ASD/ID genes. Node color hue represents the class of gene-set (i.e. enriched in deletions, red; known disease 

genes (ie. ASD and/or ID genes), blue; enriched only in disease genes, yellow). Edge color represents the overlap 

between gene-sets enriched in deletions (green), from disease genes to enriched sets (blue), and between sets enriched 

in deletions and in disease genes or between disease gene-sets only (orange). The major functional groups are 

highlighted by filled circles (enriched in deletions, green; enriched in ASD/ID, blue).  


