An object-based method for Rician noise estimation in MR images.

Abstract : The estimation of the noise level in MR images is used to assess the consistency of statistical analysis or as an input parameter in some image processing techniques. Most of the existing Rician noise estimation methods are based on background statistics, and as such are sensitive to ghosting artifacts. In this paper, a new object-based method is proposed. This method is based on the adaptation of the Median Absolute Deviation (MAD) estimator in the wavelet domain for Rician noise. The adaptation for Rician noise is performed by using only the wavelet coefficients corresponding to the object and by correcting the estimation with an iterative scheme based on the SNR of the image. A quantitative validation on synthetic phantom with artefacts is presented and a new validation framework is proposed to perform quantitative validation on real data. The results show the accuracy and the robustness of the proposed method.
keyword : rician noise MRI
Document type :
Journal articles
Complete list of metadatas

Cited literature [13 references]  Display  Hide  Download

https://www.hal.inserm.fr/inserm-00515408
Contributor : Pierrick Coupé <>
Submitted on : Monday, September 6, 2010 - 6:08:01 PM
Last modification on : Thursday, February 7, 2019 - 4:19:47 PM
Long-term archiving on : Tuesday, October 23, 2012 - 3:36:58 PM

File

MICCAI09STDFinal.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Pierrick Coupé, Jose Vicente Manjon, Elias Gedamu, Douglas Arnold, Montserrat Robles, et al.. An object-based method for Rician noise estimation in MR images.. Medical image computing and computer-assisted intervention : MICCAI .. International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2009, 12 (Pt 2), pp.601-8. ⟨10.1007/978-3-642-04271-3_73⟩. ⟨inserm-00515408⟩

Share

Metrics

Record views

216

Files downloads

267