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Abstract. In the context of high dependent environments such as inten-
sive care or operating room we would like to predict, as soon as possible,
from past and present states, the evolution of the patient’s condition.
Based on the set of physiological dat, clinicians have difficulties to formal-
ize typical high level scenes that are representative of specific patient’s
state sequences to recognize. On the other hand, signal processing algo-
rithms are limited to low level pattern detection. We propose an inter-
active environment for an in-depth exploration by the clinician of data.
We hypothesize that such human-computer collaboration could help with
the definition of signatures representative of specific situations. To test
our hypothesis, we have defined a multi-agent system (MAS) with the
capacities of 1) segmenting, 2) classifying and 3) learning. These three
tasks are continuously adapted based on interactions with the clinician.
Preliminary results are presented to support our assumption.

1 Introduction

Physiological monitors currently used in high dependency environments such as
Intensive Care Units (ICUs) or anaesthesia wards generate a false alarm rate
that approximately reaches 86% [1]. This bad score is essentially due to the fact
that alarm detection is mono-parametric and based on predefined thresholds. To
really assist clinicians in diagnosis and therapy tasks we should design intelligent
monitoring systems with capacities of predicting the evolution of the patients
state and eventually of triggering alarms in case of probable critical situations.

Several methods have been proposed for false alarm reduction based on data
processing algorithms (using trend calculation)[2, 3] or data mining techniques
[1]. In general, the methods proposed are based on two steps, first data processing
algorithms detect relevant events in time series data and secondly information
analysis techniques are used to identify well-known critical patterns. When ap-
plied to multivariate time series, these methods can be powerful if patterns to
discover are well-known in advance.

In order to predict the evolution of the patient’s state, typical high level
scenes, combination of several patterns that are representative of specific situa-
tions, have to be formalized. Unfortunately, clinicians have some difficulties in
defining such situations. We propose an interactive environment for an in-depth



exploration by the clinician of the set of physiological data. In the interactive en-
vironnement TSW, used in [4], allows to collect overall statistics. Our approach
is based on a collaborative work between a computer, which efficiently analyzes
a large set of data and classifies information, and a clinician, who has skills and
pragmatic knowledge for data interpretation and drives the computerized data
exploration. We assume that such a collaboration could facilitate the discov-
ery of signatures representative of specific situations. To test this hypothesis we
have designed a collaborative multi-agent system (MAS) with the capacities of
segmenting, classifying and learning.

2 Scenarios construction based on clinician/computer
interaction

The philosophy of the approach is the creation of a self-organized system guided
by an clinician. The system dynamically builds its own data representation for
scenario discovery. The clinician interacts with the system in introducing anno-
tations, solving ambiguous cases, or introducing specific queries. Consequently,
the system should be highly adaptive.

Data, information and knowledge are dynamically managed at several steps
during clinician/computer interactions. Data, numeric or symbolic, are repre-
sented as multivariate time series. The whole system is an experimental work-
bench. The clinician can add or delete pieces of information, explore time se-
ries by varying the time granularity, using trends computed on various sliding-
windows, and in selecting or combining appropriate levels of abstraction. Anno-
tations can be introduced by the clinician generally as binary information (for
instance, cough (0 or 1), suction (0 or 1)).

The goal of our method is to learn from time series data the more likely sce-
nario, i.e. a set of events linked by temporal constraints, that explains a specific
event. In the following, we distinguish between events, that contribute to the
description of a scenario, and specific events that are explained by scenarios.
Specific events are characterized by a decision tree that is built from “instanta-
neous” patient states described by numeric and symbolic time series data and
annotated as positive or negative examples. Then the decision tree is used to
find new occurrences of the same type of specific events. To explain the so called
specific events, scenarios are learned by the MAS (cf. section 3).

A clinician interacts with the MAS to guide the learning and be informed of
discoveries. A short example can briefly describe our method

1) Starting from time series data, the clinician annotates some SpOs desat-
uration episodes in specific regions of interest. Annotations are encoded as
binary time series data.

2) From data plus annotations, the system learns desaturation episodes, their
characteristics (a tree) and possible scenario (learned by the MAS) that
explains these episodes (specific events).

3) The system, in browsing a part of time series data, searches for similar
characteristics and scenario.



4) Based on similar characteristics, new desaturation episodes can be discov-
ered by the system. They are used as new examples for the decision tree or
if they present an atypical signature compared to others, they are shown to
the clinician for examination.

5) When similar scenarios not followed by a desaturation episode are discov-
ered, they are provided to the clinician who decides either to keep or reject
them. They are then used respectively as positive or negative examples for
the learning phase

6) The system loops to step 2 until no new scenarios or characteristics can
be discovered.

Depending on its discoveries and information provided by the clinician, the
system continuously adapts its behavior. Its complex self-organisation is masked
to the clinician who interacts with the system only via time series data.

3 A Multiagent System

MASSs present good properties to implement self-organization and reactivity to
user interactions. Our general architecture was inspired by [5]. Three data ab-
straction levels, namely segments, classes of segments and scenarios, are con-
structed in parallel with mutual and dynamic adaptations to improve the final
result. These levels are associated to a numerical, a symbolic and a semantic
level respectively.

The MAS ensures an equivalence between what we call specific events and
classes of segments. For symbolic time series, like annotations, symbols are asso-
ciated to some classes of segments. For instance, the clinician can annotate each
SpO, desaturation episode. Learning a scenario that explains this specific event
is equivalent to learning a scenario that explains occurrences of a class of seg-
ments (with the corresponding symbol) in the time series “SpOy annotations”.
Other classes of segments discovered by the system should be interpreted by the
clinician.

Three types of agents exist in the MAS. At the numerical level, reactive
agents segment time series. Each reactive agent represents a segment, i.e. a time
series region bounded by two borders with neighboring agents. Frontiers move,
disappear or are created dynamically by interactions between agents based on the
approximation error of an SVR? model of segment. Then, at the symbolic level,
classification agents build classes of segments. To compare segments, we have
defined a distance between SVR models that takes into account dilatation and
scaling. A vocabulary is then introduced to translate times series into symbolic
series.

At the semantic level, learning agents build scenarios that explain classes of
segments (or specific events for clinicians). In fact, we consider a scenario that
occurs before a specific event es as a possible explanation for e;. Consequently,
learning a scenario that explains e consists in finding common points (signa-
ture) in temporal windows preceding examples of the class of e;. To find such

3 Support Vector Regression [6]



signatures, we have adapted the algorithm presented in [7] to multivariate se-
ries inputs. This algorithm takes into account temporal constraints to aggregate
frequent relevant information and to progressively suppress noisy information.
Then, the learning agent proposes modifications (via feedback) to segmentation
and classification agents by focussing on discrepancies found between the learned
scenario and the examples. In this way, it improves its global confidence.

Interactions are the key of the self-organization capability of the system and
are used at three main levels

1) Feedback that dynamically modifies, adds or deletes segmentation agents,
thus leading to segmentation modifications.

2) Feedback that adjusts classification.

3) Improvement of the overall learning accuracy (discrimination power) by
pointing out, between learning agents, inconsistencies in the resulting asso-
ciations of scenarios and specific events.

We highlight that at the two first levels, symbolization of all series are per-
formed independently. However, learning agents use multivariate symbolic series
to build scenarios and to deliver feedback to obtain a global coherence.

4 Preliminary results

We used data from ICU patients under weaning from mechanical ventilation.
We selected four physiological signals (SpOs, Respiratory rate, Total expired
volume and heart rate) sampled at 1 Hz during at least 4 hours. Each signal was
preprocessed by computing sliding-windows means (3 min width) and was ab-
stracted by following a specific methodology [8] into symbolic values and trends.
Moreover, we used Sp0; desaturation annotations inserted at the patient’s bed-
side by a clinician. Consequently, each patient’s recordings was a multivariate
time series that contained 17 (4 * 4 + 1) long times series. Presently, the im-
plementation of our MAS is partial, feedbacks are not fully implemented. Data
acquisition is still undergoing. Thus, the quantity of data currently available is
not sufficient to ensure a robust learning.

The figure 1 displays the experimental computer’s interface to manage the
MAS. The panel A) shows the way to access to patient’s data and agents classes.
The Panel B) shows recordings for 2 patients (P1 and P2). For each one, we
display two time series “Heart Rate data” (numeric) and “SpOs Annotations”
(symbolic). Vertical bars represent frontiers of segments obtained by segmen-
tation agents. SpO, annotations are segmented in 3 (for P1) and 5 (for P2)
segments. Segmentation is not perfect especially for heart rate but will be re-
fined by feedback. In panel C), are displayed the 2 classes of segments that
classify the 8 segments (only 7 are shown) of “SpOy Annotations” time series.
In panel D) the more probable scenario that explains class 2 is indicated as a
set of events linked by temporal relations. A clinician interface should be de-
veloped to mask technical aspects of this interface and translate scenarios into
comprehensible representations.
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Fig.1. MAS interface. (see text for details)
5 Conclusion and perspectives

The system we present proposes an experimental workbench to assist clinicians
in the exploration of physiological data in poorly formalized domains such as
ICUs. The central concept of our system is to support interactions between a self-
organized MAS, with data processing, data abstraction and learning capabilities
and a clinician, who browses the provided mass of data to guide the learning
of scenarios representative of the patient’s state evolution. Preliminary results
invite us to pursue the implementation and show the necessity to reinforce the
MAS capabilities to segment, classify and learn from time series data.
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