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Abstract

Discrete orthogonal moments have been recently introduced in the field of image analysis. It was shown that they have better image

representation capability than the continuous orthogonal moments. One problem concerning the use of moments as feature

descriptors is the high computational cost, which may limit their application to the problems where the on-line computation is

required. In this paper, we present a new approach for fast computation of the two-dimensional Tchebichef moments. By deriving

some properties of Tchebichef polynomials, and using the image block representation for binary images and intensity slice

representation for gray-scale images, a fast algorithm is proposed for computing the moments of binary and gray-scale images. The

theoretical analysis shows that the computational complexity of the proposed method depends on the number of blocks of the image,

thus, it can speed up the computational efficiency as far as the number of blocks is smaller than the image size.
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INTRODUCTION

Moments and moment functions have been extensively used for feature extraction in pattern recognition and object classification [1 ]–[
. One important property of the moments is their invariance under affine transformation. The pioneering work on this subject was by Hu5 ]
. Since then, many applications have been developed, which made use of geometric, complex, rotational and orthogonal moments [6 ] [7 ]–[
.12 ]

Considerable attention has been paid on the theoretic study and application of the orthogonal moments since they can be easily used to

reconstruct the image, and have the minimum information redundancy to represent the image .[13 ]–[17 ]

Recently, discrete orthogonal moments such as Tchebichef, Krawtchouk, dual Hahn, Racah and Hahn moments have been introduced

in image analysis community . It was shown that they have better image representation capability than the continuous orthogonal[18 ]–[23 ]
moments.

One main difficulty concerning the use of moments as feature descriptors is their high computational complexity. To solve this

problem, a number of fast algorithms have been reported in the literature . Most of them concentrated on the fast computation of[24 ]–[39 ]
geometric moments and continuous orthogonal moments. Less attention has been paid on the fast computation of discrete orthogonal

moments . Wang and Wang  proposed a recursive algorithm based on Clenshaw s recurrence formula to compute the[35 ]–[39 ] [35 ] ’
Tchebichef moments. Kotoulas and Andreadis  presented a hardware technique based on FPGA for implementing the calculation of[36 ]
Tchebichef moment values. They further proposed a more flexible architecture  dealing with various types of moments. Papakostas [37 ] et

 derived a unified methodology based on the image representation method for efficiently computing the discrete orthogonalal. [38 ]
moments. Bayraktar  proposed an approach that consists of calculating the polynomial coefficients with arbitrary precision.et al. [39 ]

In this paper, we propose an efficient computation of Tchebichef moments for both binary and gray-scale images. For binary images,

by using the image block representation proposed by Spiliotis and Merzios , the image moments can be obtained from the moments of[25 ]
all blocks. We further derive some properties of Tchebichef polynomials which can be used to efficiently calculate the moments of each

block. The proposed method is then extended to gray-scale images by using the so-called intensity slice representation  introduced by‘ ’
Papakostas .et al. [28 ]

The rest of the paper is organized as follows. In Section II, we review the definition of Tchebichef moments. Section III gives a brief

introduction of the image block representation and the intensity slice representation. In Section IV, we first derive some properties of

Tchebichef polynomials, and then propose a fast algorithm for computing the Tchebichef moments for both binary and gray-scale images.

The computational complexity is analyzed in Section V and some experimental results are also provided. Section VI concludes the work.
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Tchebichef moments

The two-dimensional (2-D) Tchebichef moment of order ( ) of an image intensity function ( , ) with size  is defined as n +m f x y N × N [
, 18 ] [19 ]

where ( ) is the th order orthonormal Tchebichef polynomial defined bytn x n 

Here ( ) is the Pochhammer symbola  k 

and the squared-norm ( , ) is given by ρ n N 

can be rewritten asEquation (2) 

where

The orthogonality property leads to the following inverse moment transform

If only the moments of order up to ( 1, 1) are computed, is approximated byM − M − equation (7) 

Representation of binary and gray-scale images
Image block representation for binary images

Image block representation (IBR) was introduced by Spiliotis and Mertzios  and has been used to achieve a fast computation of[25 ]
geometric moments for binary images.

A binary image, ( , ), can be represented as a set of blocks, each block corresponding to an object or a part of object. This block isf x y 

defined as a rectangular area, which gathers a set of connected pixels whose value is included in the same value interval. This area building

is briefly reviewed through the following algorithm , .[25 ] [28 ]

Algorithm IBR

Step 1

Consider each line of the image ( , ) and find object level intervals in line .y f x y y 

Step 2
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Compare intervals and blocks that have pixels in line 1.y −

Step 3

If an interval does not match with any block, this is the beginning of a new block.

Step 4

If a block matches with an interval, the end of the block is in the line .y 

After applying the algorithm, the binary image is represented as a set of blocks of level one. This block-represented image is described

by the relation

where is the th block and is the total number of blocks. Each block is described by the coordinates of the upper left and downbi i K 

right corner in vertical and horizontal axes.

Partial intensity slice representation for gray-scale images

Papakostas  recently introduced a new image representation scheme, known as the intensity slice representation (ISR), whichet al. [28 ]
decomposes a gray-scale image ( , ) into a series of two-level images ( , ), that isf x y fi x y 

where is the number of slices (equal to the number of different intensity values) and ( , ) is the intensity function of the thL fi x y i 

slice. In the case of a binary image, we have 1, so that, ( , )  ( , ).L  = f x y = f 1 x y 

Once a gray-scale image is decomposed into several slices according to the ISR scheme, each slice can be considered as a two-level

image where the IBR algorithm can be applied. Instead of applying the IBR algorithm to each slice, Papakostas  proposed to useet al. [28 ]
the partial IBR (PIBR) algorithm. The PIBR algorithm consists of one pass of the image and a bookkeeping process, which can be

described as follows.

Algorithm PIBR

Step 1

Consider each line of the image ( , ) and find object level intervals for each intensity value that exists in line .y f x y y 

Step 2

Compare intervals and blocks that have the same intensity line 1.y −

Step 3

If an interval does not match with any block of the same intensity, this is the beginning of a new block.

Step 4

If a block matches with an interval of the same intensity, the end of the block is in the line .y 

After applying the algorithm, the gray-scale image ( , ) can be redefined in terms of blocks of different intensities asf x y 

where is the th block of slice and is the number of image blocks having intensity . Each block is described by the coordinatesbij j i Ki fi 

of the upper left and down right corner in vertical and horizontal axes.

Fast computation of Tchebichef moments

In this section, we first derive some properties of orthonormal Tchebichef polynomials, and then develop an efficient algorithm for

computing the Tchebichef moments.
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Some properties of orthonormal Tchebichef polynomials

Theorem 1

Let , where ( ) is defined by ( ) and  0,  0, 1, , 1, be a set of polynomials. Assume for integer numbers and −x  k 3 cn,n ≠ n = … N − a 

, we havex 

then the coefficients ( , ) are given bygl n k 

where ( ), with 0    1, is the inverse of the lower triangular matrix ( ) of size  , i.e., .DN = dn , k ≤ k ≤ n ≤ N − CN = cn , k N × N 

The proof of Theorem 1 is deferred to . In order to apply Theorem 1, an essential step consists of finding the inverse matrix Appendix 

when the original matrix is known. In this paper, we are interested in the use of Tchebichef polynomials. For the orthonormalDN CN 

Tchebichef polynomials ( ) defined by ( ) and ( ), we have the following Proposition.tn x 5 6 

Proposition 1

For the lower triangular matrix whose elements are defined by ( ), the elements of the inverse matrix are given byCN cn , k 6 dn , k DN 

The proof of Proposition 1 is deferred to . Based on Theorem 1 and Proposition 1, we can easily derive the following result.Appendix 

Corollary 1

For the orthonormal Tchebichef polynomials, letting

then we have

For the purpose of this paper, we are particularly interested in the case where 1 in ( ). By the definition of ( ) given by ( ), wea = 15 a  k 3 

have ( 1)  1, ( 1)  1, and ( 1)  0 for  2. Using these properties, becomes− 0 = − 1 = − −  l = l ≥ equation (15) 

where ( , ),  0, 1, defined by ( ), are given asgl n k l = 16 
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where

For the computation of ( , ), we have the following result.g 0 n k 

Theorem 2

For ( , ) given by ( ), we haveg 0 n k 18 

The proof of Theorem 2 is deferred to .Appendix 

Using ( ), becomes21 equation (17) 

We are now ready to propose a new approach for efficiently computing the Tchebichef moments defined by ( ). This is the subject of1 

the following subsections.

Fast computation of Tchebichef moments for binary images

For a binary image ( , ) represented by blocks, as described in ( ), can be rewritten asf x y K 10 equation (1) 

where ( , ) and ( , ) are respectively the left-up and right-bottom coordinates of the block , and  is the momentx 1, bi 
y 1, bi 

x 2, bi 
y 2, bi 

bi 

of block given bybi 

with

shows that to obtain the image moments, we need to calculate the moments of each block, so we turn to it in theEquation (23) 

following. Since ( , ) and ( , ) given in ( ) can be calculated in a similar way, we consider only the computationSn x 1, bi 
x 2, bi 

Sm y 1, bi 
y 2, bi 

25 

of ( , ).Sn x 1, bi 
x 2, bi 

Assuming that the block contains    1 pixels in width, we havebi δbi 
= x 2, bi 

− x 1, bi 
+
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Using ( ), we have22 

Summing the two sides of ( ) from  0 to  1, we obtain27 j = δbi 
−

Using ( ) and making the notation26 

becomesEquation (28) 

Let ( , )  ( ( , ), ( , ),  ( , )) and ( )  ( ( ), ( ),  ( ))Vm x 1, bi 
x 2, bi 

= S 0 x 1, bi 
x 2, bi 

S 1 x 1, bi 
x 2, bi 

… SM 1 − x 1, bi 
x 2, bi 

 T UM δbi 
= R 0 δbi 

R 1 δbi 
… RM 1 − δbi 

 T 

where the subscript denotes the transpose and is the maximal order of Tchebichef moments we want to calculate, we haveT M 

where is an  lower triangular matrix given byAM M × M 

The elements ( , ) of the matrix can be computed via ( ). In particular, we haveg 1 n k AM 19 

Since all the diagonal elements are not zero, the matrix is non-singular. Thus, we haveAM 

The above equation shows that to obtain the values of ( , ), we need only to compute ( ), which can be done via (VM x 1, bi 
x 2, bi 

Um δbi 
29 

). The Tchebichef polynomial values can be calculated by the following recurrence formula [19 ]

where
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and

Note that in ( ), the following symmetric property is used35 

As indicated by Mukundan , the use of ( ) and ( ) allows avoiding the numerical instability in the calculation of polynomial[19 ] 35 38 

values.

Because the computation of ( , ) for 0   2, when using ( ), requires the evaluation of factorial functions, this could beg 1 n k ≤ k ≤ n − 19 

time consuming. To avoid this, we use the following recurrence relations for computing the coefficients .Bn , k , s 

It is worth noting that the elements ( , ) are independent of the image ( , ), they can thus be pre-computed and stored in ag 1 n k f x y 

look-up table for further use.

Fast computation of Tchebichef moments for gray-scale images

By using the ISR algorithm, the Tchebichef moments of a gray-scale image ( , ), which is described by ( ), can be computed asf x y 11 

where ( ) is the ( )th order Tchebichef moments of the th binary slice.Tnm i n +m i 

shows that the ( )th order Tchebichef moment of a gray-scale image ( , ) is equal to the intensity-weighted sumEquation (43) n +m f x y 

of the same order Tchebichef moments of a number of binary slices. The latter moments can be computed using the algorithm presented in

the previous subsection.

To summarize, the proposed method for computing the moment values is described as follows.

Algorithm for computing the Tchebichef moments

Step 1

Image block extraction using IBR algorithm for binary image and PIBR algorithm for gray-scale image.

Step 2

Computation of Tchebichef polynomial values at corners of each block using ( ), and then the vector ( ) with ( ).35 Rn δbi 
29 

Step 3
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Calculation of 1-D Tchebichef moments of each block using ( ).34 

Step 4

Computation of image moment values using ( ) for binary image and ( ) and ( ) for gray-scale image.23 43 23 

Computational complexity and experimental results

In this section, we give a detailed analysis of computational complexity of the proposed algorithm, and provide some experimental

results to validate the theoretic analysis.

Computational complexity

The complexity of the proposed algorithm is due to the extraction of the extraction of image blocks with the PIBR algorithm and to the

computation of Tchebichef moments based on ( ) for binary images or on ( ) for gray-scale images. As pointed out by Papakostas 23 43 et

, the procedure of block extraction is performed by simple mathematical and logical operations, and it adds very short timeal. [28 ]
overhead in the overall computation. For this reason, we do not take this part into account.

Since the computation of Tchebichef moments for a gray-scale image based on ( ) depends on the algorithm being used to compute43 

the moments of each slice, we first consider the arithmetic complexity of ( ) using the proposed algorithm.23 

Let us consider the case where a binary image contains one rectangular block with level one. For simplicity and without loss of

generality, assume a square block with  pixels, and the moments up to order ( 1, 1) need to be calculated. For the direct methodJ × J M − M −
based on ( ), the computation of Tchebichef polynomial values ( ) using the recursive formula ( ) for each given requires 11 tn x 35 x 

addition and 2 multiplications. The same number of arithmetic operations is needed for ( ). Thus, the computation of Tchebicheftm y 

moments of order up to ( 1, 1) based on ( ), using the direct method, for a block size  pixels needs (3 1) additionsTnm M − M − 1 J × J M 2 J 2 −

and 5 multiplications.M 2 J 2 

We then analyze the complexity of the proposed algorithm based on and . The computation of the vectors ( ) and eqs (23) (34) UM δbi 
V

( , ) requires respectively 3 additions and 4 multiplications, and ( 1)/2 additions and ( 1)/2 multiplications.M x 1, bi 
x 2, bi 

M M M M − M M +

Thus, the total arithmetic operations required in the computation of ( , ) are /2 5 /2 additions and /2 9 /2VM x 1, bi 
x 2, bi 

M 2 + M M 2 + M 

multiplications. The same number of operations is required for ( , ). Therefore, the computation of Tchebichef momentsVM y 1, bi 
y 2, bi 

M 2 

using ( ) and ( ) requires 5 additions and 2 9 multiplications. summarizes these results. For comparison purpose,23 34 M 2 + M M 2 + M Table I 

we also list in the arithmetic complexity of the algorithms reported in Refs. ,  and . Note that the algorithm presentedTable I [35 ] [37 ] [38 ]
in  leads to the same number of arithmetic operations as in , and the method for computing the block moments reported in  is[37 ] [36 ] [38 ]
just based on ( ), which requires (4 2) additions and (4 1) multiplications. It can be seen from this table that among these24 J − M 2 J + M 2 

methods, both the proposed algorithm and the algorithm reported in  are independent of the block size, and our method has the lowest[37 ]
computational complexity.

For a gray-scale image ( , ) with size  , suppose that the total number of blocks for all the slices is , that is, ,f x y N × N NB 

where is the number of blocks of the th slice. Then the computation of Tchebichef moments of order up to ( 1, 1) based onKi i Tnm M − M −

( ), using the direct method, requires (3 1) additions and 6 multiplications. The computational complexity of the algorithm1 M 2 N 2 − M 2 N 2 

reported in  is (4 2) 1 additions and (4 1) 1 multiplications, and that of the proposed algorithm based on ([38 ] NB J − M 2 +L − NB J + M 2 +L −
) is ( 5 ) 1 additions and (2 9 ) multiplications.43 NB M 2 + M +L − NB M 2 + M +L 

Experimental results

Some experimental results are provided in this subsection to validate the theoretical analysis. Since the algorithm presented in [37 ]
was realized by hardware architecture, we compare here the proposed algorithm with the direct method, the recursive algorithm presented

in  and the fast algorithm reported in  in terms of the computational efficiency. We do not provide a full comparison of our[35 ] [38 ]
method with that reported in  for the following reasons: the main advantage of the technique presented by Bayraktar  is its[39 ] et al. [39 ]
high precision. As noted by the authors, the computation of polynomial values using arbitrary precision calculator is much slower than the

recurrence formula. So, their method is fast only if all the polynomial coefficients are pre-computed and stored in a look-up table. On the

contrary, Bayraktar s algorithm is less efficient than the previously reported fast algorithms.’

In the first example, four binary images with size 256  256 pixels ( ) selected from the well-known MPEG-7 CE-shape-1 Part B× Fig. 1 

database  were used as test images. The number of blocks of these images is  171 for Apple,  44 for Hammer,  388 for[40 ] NB = NB = NB =
Octopus and  136 for Tree. shows the average computation time of moments up to order (120, 120) for these four images usingNB = Fig. 2 

the direct method, the recursive algorithm based on Clenshaw s recurrence formula, the algorithm reported in  and the proposed’ [38 ]
algorithm. Note that the algorithm was implemented in C  on a PC Dual Core 2.33 GHz, 2GB RAM. shows that the proposed++ Fig. 2 
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algorithm is the fastest among all the methods, and the algorithm presented in  is more efficient than the other two methods. This is[38 ]
because these binary images have a small number of blocks. Note that the computation time for extracting the blocks of each image is

about 1 ms, this time is much less than the computation time required in the calculation of moments.

In the second example, four gray-scale images with size 256  256 pixels shown in have been used. The number of blocks of× Fig. 3 

these images is  56211 for Lena,  53048 for Pepper,  47664 for Women and  38561 for House. The computation timeNB = NB = NB = NB =
for extracting the blocks of each image is about 2 ms. shows the average computation time up to order (120, 120) for these fourFig. 4 

images using various methods. The result again indicates that our method has better performance than the other algorithms. But the

algorithm presented in  is only faster than the direct method due to the large number of blocks in these images, and the computation of[38 ]
1-D moments based on ( ) is time intensive. shows the reconstructed results using the inverse transform ( ).24 Fig. 5 8 

From the two previous experiments, it can be observed that our algorithm depends on the number of image blocks, which is related to

the image content, rather than on the image size. To illustrate this, the images shown in and were scaled to different sizes (fromFigs. 1 3 

320  320 to 1024  1024) where the nearest interpolation was used. Using such an interpolation, the number of blocks does not change. × ×
shows the average computation time required in the calculation of moments of order up to (40, 40) for different image sizes. It canFig. 6 

be seen from this figure that both the proposed algorithm and Papakostas s algorithm are much more efficient than the two other’
algorithms. To make a full comparison in terms of the efficiency of different methods, we also apply the bilinear interpolation to images

shown in and . In such a case, the number of blocks increases with the image size. The average computation time required in theFigs. 1 3 

calculation of moments of order up to (40, 40) for different image sizes is shown in . It can be observed from this figure that theFig. 7 

computation time required in our method and Papakostas s method increases compared to that of . However, the proposed method’ Fig. 6 

remains the most efficient one.

Conclusions

In this paper, by deriving some properties of Tchebichef polynomials, and using the image block representation and intensity slice

representation, we have presented a fast algorithm for computing the Tchebichef moments for both binary and gray-scale images. The

computation of the moments using the proposed method only depends on the number of blocks, thus, it can significantly decrease the

computation time when the number of image blocks is much smaller than the image size.
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Appendix A
Proof of Theorem 1

By definition of , we havedn , k 

Using the following relationship [41 ]

where  is the combination number, we have
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The proof of Theorem 1 is completed.

Proof of Proposition 1

To prove the proposition, we need to demonstrate the following relation

where is the Kronecker symbol.δnm 

Using ( ) and ( ), we have6 14 

For  , it can be easily deduced from ( ) thatn = m A5 

To prove ( ) for < , lettingA4 m n 

It can be verified that

Substitution of ( ) into ( ), we obtainA8 A5 

The proof is now complete.

Note that the proof of Proposition was inspired by a technique proposed by Petkovsek .et al. [42 ]

Proof of Theorem 2
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It can be easily verified from ( ) that ( , )  1. To prove ( , )  0 for  1, it suffices to apply the relationship ( ) to ( ).21 g 0 n n = g 0 n k = k ≤ n − A9 18 
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Fig. 1
Set of test binary images with size 256  256 pixels.×

Fig. 2
Average computation time for images shown in using different methodsFig. 1 
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Fig. 3
Set of test gray-scale images with size 256  256 pixels.×

Fig. 4
Average computation time for images shown in using different methodsFig. 3 



IEEE Trans Image Process . Author manuscript

Page /14 16

Fig. 5
Reconstructed images of using the inverse moment transform ( ) with  120.Fig. 3 8 M =

Fig. 6
Average computation time for images shown in and with varying sizes in the calculation of moments of order up to (40, 40)Fig. 1 Fig. 3 

using nearest interpolation
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Fig. 7
Average computation time for images shown in and with varying sizes in the calculation of moments of order up to (40, 40)Fig. 1 Fig. 3 

using bilinear interpolation
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TABLE I
Computational complexity of the direct method and proposed algorithm for computing the moments of order up to ( 1, 1) of one block with  pixelsM − M − J × J 

Additions Multiplications

Direct method (3 1)M 2 J 2 − 5M 2 J 2

Recursive method [35 ] (2 2 )M 2 J 2 + J (2 3 1)M 2 J 2 + J +

Method resented in [37 ] /3 2 /3M 3 +M 2 + M ( 1)( 2)( 7 24)/24M + M + M 2 + M +

Papakostas s method ’ [38 ] (4 2)M 2 J − (4 1)M 2 J +

Proposed method 5M 2 + M 2 9M 2 + M


