W. Schaper, H. S. Sharma, W. Quinkler, T. Markert, M. Wunsch et al., Molecular biologic concepts of coronary anastomoses, Journal of the American College of Cardiology, vol.15, issue.3, pp.513-518, 1990.
DOI : 10.1016/0735-1097(90)90618-Y

P. Carmeliet, Mechanisms of angiogenesis and arteriogenesis, Nature Medicine, vol.6, issue.4, pp.389-395, 2000.
DOI : 10.1038/74651

P. Carmeliet, Angiogenesis in health and disease, Nature Medicine, vol.9, issue.6, pp.653-660, 2003.
DOI : 10.1038/nm0603-653

P. Carmeliet, Angiogenesis in life, disease and medicine, Nature, vol.Teill II, issue.7070, pp.932-936, 2005.
DOI : 10.1038/nature04478

S. Dimmeler, ATVB in Focus: Novel Mediators and Mechanisms in Angiogenesis and Vasculogenesis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.11, p.2245, 2005.
DOI : 10.1161/01.ATV.0000187471.06942.17

T. A. Asahara and . Kawamoto, Endothelial progenitor cells for postnatal vasculogenesis, AJP: Cell Physiology, vol.287, issue.3, pp.572-579, 2004.
DOI : 10.1152/ajpcell.00330.2003

G. L. Semenza, Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling, Journal of Cellular Biochemistry, vol.98, issue.4
DOI : 10.1002/jcb.21523

M. Simons, Angiogenesis, Arteriogenesis, and Diabetes, Journal of the American College of Cardiology, vol.46, issue.5, pp.835-837, 2005.
DOI : 10.1016/j.jacc.2005.06.008

URL : http://doi.org/10.1016/j.jacc.2005.06.008

W. Schaper, Factors Regulating Arteriogenesis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.23, issue.7, pp.1143-1151, 2003.
DOI : 10.1161/01.ATV.0000069625.11230.96

A. W. Helisch and . Schaper, Arteriogenesis: the development and growth of collateral arteries Losordo: Endothelial progenitor cells for cardiovascular regeneration, Microcirculation Trends Cardiovasc Med, vol.10, issue.18, pp.83-97, 2003.

T. Ziegelhoeffer, B. Fernandez, S. Kostin, M. Heil, R. Voswinckel et al., Bone Marrow-Derived Cells Do Not Incorporate Into the Adult Growing Vasculature, Circulation Research, vol.94, issue.2, pp.230-238, 2004.
DOI : 10.1161/01.RES.0000110419.50982.1C

D. W. Losordo and . Dimmeler, Therapeutic Angiogenesis and Vasculogenesis for Ischemic Disease: Part I: Angiogenic Cytokines, Circulation, vol.109, issue.21, pp.2487-2491, 2004.
DOI : 10.1161/01.CIR.0000128595.79378.FA

J. M. Isner, Tissue responses to ischemia: local and remote responses for preserving perfusion of ischemic muscle, Journal of Clinical Investigation, vol.106, issue.5, pp.615-619, 2000.
DOI : 10.1172/JCI10961

W. Risau, Mechanisms of angiogenesis, Nature, vol.386, pp.671-674, 1995.

J. Folkman, Angiogenesis, Annual Review of Medicine, vol.57, issue.1, pp.1-18, 2006.
DOI : 10.1146/annurev.med.57.121304.131306

R. Auerbach, R. Lewis, B. Shinners, L. Kubai, and &. N. Akhtar, Angiogenesis assays, Trends in Molecular Medicine, vol.8, issue.5, pp.32-40, 2003.
DOI : 10.1016/S1471-4914(01)02251-1

G. Thurston, T. J. Murphy, P. Baluk, J. R. Lindsey, and &. M. Mcdonald, Angiogenesis in Mice with Chronic Airway Inflammation, Simons M.: Angiogenesis: where do we stand now? Circulation, pp.1099-1112, 1998.
DOI : 10.1016/S0002-9440(10)65654-4

R. K. Jain, K. Schlenger, M. Hockel, and &. F. Yuan, Quantitative angiogenesis assays: Progress and problems, Nature Medicine, vol.27, issue.11, pp.1203-1208, 1997.
DOI : 10.1016/0026-2862(90)90047-U

D. M. Mcdonald, Imaging of angiogenesis: from microscope to clinic, Nature Medicine, vol.9, issue.6, pp.713-725, 2003.
DOI : 10.1038/nm0603-713

T. Couffinhal, M. Silver, M. Kearney, B. Witzenbichler, and &. J. , Isner: A mouse model of angiogenesis, Am. J. Pathol, vol.152, issue.24, pp.1667-1679, 1998.

I. Levy, Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb, Circ Res, vol.87, issue.25, pp.448-452, 2000.

F. Bianchini, M. C. Stillo, and &. Capogrossi, Madeddu: Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia, Circulation, vol.103, issue.26, pp.125-132, 2001.

D. H. Cherwek, M. B. Hopkins, M. J. Thompson, B. H. Annex, and &. D. Taylor, Fiber type-specific differential expression of angiogenic factors in response to chronic hindlimb ischemia, Am J Physiol Heart Circ Physiol, vol.279, issue.27, pp.932-938, 2000.

T. Couffinhal, M. Silver, M. Kearney, A. Sullivan, B. Witzenbichler et al., Impaired Collateral Vessel Development Associated With Reduced Expression of Vascular Endothelial Growth Factor in ApoE-/- Mice, Circulation, vol.99, issue.24, pp.3188-3198, 1999.
DOI : 10.1161/01.CIR.99.24.3188

D. M. Mcdonald and . Baluk, Significance of blood vessel leakiness in cancer, Cancer Res, vol.62, pp.5381-5385, 2002.

Y. Dor, V. Djonov, R. Abramovitch, A. Itin, G. I. Fishman et al., Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy, The EMBO Journal, vol.21, issue.8, pp.1939-1947, 2002.
DOI : 10.1093/emboj/21.8.1939

B. I. Sulpice, J. Levy, G. Plouet, &. S. Tobelem, and . Le-ricousse-roussanne, PSGL-1-mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells, J Clin Invest, vol.117, pp.1527-1537, 2007.

C. L. Duvall, W. R. Taylor, D. Weiss, and &. E. Guldberg, Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury, AJP: Heart and Circulatory Physiology, vol.287, issue.1, pp.302-310, 2004.
DOI : 10.1152/ajpheart.00928.2003

M. Hui, J. Westmore, Y. F. Hanson, M. Chen, &. J. Simons et al., High-resolution quantitative computed tomography demonstrating selective enhancement of medium-size collaterals by placental growth factor-1 in the mouse ischemic hindlimb, Circulation, vol.113, pp.2445-2453, 2006.

H. Kobayashi, S. Kawamoto, T. Saga, N. Sato, A. Hiraga et al., Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: Reference to pharmacokinetic properties of dendrimer-based MR contrast agents, Journal of Magnetic Resonance Imaging, vol.46, issue.6, pp.705-713, 2001.
DOI : 10.1002/jmri.10025

G. Korosoglou, W. D. Gilson, M. Schar, A. Ustun, L. V. Hofmann et al., Hind Limb Ischemia in Rabbit Model: T2-prepared versus Time-of-Flight MR Angiography at 3 T, Radiology, vol.245, issue.3, pp.761-769, 2007.
DOI : 10.1148/radiol.2452062067

D. Harris, J. A. Madri, B. L. Zaret, and &. A. , Sinusas: Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction, J Clin Invest, vol.113, issue.36, pp.1684-1691, 2004.

G. H. Schreiner, &. F. Brandenburger, and . Villanueva, Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue, Circulation, vol.108, issue.37, pp.97-103, 2003.

G. Thurston, J. W. Mclean, M. Rizen, P. Baluk, A. Haskell et al., Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice., Journal of Clinical Investigation, vol.101, issue.7, pp.1401-1413, 1998.
DOI : 10.1172/JCI965

H. Hashizume, P. Baluk, S. Morikawa, J. W. Mclean, G. Thurston et al., Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness, The American Journal of Pathology, vol.156, issue.4, pp.1363-1380, 2000.
DOI : 10.1016/S0002-9440(10)65006-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876882

J. Jacobi, B. Y. Tam, G. Wu, J. Hoffman, J. P. Cooke et al., Adenoviral Gene Transfer With Soluble Vascular Endothelial Growth Factor Receptors Impairs Angiogenesis and Perfusion in a Murine Model of Hindlimb Ischemia, Circulation, vol.110, issue.16, pp.2424-2429, 2004.
DOI : 10.1161/01.CIR.0000145142.85645.EA

H. Thibault, S. Lafitte, J. Timperley, L. Tariosse, H. Becher et al., Quantitative Analysis of Myocardial Perfusion in Rats by Contrast Echocardiography, Journal of the American Society of Echocardiography, vol.18, issue.12, pp.1321-1328, 2005.
DOI : 10.1016/j.echo.2005.09.007

S. Lafitte, A. Higashiyama, H. Masugata, B. Peters, M. Strachan et al., Contrast echocardiography can assess risk area and infarct size during coronary occlusion and reperfusion: experimental validation, Journal of the American College of Cardiology, vol.39, issue.9, pp.1546-1554, 2002.
DOI : 10.1016/S0735-1097(02)01771-0

URL : http://doi.org/10.1016/s0735-1097(02)01771-0

E. R. Mcveigh, Emerging Imaging Techniques, Circulation Research, vol.98, issue.7, pp.879-886, 2006.
DOI : 10.1161/01.RES.0000216870.73358.d9

P. Herrero, J. Kim, T. L. Sharp, J. A. Engelbach, J. S. Lewis et al., Assessment of myocardial blood flow using 15O-water and 1-11C-acetate in rats with small-animal PET, J Nucl Med, vol.47, pp.477-485, 2006.

J. Kim, P. Herrero, T. Sharp, R. Laforest, D. J. Rowland et al., Minimally invasive method of determining blood input function from PET images in rodents, J Nucl Med, vol.47, pp.330-336, 2006.

A. M. Iga, S. Sarkar, K. M. Sales, M. C. Winslet, and &. A. Seifalian, Quantitating Therapeutic Disruption of Tumor Blood Flow with Intravital Video Microscopy, Cancer Research, vol.66, issue.24, pp.11517-11519, 2006.
DOI : 10.1158/0008-5472.CAN-06-1743

V. Vojnovic-van-weel, R. E. Toes, L. Seghers, M. M. Deckers, M. R. De-vries et al., Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy, Adv Drug Deliv Rev, vol.57, issue.47, pp.135-152, 2005.

W. Van-hinsbergh, J. H. Van-bockel, &. P. Waters, R. E. , R. L. Terjung et al., Quax: Natural killer cells and CD4+ T-cells modulate collateral artery development Annex: Preclinical models of human peripheral arterial occlusive disease: implications for investigation of therapeutic agents, Arterioscler Thromb Vasc Biol J Appl Physiol, vol.27, issue.97, pp.2310-2318, 2004.

B. Gallez, C. Baudelet, and &. B. Jordan, Assessment of tumor oxygenation by electron paramagnetic resonance: principles and applications, NMR in Biomedicine, vol.17, issue.5, pp.240-262, 2004.
DOI : 10.1002/nbm.900

S. Duplaa, L. Chimenti, R. Staszewsky, V. Latini, &. B. Baumans et al., Murine models of myocardial and limb ischemia: diagnostic end-points and relevance to clinical problems, Vascul Pharmacol, vol.45, pp.281-301, 2006.

J. P. Cleutjens, W. M. Blankesteijn, M. J. Daemen, and &. J. Smits, The infarcted myocardium Simply dead tissue, or a lively target for therapeutic interventions, Cardiovascular Research, vol.44, issue.2, pp.232-241, 1999.
DOI : 10.1016/S0008-6363(99)00212-6

P. Anversa, C. Beghi, Y. Kikkawa, and &. G. Olivetti, Myocardial response to infarction in the rat Morphometric measurement of infarct size and myocyte cellular hypertrophy, Am J Pathol, vol.118, issue.53, pp.484-492, 1985.

P. Anversa, C. Beghi, Y. Kikkawa, and &. G. Olivetti, Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth, Circulation Research, vol.58, issue.1, pp.26-37, 1986.
DOI : 10.1161/01.RES.58.1.26

L. Barandon, T. Couffinhal, J. Ezan, P. Dufourcq, P. Costet et al., Reduction of Infarct Size and Prevention of Cardiac Rupture in Transgenic Mice Overexpressing FrzA, Circulation, vol.108, issue.18, pp.2282-2289, 2003.
DOI : 10.1161/01.CIR.0000093186.22847.4C

N. Himori, Matsuura: A simple technique for occlusion and reperfusion of coronary artery in conscious rats, Am J Physiol, vol.256, pp.1719-1725, 1989.

N. G. Frangogiannis, C. W. Smith, and &. L. Entman, The inflammatory response in myocardial infarction, Cardiovascular Research, vol.53, issue.1, pp.31-47, 2002.
DOI : 10.1016/S0008-6363(01)00434-5

X. P. Yang, Y. H. Liu, N. E. Rhaleb, N. Kurihara, H. E. Kim et al., Echocardiographic assessment of cardiac function in conscious and anesthetized mice Impact of anesthesia on cardiac function during echocardiography in mice, Am J Physiol Am J Physiol Heart Circ Physiol, vol.277, issue.282, pp.1967-1974, 1999.

O. M. Tepper, J. M. Capla, R. D. Galiano, D. J. Ceradini, M. J. Callaghan et al., Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells, Blood, vol.105, issue.3, pp.1068-1077, 2005.
DOI : 10.1182/blood-2004-03-1051

P. Dufourcq, T. Couffinhal, J. Ezan, L. Barandon, M. Moreau et al., FrzA, a Secreted Frizzled Related Protein, Induced Angiogenic Response, Circulation, vol.106, issue.24, pp.3097-3103, 2002.
DOI : 10.1161/01.CIR.0000039342.85015.5C

A. Passaniti, R. M. Taylor, R. Pili, Y. Guo, P. V. Long et al., A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor, Lab Invest, vol.67, issue.62, pp.519-528, 1992.

K. M. Malinda, In vivo matrigel migration and angiogenesis assays, Methods Mol Med, vol.78, pp.329-335, 2003.

J. H. Baker, L. A. Huxham, A. H. Kyle, K. K. Lam, and &. I. , Vascular-specific quantification in an in vivo Matrigel chamber angiogenesis assay, Microvascular Research, vol.71, issue.2, pp.69-75, 2006.
DOI : 10.1016/j.mvr.2006.01.002

J. Hasan, S. D. Shnyder, M. Bibby, J. A. Double, R. Bicknel et al., Quantitative Angiogenesis Assays in vivo ??? A Review, Angiogenesis, vol.7, issue.1, pp.1-16, 2004.
DOI : 10.1023/B:AGEN.0000037338.51851.d1

C. D. Ley, M. W. Olsen, E. L. Lund, and &. E. Kristjansen, Angiogenic synergy of bFGF and VEGF is antagonized by Angiopoietin-2 in a modified in vivo Matrigel assay, Microvascular Research, vol.68, issue.3, pp.161-168, 2004.
DOI : 10.1016/j.mvr.2004.06.002

L. F. Fajardo, J. Kowalski, H. H. Kwan, S. D. Prionas, and &. A. , Allison: The disc angiogenesis system, Lab Invest, vol.58, issue.67, pp.718-724, 1988.

X. J. Lou, H. H. Kwan, S. D. Prionas, Z. J. Yang, R. M. Lawn et al., Despite Its Homology to Angiostatin Apolipoprotein(a) Does Not Affect Angiogenesis, Experimental and Molecular Pathology, vol.65, issue.2, pp.53-63, 1998.
DOI : 10.1006/exmp.1998.2230

J. Kowalski, H. H. Kwan, S. D. Prionas, A. C. Allison, and &. F. Fajardo, Characterization and applications of the disc angiogenesis system, Experimental and Molecular Pathology, vol.56, issue.1, pp.1-19, 1992.
DOI : 10.1016/0014-4800(92)90019-8

P. A. Campochiaro and . Hackett, Ocular neovascularization: a valuable model system, Oncogene, vol.22, issue.42, pp.6537-6548, 2003.
DOI : 10.1038/sj.onc.1206773

A. P. Morrisey, G. Mcmahon, and &. R. Karsenty, Lang: WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature, Nature, vol.437, pp.417-421, 2005.

H. C. Gerhardt, A. Betsholtz-uemura, S. Kusuhara, H. Katsuta, and &. S. Nishikawa, Endothelial-pericyte interactions in angiogenesis Angiogenesis in the mouse retina: a model system for experimental manipulation Carmeliet: Guidance of vascular and neural network formation, Cell Tissue Res Exp Cell Res Curr Opin Neurobiol, vol.314, issue.15, pp.15-23, 2003.

J. Nathans, Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair, Cell, vol.116, pp.883-895, 2004.

B. M. Kenyon, E. E. Voest, C. C. Chen, E. Flynn, J. Folkman et al., A model of angiogenesis in the mouse cornea, Invest Ophthalmol Vis Sci, vol.37, pp.1625-1632, 1996.

V. R. Muthukkaruppan and . Auerbach, Angiogenesis in the mouse cornea, Science, vol.205, issue.4413, pp.1416-1418, 1979.
DOI : 10.1126/science.472760

T. J. Conrad, D. B. Chandler, J. M. Corless, and &. K. Klintworth, In vivo measurement of corneal angiogenesis with video data acquisition and computerized image analysis, Lab Invest, vol.70, pp.426-434, 1994.

S. Hayashi, T. Asahara, H. Masuda, J. M. Isner, and &. D. , Functional Ephrin-B2 Expression for Promotive Interaction Between Arterial and Venous Vessels in Postnatal Neovascularization, Circulation, vol.111, issue.17, pp.2210-2218, 2005.
DOI : 10.1161/01.CIR.0000163566.07427.73

D. W. Stein-streilein and &. J. Losordo, Streilein: Inflammation-induced lymphangiogenesis in the cornea arises from CD11b- positive macrophages, J Clin Invest, vol.115, issue.80, pp.2363-2372, 2005.

M. G. Tonnesen, X. Feng, and &. R. Clark, Angiogenesis in Wound Healing, Journal of Investigative Dermatology Symposium Proceedings, vol.5, issue.1, pp.40-46, 2000.
DOI : 10.1046/j.1087-0024.2000.00014.x

S. A. Eming, B. Brachvogel, T. Odorisio, and &. M. Koch, Regulation of angiogenesis: Wound healing as a model, Progress in Histochemistry and Cytochemistry, vol.42, issue.3, pp.115-170, 2007.
DOI : 10.1016/j.proghi.2007.06.001

M. Hoffman, A. Harger, A. Lenkowski, U. Hedner, H. R. Roberts et al., Cutaneous wound healing is impaired in hemophilia B, Blood, vol.108, issue.9, pp.3053-3060, 2006.
DOI : 10.1182/blood-2006-05-020495

T. Odorisio, F. Cianfarani, C. M. Failla, and &. G. Zambruno, The placenta growth factor in skin angiogenesis, Journal of Dermatological Science, vol.41, issue.1, pp.11-19, 2006.
DOI : 10.1016/j.jdermsci.2005.08.008

T. Kishimoto, R. Thorne, and &. D. Kishore, Losordo: Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling, Circulation, vol.113, issue.85, pp.2413-2424, 2006.

A. Pourtier-manzanedo, C. Vercamer, E. Van-belle, V. Mattot, F. Mouquet et al., Vandenbunder: Expression of an Ets-1 dominant-negative mutant perturbs normal and tumor angiogenesis in a mouse ear model, Proc Natl Acad Sci U S A Oncogene, vol.103, issue.87, pp.4946-4951, 2003.

H. G. Augustin, K. Braun, I. Telemenakis, U. Modlich, and &. W. Kuhn, Ovarian angiogenesis. Phenotypic characterization of endothelial cells in a physiological model of blood vessel growth and regression, Am J Pathol, vol.147, pp.339-351, 1995.

N. Aldrich, T. J. Papadopoulos, S. Daly, T. N. Davis, &. D. Sato et al., Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis Isner: Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF, Science Am J Pathol, vol.277, issue.90, pp.55-60, 1997.

M. Ii, H. Takenaka, J. Asai, K. Ibusuki, Y. Mizukami et al., Endothelial Progenitor Thrombospondin-1 Mediates Diabetes-Induced Delay in Reendothelialization Following Arterial Injury, Circulation Research, vol.98, issue.5, pp.697-704, 2006.
DOI : 10.1161/01.RES.0000209948.50943.ea

G. C. Schatteman, H. D. Hanlon, C. Jiao, S. G. Dodds, and &. B. Christy, Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice, Journal of Clinical Investigation, vol.106, issue.4, pp.571-578, 2000.
DOI : 10.1172/JCI9087

C. Emanueli, M. B. Salis, A. Pinna, T. Stacca, A. F. Milia et al., Prevention of Diabetes-Induced Microangiopathy by Human Tissue Kallikrein Gene Transfer, Circulation, vol.106, issue.8, pp.993-999, 2002.
DOI : 10.1161/01.CIR.0000027104.33206.C8

D. Tirziu, K. L. Moodie, Z. W. Zhuang, K. Singer, A. Helisch et al., Delayed Arteriogenesis in Hypercholesterolemic Mice, Circulation, vol.112, issue.16, pp.2501-2509, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.542829

J. C. Russell and . Proctor, Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis, Cardiovascular Pathology, vol.15, issue.6, pp.318-330, 2006.
DOI : 10.1016/j.carpath.2006.09.001

S. Zadelaar, R. Kleemann, L. Verschuren, J. De-vries-van-der-weij, J. Van-der-hoorn et al., Mouse Models for Atherosclerosis and Pharmaceutical Modifiers, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.8, pp.1706-1721, 2007.
DOI : 10.1161/ATVBAHA.107.142570

S. H. Zhang, R. L. Reddick, J. A. Piedrahita, and &. , Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E, Science, vol.258, issue.5081, pp.468-471, 1992.
DOI : 10.1126/science.1411543

S. Ishibashi, J. L. Goldstein, M. S. Brown, J. Herz, and &. D. Burns, Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice., Journal of Clinical Investigation, vol.93, issue.5, pp.1885-1893, 1994.
DOI : 10.1172/JCI117179

N. C. Krieger, M. Andrews, &. M. Simons, and . Krieger, Probucol prevents early coronary heart disease and death in the high-density lipoprotein receptor SR-BI/apolipoprotein E double knockout mouse, Proc Natl Acad Sci, vol.100, pp.7283-7288, 2003.

C. Emanueli, A. Caporali, N. Krankel, B. Cristofaro, S. Van-linthout et al., Type-2 diabetic Lepr(db/db) mice show a defective microvascular phenotype under basal conditions and an impaired response to angiogenesis gene therapy in the setting of limb ischemia, Front Biosci, vol.12, 2003.

G. H. Lee, R. Proenca, J. M. Montez, K. M. Carroll, J. G. Darvishzadeh et al., Abnormal splicing of the leptin receptor in diabetic mice, Nature, vol.379, issue.6566, pp.632-635, 1996.
DOI : 10.1038/379632a0

Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold et al., Positional cloning of the mouse obese gene and its human homologue, Nature, vol.372, issue.6505, pp.425-432, 1994.
DOI : 10.1038/372425a0

L. M. Houdebine, The methods to generate transgenic animals and to control transgene expression, Journal of Biotechnology, vol.98, issue.2-3, pp.145-160, 2002.
DOI : 10.1016/S0168-1656(02)00129-3

L. G. Melo, M. Gnecchi, A. S. Pachori, D. Kong, K. Wang et al., Endothelium-Targeted Gene and Cell-Based Therapies for Cardiovascular Disease, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.10, pp.1761-1774, 2004.
DOI : 10.1161/01.ATV.0000142363.15113.88

A. Nagy, Cre recombinase: The universal reagent for genome tailoring, genesis, vol.22, issue.2, pp.99-109, 2000.
DOI : 10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-B

M. Mallo, Controlled gene activation and inactivation in the mouse, Frontiers in Bioscience, vol.11, issue.1, pp.313-327, 2006.
DOI : 10.2741/1799

L. M. Houdebine, Animal transgenesis: recent data and perspectives, Biochimie, vol.84, issue.11, pp.1137-1141, 2002.
DOI : 10.1016/S0300-9084(02)00012-3

A. D. Ryding, M. G. Sharp, and &. J. , Conditional transgenic technologies, Journal of Endocrinology, vol.171, issue.1, pp.1-14, 2001.
DOI : 10.1677/joe.0.1710001

&. C. Couffinhal and . Duplaa, Involvement of FrzA/sFRP-1 and the Wnt/frizzled pathway in ischemic preconditioning, Circ Res, vol.96, pp.1299-1306, 2005.

Z. Zhu, T. Zheng, C. G. Lee, R. J. Homer, and &. J. Elias, Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling, Seminars in Cell & Developmental Biology, vol.13, issue.2, pp.121-128, 2002.
DOI : 10.1016/S1084-9521(02)00018-6

&. C. Couffinhal and . Duplaa, Regulation of endothelial cell cytoskeletal reorganization by a secreted frizzled-related protein-1 and frizzled 4-and frizzled 7-dependent pathway: role in neovessel formation Keys words: angiogenesis, vasculogenesis, arteriogenesis, neovessel, mouse model, ischemia, transgenic model, review Send correspondence to, Am J Pathol, vol.172, pp.37-49, 2008.

. Fax, E-mail: thierry.couffinhal@inserm.fr Figure legends Figure 1: CD-31 and Smooth Muscle ?-Actin immunostaining on ischemic muscle section of anterior tibialis at day 15