D. Paolo, G. , D. Camilli, and P. , Phosphoinositides in cell regulation and membrane dynamics, Nature, vol.26, issue.7112, pp.651-657, 2006.
DOI : 10.1038/nature05185

M. Vicinanza, D. Angelo, G. , D. Campli, A. et al., Function and dysfunction of the PI system in membrane trafficking, The EMBO Journal, vol.3, issue.19, pp.2457-2470, 2008.
DOI : 10.1073/pnas.092142699

O. Attree, The Lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase, Nature, vol.358, issue.6383, pp.239-242, 1992.
DOI : 10.1038/358239a0

J. Laporte, A gene mutated in X???linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast, Nature Genetics, vol.269, issue.2, pp.175-182, 1996.
DOI : 10.1146/annurev.physiol.53.1.201

A. Bolino, Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2, Nature Genetics, vol.18, issue.1, pp.17-19, 2000.
DOI : 10.1038/75542

S. Bielas, Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies, Nature Genetics, vol.294, issue.9, pp.1032-1036, 2009.
DOI : 10.1093/hmg/ddn277

M. Jacoby, INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse, Nature Genetics, vol.41, issue.9, pp.1027-1031, 2009.
DOI : 10.1016/j.cellsig.2006.05.010

H. Mccrea, D. Camilli, and P. , Mutations in Phosphoinositide Metabolizing Enzymes and Human Disease, Physiology, vol.24, issue.1, pp.8-16, 2009.
DOI : 10.1152/physiol.00035.2008

L. Ooms, The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease, Biochemical Journal, vol.419, issue.1, pp.29-49, 2009.
DOI : 10.1042/BJ20081673

X. Zhang, A. Jefferson, V. Auethavekiat, and P. Majerus, The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase., Proceedings of the National Academy of Sciences, vol.92, issue.11, pp.4853-4856, 1995.
DOI : 10.1073/pnas.92.11.4853

S. Schurman and S. Scheinman, Inherited cerebrorenal syndromes, Nature Reviews Nephrology, vol.22, issue.9, pp.529-538, 2009.
DOI : 10.1038/nrneph.2009.124

J. Delleman, E. Bleeker-wagemakers, and A. Van-veelen, Opacities of the lens indicating carrier status in the oculo-cerebro-renal (Lowe) syndrome, J Pediatr Ophthalmol, vol.14, pp.205-212, 1977.

R. Kleta, Fanconi or not Fanconi? Lowe Syndrome Revisited, Clinical Journal of the American Society of Nephrology, vol.3, issue.5, pp.1244-1245, 2008.
DOI : 10.2215/CJN.02880608

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571153

L. Kenworthy and L. Charnas, Evidence for a discrete behavioral phenotype in the oculocerebrorenal syndrome of lowe, American Journal of Medical Genetics, vol.92, issue.3, pp.283-290, 1995.
DOI : 10.1002/ajmg.1320590304

C. Dent and M. Friedman, Hypercalcuric Rickets Associated with Renal Tubular Damage, Archives of Disease in Childhood, vol.39, issue.205, pp.240-249, 1964.
DOI : 10.1136/adc.39.205.240

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2019188

H. Cho, Renal manifestations of Dent disease and Lowe syndrome, Pediatric Nephrology, vol.101, issue.2, pp.243-249, 2008.
DOI : 10.1007/s00467-007-0686-9

R. Hoopes and . Jr, Dent Disease with Mutations in OCRL1, The American Journal of Human Genetics, vol.76, issue.2, pp.260-267, 2005.
DOI : 10.1086/427887

B. Utsch, Novel OCRL1 Mutations in Patients With the Phenotype of Dent Disease, American Journal of Kidney Diseases, vol.48, issue.6, pp.942-956, 2006.
DOI : 10.1053/j.ajkd.2006.08.018

A. Shrimpton, <i>OCRL1</i> Mutations in Dent 2 Patients Suggest a Mechanism for Phenotypic Variability, Nephron Physiology, vol.112, issue.2, pp.27-36, 2009.
DOI : 10.1159/000213506

K. Erdmann, A Role of the Lowe Syndrome Protein OCRL in Early Steps of the Endocytic Pathway, Developmental Cell, vol.13, issue.3, pp.377-390, 2007.
DOI : 10.1016/j.devcel.2007.08.004

Y. Mao, A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism, The EMBO Journal, vol.57, issue.13, pp.1831-1842, 2009.
DOI : 10.1073/pnas.92.11.4853

R. Choudhury, C. Noakes, E. Mckenzie, C. Kox, and M. Lowe, Differential Clathrin Binding and Subcellular Localization of OCRL1 Splice Isoforms, Journal of Biological Chemistry, vol.284, issue.15, pp.9965-9973, 2009.
DOI : 10.1074/jbc.M807442200

R. Choudhury, Lowe Syndrome Protein OCRL1 Interacts with Clathrin and Regulates Protein Trafficking between Endosomes and the Trans-Golgi Network, Molecular Biology of the Cell, vol.16, issue.8, pp.3467-3479, 2005.
DOI : 10.1091/mbc.E05-02-0120

A. Ungewickell, M. Ward, E. Ungewickell, and P. Majerus, The inositol polyphosphate 5-phosphatase Ocrl associates with endosomes that are partially coated with clathrin, Proceedings of the National Academy of Sciences, vol.101, issue.37, pp.13501-13506, 2004.
DOI : 10.1073/pnas.0405664101

H. Shin, An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway, The Journal of Cell Biology, vol.1179, issue.4, pp.607-618, 2005.
DOI : 10.1073/pnas.92.11.4853

N. Hyvola, Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases, The EMBO Journal, vol.13, issue.16, pp.3750-3761, 2006.
DOI : 10.1074/jbc.273.3.1574

M. Fukuda, E. Kanno, K. Ishibashi, and T. Itoh, Large Scale Screening for Novel Rab Effectors Reveals Unexpected Broad Rab Binding Specificity, Molecular & Cellular Proteomics, vol.7, issue.6, pp.1031-1042, 2008.
DOI : 10.1074/mcp.M700569-MCP200

I. Olivos-glander, P. Jänne, and R. Nussbaum, The oculocerebrorenal syndrome gene product is a 105-kD protein localized to the Golgi complex, Am J Hum Genet, vol.57, pp.817-823, 1995.

H. Mccrea, All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding, Biochemical and Biophysical Research Communications, vol.369, issue.2, pp.493-499, 2008.
DOI : 10.1016/j.bbrc.2008.02.067

M. Addis, M. Loi, C. Lepiani, M. Cau, and M. Melis, OCRLMutation analysis in Italian patients with Lowe syndrome, Human Mutation, vol.23, issue.5, pp.524-525, 2004.
DOI : 10.1002/humu.9239

U. Lichter-konecki, L. Farber, J. Cronin, S. Suchy, and R. Nussbaum, The effect of missense mutations in the RhoGAP-homology domain on ocrl1 function, Molecular Genetics and Metabolism, vol.89, issue.1-2, pp.121-128, 2006.
DOI : 10.1016/j.ymgme.2006.04.005

T. Kawano, Y. Indo, H. Nakazato, M. Shimadzu, and I. Matsuda, Oculocerebrorenal syndrome of Lowe: Three mutations in the OCRL1 gene derived from three patients with different phenotypes, American Journal of Medical Genetics, vol.77, issue.5, pp.348-355, 1998.
DOI : 10.1002/(SICI)1096-8628(19980605)77:5<348::AID-AJMG2>3.3.CO;2-H

T. Lin, Spectrum of Mutations in the OCRL1Gene in the Lowe Oculocerebrorenal Syndrome, The American Journal of Human Genetics, vol.60, issue.6, pp.1384-1388, 1997.
DOI : 10.1086/515471

M. Miaczynska, APPL Proteins Link Rab5 to Nuclear Signal Transduction via an Endosomal Compartment, Cell, vol.116, issue.3, pp.445-456, 2004.
DOI : 10.1016/S0092-8674(04)00117-5

R. Zoncu, A Phosphoinositide Switch Controls the Maturation and Signaling Properties of APPL Endosomes, Cell, vol.136, issue.6, pp.1110-1121, 2009.
DOI : 10.1016/j.cell.2009.01.032

D. Bockenhauer, Renal Phenotype in Lowe Syndrome: A Selective Proximal Tubular Dysfunction, Clinical Journal of the American Society of Nephrology, vol.3, issue.5, pp.1430-1436, 2008.
DOI : 10.2215/CJN.00520108

A. Yuksel, E. Karaca, and M. Albayram, Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, and Facial Dysmorphism in a Case of Lowe Syndrome with Novel OCRL1 Gene Mutation, Journal of Child Neurology, vol.24, issue.1, pp.93-96, 2009.
DOI : 10.1177/0883073808321047

N. Monnier, V. Satre, E. Lerouge, F. Berthoin, and J. Lunardi, OCRL1 mutation analysis in French Lowe syndrome patients: Implications for molecular diagnosis strategy and genetic counseling, Human Mutation, vol.16, issue.2, pp.157-165, 2000.
DOI : 10.1002/1098-1004(200008)16:2<157::AID-HUMU8>3.0.CO;2-9

L. Giot, A Protein Interaction Map of Drosophila melanogaster, Science, vol.302, issue.5651, pp.1727-1736, 2003.
DOI : 10.1126/science.1090289

N. Shaner, Improving the photostability of bright monomeric orange and red fluorescent proteins, Nature Methods, vol.96, issue.6, pp.545-551, 2008.
DOI : 10.1038/nmeth.1209

A. Simonsen, EEA1 links PI(3)K function to Rab5 regulation of endosome fusion, Nature, vol.394, pp.494-498, 1998.

T. Fritzius, A WD-FYVE protein binds to the kinases Akt and PKC??/??, Biochemical Journal, vol.399, issue.1, pp.9-20, 2006.
DOI : 10.1042/BJ20060511

A. Hayakawa, The WD40 and FYVE domain containing protein 2 defines a class of early endosomes necessary for endocytosis, Proceedings of the National Academy of Sciences, vol.103, issue.32, pp.11928-11933, 2006.
DOI : 10.1073/pnas.0508832103

M. Frith, U. Hansen, J. Spouge, and Z. Weng, Finding functional sequence elements by multiple local alignment, Nucleic Acids Research, vol.32, issue.1, pp.189-200, 2004.
DOI : 10.1093/nar/gkh169

URL : http://doi.org/10.1093/nar/gkh169

A. Marshall, A Novel B Lymphocyte???Associated Adaptor Protein, Bam32, Regulates Antigen Receptor Signaling Downstream of Phosphatidylinositol 3-Kinase, The Journal of Experimental Medicine, vol.87, issue.8, 2000.
DOI : 10.1084/jem.186.11.1897

S. Dowler, R. Currie, C. Downes, and D. Alessi, DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides, Biochemical Journal, vol.342, issue.1, pp.7-12, 1999.
DOI : 10.1042/bj3420007

M. Abramoff, P. Magelhaes, and S. Ram, Image processing with ImageJ, Biophotonics International, vol.11, pp.36-42, 2004.