W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-2637, 1983.
DOI : 10.1002/bip.360221211

S. Kamtekar, J. Schiffer, H. Xiong, J. Babik, and M. Hecht, Protein design by binary patterning of polar and nonpolar amino acids, Science, vol.262, issue.5140, pp.1680-1685, 1993.
DOI : 10.1126/science.8259512

R. Karchin, M. Cline, Y. Mandel-gutfreund, and K. Karplus, Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry, Proteins: Structure, Function, and Bioinformatics, vol.323, issue.1/2, pp.504-514, 2003.
DOI : 10.1002/prot.10369

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.59-69, 1982.
DOI : 10.1007/BF00337288

T. Kohonen, Self-Organizing Maps, 2001.

D. Kostrewa, M. Wyss, D. Arcy-'a, and A. Van-loon, Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 ?? resolution, Journal of Molecular Biology, vol.288, issue.5, pp.965-974, 1999.
DOI : 10.1006/jmbi.1999.2736

S. Ku and Y. Hu, Protein structure search and local structure characterization, BMC Bioinformatics, vol.9, issue.1, p.349, 2008.
DOI : 10.1186/1471-2105-9-349

URL : http://doi.org/10.1186/1471-2105-9-349

D. Lee, M. Cottrill, C. Forsberg, and Z. Jia, Functional Insights Revealed by the Crystal Structures of Escherichia coli Glucose-1-phosphatase, Journal of Biological Chemistry, vol.278, issue.33, pp.31412-31418, 2003.
DOI : 10.1074/jbc.M213154200

Q. Li, C. Zhou, and H. Liu, Fragment-based local statistical potentials derived by combining an alphabet of protein local structures with secondary structures and solvent accessibilities, Proteins: Structure, Function, and Bioinformatics, vol.34, issue.Web Server issu, pp.820-836, 2009.
DOI : 10.1002/prot.22191

J. Martin, G. Letellier, A. Marin, J. Taly, A. De-brevern et al., Protein secondary structure assignment revisited: a detailed analysis of different assignment methods, BMC Structural Biology, vol.5, issue.1, p.17, 2005.
DOI : 10.1186/1472-6807-5-17

URL : https://hal.archives-ouvertes.fr/inserm-00090199

L. Rabiner, A tutorial on hidden Markov models and selected application in speech recognition, Proceedings of the IEEE, pp.257-286, 1989.

H. Rangwala, C. Kauffman, and G. Karypis, svmPRAT: SVM-based Protein Residue Annotation Toolkit, BMC Bioinformatics, vol.10, issue.1, p.439, 2009.
DOI : 10.1186/1471-2105-10-439

URL : http://doi.org/10.1186/1471-2105-10-439

O. Sander, I. Sommer, and T. Lengauer, Local protein structure prediction using discriminative models, BMC Bioinformatics, vol.7, issue.1, p.14, 2006.
DOI : 10.1186/1471-2105-7-14

J. Schuchhardt, G. Schneider, J. Reichelt, D. Schomburg, and P. Wrede, Local structural motifs of protein backbones are classified by self-organizing neural networks, "Protein Engineering, Design and Selection", vol.9, issue.10, 1996.
DOI : 10.1093/protein/9.10.833

A. Thomas, S. Deshayes, M. Decaffmeyer, V. Eyck, M. Charloteaux et al., Prediction of peptide structure: How far are we?, Proteins: Structure, Function, and Bioinformatics, vol.98, issue.4, pp.889-897, 2006.
DOI : 10.1002/prot.21151

M. Tyagi, A. Bornot, B. Offmann, and A. De-brevern, Analysis of loop boundaries using different local structure assignment methods, Protein Science, vol.34, issue.9, pp.1869-1881, 2009.
DOI : 10.1002/pro.198

URL : https://hal.archives-ouvertes.fr/inserm-00392504

M. Tyagi, A. Bornot, B. Offmann, and A. De-brevern, Protein short loop prediction in terms of a structural alphabet, Computational Biology and Chemistry, vol.33, issue.4, pp.329-333, 2009.
DOI : 10.1016/j.compbiolchem.2009.06.002

URL : https://hal.archives-ouvertes.fr/inserm-00396485

M. Tyagi, A. De-brevern, N. Srinivasan, and B. Offmann, Protein structure mining using a structural alphabet, Proteins: Structure, Function, and Bioinformatics, vol.5, issue.2, pp.920-937, 2008.
DOI : 10.1002/prot.21776

URL : https://hal.archives-ouvertes.fr/inserm-00176443

M. Tyagi, V. Gowri, N. Srinivasan, A. De-brevern, and B. Offmann, A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications, Proteins: Structure, Function, and Bioinformatics, vol.272, issue.1, pp.32-39, 2006.
DOI : 10.1002/prot.21087

URL : https://hal.archives-ouvertes.fr/inserm-00133760

M. Tyagi, P. Sharma, C. Swamy, F. Cadet, N. Srinivasan et al., Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet, Nucleic Acids Research, vol.34, issue.Web Server, pp.119-123, 2006.
DOI : 10.1093/nar/gkl199

URL : https://hal.archives-ouvertes.fr/inserm-00133751

R. Unger, D. Harel, S. Wherland, and J. Sussman, A 3D building blocks approach to analyzing and predicting structure of proteins, Proteins: Structure, Function, and Genetics, vol.5, issue.4, pp.355-373, 1989.
DOI : 10.1002/prot.340050410

R. Unger and J. Sussman, The importance of short structural motifs in protein structure analysis, Journal of Computer-Aided Molecular Design, vol.6, issue.4, pp.457-472, 1993.
DOI : 10.1007/BF02337561

C. Wu, Y. Chen, C. Lim, T. Yang, T. Dudev et al., A structural-alphabet-based strategy for finding structural motifs across protein families Mononuclear versus binuclear metal-binding sites: metal-binding affinity and selectivity from PDB survey and DFT/CDM calculations, Nucleic Acids Res J Am Chem Soc, vol.130, pp.3844-3852, 2008.

O. Zimmermann and U. Hansmann, LOCUSTRA: Accurate Prediction of Local Protein Structure Using a Two-Layer Support Vector Machine Approach, Journal of Chemical Information and Modeling, vol.48, issue.9, pp.1903-1908, 2008.
DOI : 10.1021/ci800178a

Y. Zuo and Q. Li, Using K-minimum increment of diversity to predict secretory proteins of malaria parasite based on groupings of amino acids, Amino Acids, vol.248, issue.3, 2009.
DOI : 10.1007/s00726-009-0292-1

Y. Zuo and Q. Li, Using reduced amino acid composition to predict defensin family and subfamily: Integrating similarity measure and structural alphabet, Peptides, vol.30, issue.10, pp.1788-1793, 2009.
DOI : 10.1016/j.peptides.2009.06.032