E. Vivès, P. Brodin, and B. Lebleu, A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus, Journal of Biological Chemistry, vol.272, issue.25, pp.16010-16017, 1997.
DOI : 10.1074/jbc.272.25.16010

P. M. Fischer, E. Krausz, L. , and D. P. , Cellular Delivery of Impermeable Effector Molecules in the Form of Conjugates with Peptides Capable of Mediating Membrane Translocation, Bioconjugate Chemistry, vol.12, issue.6, pp.825-841, 2001.
DOI : 10.1021/bc0155115

P. Järver, K. Langel, S. El-andaloussi, and U. Langel, Applications of cell-penetrating peptides in regulation of gene expression: Table 1, Biochemical Society Transactions, vol.35, issue.4, pp.770-774, 2007.
DOI : 10.1042/BST0350770

C. Foerg and H. P. Merkle, On The Biomedical Promise of Cell Penetrating Peptides: Limits Versus Prospects, Journal of Pharmaceutical Sciences, vol.97, issue.1, pp.144-162, 2008.
DOI : 10.1002/jps.21117

G. J. Ding, P. A. Fischer, R. C. Boltz, J. A. Schmidt, J. J. Colaianne et al., Characterization and Quantitation of NF-??B Nuclear Translocation Induced by Interleukin-1 and Tumor Necrosis Factor-??: DEVELOPMENT AND USE OF A HIGH CAPACITY FLUORESCENCE CYTOMETRIC SYSTEM, Journal of Biological Chemistry, vol.273, issue.44, pp.28897-28905, 1998.
DOI : 10.1074/jbc.273.44.28897

M. Rojas, J. P. Donahue, Z. Tan, L. , and Y. Z. , Genetic engineering of proteins with cell membrane permeability, Nature Biotechnology, vol.89, issue.4, pp.370-375, 1998.
DOI : 10.1016/0378-1119(88)90005-4

M. H. Metz-boutigue, J. Jollès, J. Mazurier, F. Schoentgen, D. Legrand et al., Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins, European Journal of Biochemistry, vol.201, issue.3, pp.659-676, 1984.
DOI : 10.1016/0968-0004(82)90183-9

URL : https://hal.archives-ouvertes.fr/hal-00484388

D. Legrand, A. Pierce, E. Elass, M. Carpentier, C. Mariller et al., Lactoferrin Structure and Functions, Adv. Exp. Med. Biol, vol.606, pp.163-194, 2008.
DOI : 10.1007/978-0-387-74087-4_6

URL : https://hal.archives-ouvertes.fr/hal-00642033

P. P. Ward, C. , and O. M. , Lactoferrin: Role in iron homeostasis and host defense against microbial infection, BioMetals, vol.17, issue.3, pp.203-208, 2004.
DOI : 10.1023/B:BIOM.0000027693.60932.26

P. Valenti and G. Antonini, Lactoferrin, Cellular and Molecular Life Sciences, vol.62, issue.22, pp.2576-2587, 2005.
DOI : 10.1007/s00018-005-5372-0

J. L. Gifford, H. N. Hunter, and H. J. Vogel, Lactoferricin, Cellular and Molecular Life Sciences, vol.62, issue.22, pp.2588-2598, 2005.
DOI : 10.1007/s00018-005-5373-z

W. Bellamy, M. Takase, K. Yamauchi, H. Wakabayashi, K. Kawase et al., Identification of the bactericidal domain of lactoferrin, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1121, issue.1-2, pp.130-136, 1992.
DOI : 10.1016/0167-4838(92)90346-F

K. Takeshima, A. Chikushi, K. K. Lee, S. Yonehara, and K. Matsuzaki, Translocation of Analogues of the Antimicrobial Peptides Magainin and Buforin across Human Cell Membranes, Journal of Biological Chemistry, vol.278, issue.2, pp.1310-1315, 2003.
DOI : 10.1074/jbc.M208762200

E. Elass-rochard, A. Roseanu, D. Legrand, M. Trif, V. Salmon et al., 055B5 lipopolysaccharide, Biochemical Journal, vol.312, issue.3, pp.839-845, 1995.
DOI : 10.1042/bj3120839

M. Kosuge, T. Takeuchi, I. Nakase, A. T. Jones, and S. Futaki, Cellular Internalization and Distribution of Arginine-Rich Peptides as a Function of Extracellular Peptide Concentration, Serum, and Plasma Membrane Associated Proteoglycans, Bioconjugate Chemistry, vol.19, issue.3, pp.656-664, 2008.
DOI : 10.1021/bc700289w

T. H. Van-kuppevelt, M. A. Dennissen, W. J. Van-venrooij, R. M. Hoet, and J. H. Veerkamp, Generation and Application of Type-specific Anti-Heparan Sulfate Antibodies Using Phage Display Technology: FURTHER EVIDENCE FOR HEPARAN SULFATE HETEROGENEITY IN THE KIDNEY, Journal of Biological Chemistry, vol.273, issue.21, pp.12960-12966, 1998.
DOI : 10.1074/jbc.273.21.12960

S. W. Provencher and J. Glöckner, Estimation of globular protein secondary structure from circular dichroism, Biochemistry, vol.20, issue.1, pp.33-37, 1981.
DOI : 10.1021/bi00504a006

I. H. Van-stokkum, H. J. Spoelder, M. Bloemendal, R. Van-grondelle, and F. C. Groen, Estimation of protein secondary structure and error analysis from circular dichroism spectra, Analytical Biochemistry, vol.191, issue.1, pp.110-118, 1990.
DOI : 10.1016/0003-2697(90)90396-Q

A. Lobley, L. Whitmore, W. , and B. A. , DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra, Bioinformatics, vol.18, issue.1, pp.211-212, 2002.
DOI : 10.1093/bioinformatics/18.1.211

L. Whitmore, W. , and B. A. , DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data, Nucleic Acids Research, vol.32, issue.Web Server, pp.668-673, 2004.
DOI : 10.1093/nar/gkh371

C. N. Pace, F. Vajdos, L. Fee, G. Grimsley, and T. Gray, How to measure and predict the molar absorption coefficient of a protein, Protein Science, vol.33, issue.11, pp.2411-2423, 1995.
DOI : 10.1002/pro.5560041120

S. M. Kelly, T. J. Jess, P. , and N. C. , How to study proteins by circular dichroism, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1751, issue.2, pp.119-139, 2005.
DOI : 10.1016/j.bbapap.2005.06.005

P. Gidwani, K. H. Ramesh, Y. Liu, and E. A. Kolb, The Combination of Clofarabine and Cytarabine in Pediatric Relapsed Acute Lymphoblastic Leukemia: A Case Report, Chemotherapy, vol.54, issue.2, pp.120-124, 2008.
DOI : 10.1159/000118664

J. Groenink, E. Walgreen-weterings, W. Van-'t-hof, E. C. Veerman, N. Amerongen et al., Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens, FEMS Microbiology Letters, vol.179, issue.2, pp.217-222, 1999.
DOI : 10.1111/j.1574-6968.1999.tb08730.x

H. N. Hunter, A. R. Demcoe, H. Jenssen, T. J. Gutteberg, and H. J. Vogel, Human Lactoferricin Is Partially Folded in Aqueous Solution and Is Better Stabilized in a Membrane Mimetic Solvent, Antimicrobial Agents and Chemotherapy, vol.49, issue.8, pp.3387-3395, 2005.
DOI : 10.1128/AAC.49.8.3387-3395.2005

G. M. Poon and J. Gariepy, Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells, Biochemical Society Transactions, vol.35, issue.4, pp.788-793, 2007.
DOI : 10.1042/BST0350788

M. Tyagi, M. Rusnati, M. Presta, and M. Giacca, Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans, Journal of Biological Chemistry, vol.276, issue.5, pp.3254-3261, 2001.
DOI : 10.1074/jbc.M006701200

M. Gschwendt, H. J. Müller, K. Kielbassa, R. Zang, W. Kittstein et al., Rottlerin, a Novel Protein Kinase Inhibitor, Biochemical and Biophysical Research Communications, vol.199, issue.1, pp.93-98, 1994.
DOI : 10.1006/bbrc.1994.1199

S. P. Davies, H. Reddy, M. Caivano, and P. Cohen, Specificity and mechanism of action of some commonly used protein kinase inhibitors, Biochemical Journal, vol.351, issue.1, pp.95-105, 2000.
DOI : 10.1042/bj3510095

E. Dupont, A. Prochiantz, and A. Joliot, Identification of a Signal Peptide for Unconventional Secretion, Journal of Biological Chemistry, vol.282, issue.12, pp.8994-9000, 2007.
DOI : 10.1074/jbc.M609246200

P. Wadhwani, S. Afonin, M. Ieronimo, J. Buerck, and A. S. Ulrich, Optimized Protocol for Synthesis of Cyclic Gramicidin S:?? Starting Amino Acid Is Key to High Yield, The Journal of Organic Chemistry, vol.71, issue.1, pp.55-61, 2006.
DOI : 10.1021/jo051519m

M. E. Selsted, θ-Defensins: Cyclic Antimicrobial Peptides Produced by Binary Ligation of Truncated α-Defensins, Current Protein & Peptide Science, vol.5, issue.5, pp.365-371, 2004.
DOI : 10.2174/1389203043379459

A. Sonnevend, F. C. Knoop, M. Patel, T. Pál, A. M. Soto et al., Antimicrobial properties of the frog skin peptide, ranatuerin-1 and its [Lys-8]-substituted analog, Peptides, vol.25, issue.1, pp.29-36, 2004.
DOI : 10.1016/j.peptides.2003.11.011

M. Wu and R. E. Hancock, Interaction of the Cyclic Antimicrobial Cationic Peptide Bactenecin with the Outer and Cytoplasmic Membrane, Journal of Biological Chemistry, vol.274, issue.1, pp.29-35, 1999.
DOI : 10.1074/jbc.274.1.29

M. Hällbrink, K. Kilk, A. Elmquist, P. Lundberg, M. Lindgren et al., Prediction of Cell-Penetrating Peptides, International Journal of Peptide Research and Therapeutics, vol.9, issue.8, pp.249-259, 2005.
DOI : 10.1007/s10989-005-9393-1

Y. A. Suzuki, V. Lopez, and B. Lönnerdal, Lactoferrin, Cellular and Molecular Life Sciences, vol.62, issue.22, pp.2560-2575, 2005.
DOI : 10.1007/s00018-005-5371-1

D. Legrand, J. Mazurier, A. Elass, E. Rochard, G. Vergoten et al., Molecular interactions between human lactotransferrin and the phytohemagglutinin-activated human lymphocyte lactotransferrin receptor lie in two loop-containing regions of the N-terminal domain I of human lactotransferrin, Biochemistry, vol.31, issue.38, pp.9243-9251, 1992.
DOI : 10.1021/bi00153a018

URL : https://hal.archives-ouvertes.fr/hal-00484422

B. Leveugle, J. Mazurier, D. Legrand, C. Mazurier, J. Montreuil et al., Lactotransferrin binding to its platelet receptor inhibits platelet aggregation, European Journal of Biochemistry, vol.3, issue.3, pp.1205-1211, 1993.
DOI : 10.1016/0167-4838(92)90346-F

URL : https://hal.archives-ouvertes.fr/hal-00484455